Studies with $^{15}$N-Labeled Ammonia and Urea in the Malnourished Child

W. W. C. Read, D. S. McLaren, Marie Tchaliam, and Shams Nasser

From the Nutrition Research Program, School of Medicine, American University of Beirut, Beirut, Lebanon

**Abstract** Investigations using ammonium citrate-$^{15}$N and urea-$^{15}$N showed that children in the acute stage of kwashiorkor and marasmus receiving a diet of adequate protein content retained a considerable percentage of the label from both compounds. Excretion of both total $^{15}$N and urea-$^{15}$N was subnormal and elimination was virtually completed 36 hr after administration of the isotope. During recovery from kwashiorkor total $^{15}$N excretion had approached normal a month after commencement of rehabilitation. Urea-$^{15}$N excretion was still slightly subnormal after 3 months. In marasmus urea-$^{15}$N formed a normal proportion of total $^{15}$N excretion after 1 month, although total $^{15}$N excretion then was still low. Ammonia nitrogen was retained to a greater extent than urea nitrogen in all cases. As it is known that a considerable amount of urea is degraded to ammonia in the gastrointestinal tract, it seems probable that urea nitrogen became available for use after this degradation. Examination of blood from one maras- mic child after feeding ammonia-$^{15}$N and from another after intravenous injection of urea-$^{15}$N showed incorporation of the label into blood cells and plasma proteins. This did not occur in well nourished controls. It is concluded that ammonia and urea as sources of nonessential nitrogen may play an important part in protein metabolism in the malnourished child.

**Introduction**

For optimal growth the mammalian body requires a diet containing nitrogen in the form of essential amino acids, together with nitrogen derived from other sources. Although the amount and proportion of the essential amino acids required appear to be closely related to species and age, the source of nonessential nitrogen seems to be relatively unimportant. Nonessential nitrogen is normally derived mainly from a mixture of nonessential amino acids.

In the young rat normal growth can continue (1) when ammonia is the only source of nonessential nitrogen supplementing a mixture of essential amino acids equivalent in quality and quantity to those known to be necessary for optimal growth. Several individual amino acids and urea are also capable of substituting for the usual dietary nonessential nitrogen in some animals (1).

Studies with ammonia-$^{15}$N in animals (2-4), healthy adults (2) and children (5), and adult patients with various diseases (2, 6) have shown that when dietary nitrogen is restricted a high proportion of the administered ammonia is retained. It is not clear whether the poor retention of ammonia nitrogen in the presence of an adequate diet is due to the preference of the body for other forms of nonessential nitrogen or whether it results from dilution with dietary nitrogen.

Normally over 90% of administered ammonia is excreted in less than 48 hr (2), suggesting that other forms of nitrogen are used preferentially. Conditions causing retention of ammonia nitrogen, as already described, lead also to urea nitrogen retention (1, 5, 7, 8) and subsequent protein synthesis (8). There is considerable evidence to show that in order for urea nitrogen to be utilized it must first be degraded to ammonia. The site of degradation is the digestive tract and is probably effected by ureases formed by the gastric and intestinal flora (9-12). In germ-free (13) and eviscerated (11) animals degradation of urea to ammonia ceases. Several studies provide evidence to show that various antibiotics or combinations of antibiotics inhibit (11) or stop (9, 14) this process. Low protein intake in the rat resulting in reduced urinary nitrogen excretion also reduces the activity of enzymes of the urea cycle (15). In the liver of malnourished children (16) the activity of argininosuccinase is reduced and that of amino acid-synthesizing enzymes increased.
In the severely malnourished child, in whom nitrogen intake is frequently below the minimum required to prevent body protein being catabolized, adaptation resulting in increased utilization of what are normally waste products would effect an economy of nitrogen and improve the prospects of recovery. The purpose of the present study was to determine to what extent the malnourished child might use ammonia and urea nitrogen under good dietary conditions, and the effect nutritional rehabilitation has on the extent of such utilization.

METHODS

Subjects

The subjects were Arab male children ranging between 3 and 14 months of age on admission. They presented with diarrhea, vomiting, various infections, and dehydration. All these symptoms were controlled in the hospital before the child was transferred to the Clinical Nutrition Unit for rehabilitation and study. Although no special study was made of hepatic, renal, or absorptive function, none of the subjects showed clinical evidence of disturbance. It is possible that mild impairment of renal function, known to occur (17), might have been partly responsible for the abnormal findings in the acutely malnourished children but this is not thought to be likely.

In the ammonia-\(^{15}\)N study there was one healthy control, one child with severe kwashiorkor, and six with varying degrees of marasmus. Three of the malnourished subjects were studied at intervals during recovery. For the patient with kwashiorkor, studies commenced on days 3, 38, 99, and 129, and for the two with marasmus, on days 3, 32, 65, and 98, and days 7 and 130, respectively. These children on recovery served as their own controls. In the urea-\(^{15}\)N study there were two healthy controls and four patients with marasmus.

The patient with kwashiorkor had on admission apathy, anorexia, extensive dermatosis, edema, hepatomegaly, and hair changes, typical clinical features of the condition. In addition there was evidence of advanced vitamin A deficiency (serum vitamin A 4 µg/100 ml and bilateral keratomalacia). The children with marasmus showed on admission marked wasting with loss of subcutaneous fat and skeletal muscle. In none was there edema or any of the signs of kwashiorkor. Subjects younger than 6 months received a cow's milk formula providing approximately 200 cal and 4 g of protein/kg per day. Older children received milk and Labina (18) giving a daily intake of about 150 cal and 3 g of protein/kg. The patients stayed in the Unit for from 3 to 5 months and all made a good recovery, except for the permanent corneal scarring resulting in blindness in the subject with kwashiorkor. All attained their expected weight for height before discharge. The controls were admitted for 1 wk to the Unit from an orphanