THE EFFECTS OF TESTOSTERONE AND OF TESTOSTERONE PROPIONATE ON RENAL FUNCTIONS IN MAN

BY CALVIN KLOPP, NELSON F. YOUNG, AND HOWARD C. TAYLOR, JR.

(From the Memorial Hospital for the Treatment of Cancer and Allied Diseases, New York City)

(Received for publication July 22, 1944)

The renotropic effects of testosterone and testosterone propionate have been demonstrated repeatedly in mice and rats (1, 2, 3). Whether or not the induced increase in size and weight of the organ is associated with any enhanced functional capacity thus far has not been determined. It has been found, however, that the administration of testosterone propionate to female castrated dogs will augment the maximum tubular secretory capacity but does not influence the creatinine clearance (4). That testosterone propionate is particularly effective as a renotropic agent in rats and dogs which develop compensatory hypertrophy of the remaining kidney after unilateral nephrectomy has been indicated (5). In these animals, the increase in mass of the kidneys was paralleled by an increase in both glomerular filtration rate (inulin clearance) and tubular excretory mass (TmG). The parenteral administration of 25 mgm. of the hormone, daily for 2 weeks, to normal individuals and patients with renal disease failed to increase the renal functions measured.

Despite this last observation, it appeared possible that the administration of testosterone or testosterone propionate might increase the functional capacity of the human kidney if given in amounts comparable (on a weight basis) with those used in animal experiments. A clinical study was undertaken, therefore, to ascertain the effects of large amounts of these steroids on human renal function. The results of that study form the basis of the present report.

METHODS

1. Effective renal flow was ascertained from the plasma clearance (CpAh) of sodium-p-aminohippurate (PAH), a compound which has been recommended by Smith and his associates as a substitute for diodrast. During the determinations of renal blood flow, the plasma concentration of PAH was maintained at levels of from 1.0 to 3.1 mgm. per cent.

2. The rate of glomerular filtration was measured by the clearance of mannitol (CM) (7). Plasma levels of mannitol during these observations ranged from 125 to 168 mgm. per cent.

3. The tubular excretory mass was indicated by the clearance of PAH when the plasma concentration of that compound was greater than 66.5 mgm. per cent (TmPAH).

4. The maximal rate of tubular resorption of glucose (TmG) was measured at plasma glucose concentrations above 350 mgm. per cent (8). All determinations were checked both before and immediately after the administration of the hormones.

In a previous communication (9) it was demonstrated that simultaneous measurements of TmG, TmPAH could not be made satisfactorily since the values obtained were effected by the plasma concentration of the test substance. Hence, in the present study, separate periods were used to determine first CpAh, then TmPAH, and finally TmG.

CLINICAL MATERIAL

A total of 9 subjects was studied. Four of these were normal adult males. The first (E. C.) received intramuscularly 90 mgm. of testosterone \(^1\) in sesame oil daily for 23 days. The second (V. F.) received 100 mgm. per day of testosterone propionate \(^1\) for a total of 8 days. The third (E. M.) and fourth (D. H.) were injected with 300 mgm. daily of testosterone propionate for 8 and 14 days, respectively.

The fifth subject was a eunuchoid male (M. H.) whose daily excretion of 17-ketosteroids was consistently less than 3 mgm. This subject was included to ascertain whether or not the hypogonadal state affected the renal functions measured. This subject was given 100 mgm. of testosterone propionate per day for 29 days.

The remaining 4 patients investigated each had disorders commonly associated with renal insufficiency. Two had essential hypertension (M. F. P. and J. McG.) and 2 had chronic bilateral pyelonephritis (E. O. and B. H.). The patients with hypertension received daily 100 mgm. of testosterone propionate intramuscularly for 12 and 33 days and those with pyelonephritis each were given 300 mgm. per day for 14 and 16 days.

\(^1\) The testosterone and testosterone propionate were donated by the Schering Corporation, Bloomfield, New Jersey.

\(^1\) The authors gratefully acknowledge the gift of this material from Sharp & Dohme, Inc., Philadelphia, Pennsylvania.
TABLE I
The effects of testosterone and of testosterone propionate on the renal functions of the subjects studied

<table>
<thead>
<tr>
<th>Subject</th>
<th>Disorder</th>
<th>Period</th>
<th>Daily amount given i.m.</th>
<th>Days</th>
<th>C_M (ml per min.)</th>
<th>Tm_PAH (mgm. per min.)</th>
<th>Tm_G (ml per min.)</th>
<th>CPAH (mgm. mil. per mm Hg)</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. C.</td>
<td>Normal male</td>
<td>Control</td>
<td></td>
<td></td>
<td>114</td>
<td>232</td>
<td>813</td>
<td>120/60</td>
<td>120/70/115</td>
</tr>
<tr>
<td></td>
<td>Testosterone</td>
<td>90</td>
<td>22</td>
<td>121</td>
<td>98</td>
<td>205</td>
<td>112</td>
<td>120/70</td>
<td>120/70/115</td>
</tr>
<tr>
<td>V. F.</td>
<td>Normal male</td>
<td>Control</td>
<td></td>
<td></td>
<td>119</td>
<td>95</td>
<td>288</td>
<td>110/70</td>
<td>120/70</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>100</td>
<td>9</td>
<td>107</td>
<td>95</td>
<td>310</td>
<td>89</td>
<td>120/70</td>
<td>120/70</td>
</tr>
<tr>
<td>E. M.</td>
<td>Normal male</td>
<td>Control</td>
<td></td>
<td></td>
<td>165</td>
<td>431</td>
<td>389</td>
<td>90/50</td>
<td>100/50</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>300</td>
<td>8</td>
<td>143</td>
<td>95</td>
<td>39</td>
<td>730</td>
<td>120/70</td>
<td>120/70</td>
</tr>
<tr>
<td>D. H.</td>
<td>Normal male</td>
<td>Control</td>
<td></td>
<td></td>
<td>122</td>
<td>323</td>
<td>740</td>
<td>120/70</td>
<td>120/70</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>300</td>
<td>14</td>
<td>124</td>
<td>95</td>
<td>294</td>
<td>740</td>
<td>120/70</td>
<td>120/70</td>
</tr>
<tr>
<td>M. H.</td>
<td>Eunuchoid male</td>
<td>Control</td>
<td></td>
<td></td>
<td>87</td>
<td>47</td>
<td>55</td>
<td>100/70</td>
<td>100/70</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>100</td>
<td>14</td>
<td>79</td>
<td>55</td>
<td>190</td>
<td>107</td>
<td>110/60</td>
<td>110/60</td>
</tr>
<tr>
<td>M. F. P.</td>
<td>Essential hypertension; male</td>
<td>Control</td>
<td></td>
<td></td>
<td>68</td>
<td>36</td>
<td>60</td>
<td>220/120</td>
<td>180/110</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>100</td>
<td>12</td>
<td>75</td>
<td>50</td>
<td>217</td>
<td>198</td>
<td>220/120</td>
<td>180/110</td>
</tr>
<tr>
<td>J. McG.</td>
<td>Essential hypertension; male</td>
<td>Control</td>
<td></td>
<td></td>
<td>64</td>
<td>52</td>
<td>53</td>
<td>196/200</td>
<td>180/90</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>100</td>
<td>33</td>
<td>62</td>
<td>53</td>
<td>217</td>
<td>81</td>
<td>170/80</td>
<td>160/80</td>
</tr>
<tr>
<td>E. O.</td>
<td>Bilateral pyelonephritis; female</td>
<td>Control</td>
<td></td>
<td></td>
<td>30</td>
<td>107</td>
<td>56</td>
<td>212/100</td>
<td>150/100</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>300</td>
<td>16</td>
<td>31</td>
<td>107</td>
<td>81</td>
<td>107</td>
<td>150/100</td>
<td>150/100</td>
</tr>
<tr>
<td>B. H.</td>
<td>Chronic bilateral pyelonephritis; male</td>
<td>Control</td>
<td></td>
<td></td>
<td>52</td>
<td>48</td>
<td>46</td>
<td>150/100</td>
<td>150/100</td>
</tr>
<tr>
<td></td>
<td>Testosterone propionate</td>
<td>300</td>
<td>14</td>
<td>56</td>
<td>48</td>
<td>107</td>
<td>46</td>
<td>150/100</td>
<td>150/100</td>
</tr>
</tbody>
</table>

RESULTS

The essential data are presented in Table I. Before the administration of the steroids, the values obtained for C_M, CPAH, and TM_G in the normal subjects, the patients with essential hypertension, and those with chronic pyelonephritis agree well with those found by other investigators in similar clinical material (8, 10, 11). However, it is interesting to note that although the eunuchoid male consistently had normal arterial tension and no history of renal disease, the values of C_M, CPAH, and TM_PAH were all abnormally low.

Neither testosterone nor testosterone propionate in the amounts administered apparently had any effect on C_M nor on the TM_PAH. Neither was there obtained any consistent or significant effect of the hormones administered on the CPAH nor the TM_G.

COMMENT

Maximal renal hypertrophy in the mouse is effected by the administration of 0.1 mgm. per day of testosterone propionate for only 9 days (4). An increase in tubular function in dogs has been observed (4) after the administration of a
single dose of 100 mgm. in 1 case and after 4
daily doses of 100 mgm. each in 2 other animals.
On a comparative weight basis, this would
indicate about 300 mgm. per day as an effective
renotropin dose in man. Hence, had the same
relationship existed between administered ster-
oids and renal function in man, the amounts of
the compound employed in the present study
should have been effective in at least 4 subjects.

Evidently certain steroids do not influence
renal functions in general. This has been found
true, for example, for alpha estradiol benzoate
(12). The administration of this compound
appears to be without effect on the clearance of
mannitol. It does, however, markedly depress the
tubular reabsorption of ascorbic acid. Like-
wise, in the dog, testosterone propionate appar-
etly does not change the filtration rate but does
increase markedly the tubular secretion of dio-
drast (4). It is possible, therefore, that although
the administration of testosterone or testosterone
propionate to human beings did not alter the
filtration rate nor renal blood flow or TmPAH or
TmO, other renal functions might have been
affected. This possibility now is under further
investigation.

Whereas the administration of the steroids
might not increase renal function in normal
subjects above their normal level, the compound
might increase depressed function of the diseased
kidney. For this reason, patients with impair-
ment of renal function were included, but in
these, too, the administered hormones were
without measured effect.

CONCLUSION

The administration of testosterone or testo-
sterone propionate in amounts presumed to be
adequate for renotropin effects did not alter
significantly the rate of glomerular filtration,
renal blood flow, the maximum rate of tubular
secretion of p-aminohippurate, or the maximum
rate of tubular reabsorption of glucose in 4
normal subjects or in 5 patients with impaired
renal function.

BIBLIOGRAPHY

1. Korenchevsky, V., and Hall, K., Prolonged injections
of male sex hormones into normal and senile male
J. Urol., 1939, 42, 637.
3. MacKay, E. M., Degree of compensatory renal hyper-
trophy following unilateral nephrectomy. III. In-
4. Welsh, C. A., Rosenthal, A., Duncan, M. T., and
Taylor, H. C., Jr., The effects of testosterone
propionate on renal function in the dog, as measured
by the creatinine and diodrast clearance and dio-
5. Lattimer, J. K., The action of testosterone propionate
upon the kidneys of rats, dogs and men. J. Urol.,
1942, 48, 778.
7. Smith, W. W., Finkelstein, N., and Smith, H. W.,
Renal excretion of hexitols (sorbitol, mannitol, and
dulcitol) and their derivatives (sorbitan, isomannide,
and sorbide) and of endogenous creatinine-like
chromogen in dog and man. J. Biol. Chem., 1940,
135, 231.
8. Goldring, W., Chasis, H., Ranges, H. A., and Smith,
H. W., Relations of effective renal blood flow and
glomerular filtration to tubular excretory mass in
9. Kloppe, C., Young, N. F., and Taylor, H. C., Jr.,
Probable errors in the simultaneous measurement of
separate kidney functions. J. Clin. Invest.,
1945, 24, 117.
10. Earle, D. P., Taggart, J. V., and Shannon, J. A.,
Glomerulonephritis. A survey of the functional
organization of the kidney in various stages of
diffuse glomerulonephritis. J. Clin. Invest., 1944,
23, 119.
11. Smith, H. W., Personal communication.
effect of the administration of estrogen on the
mechanism of ascorbic acid excretion in the dog.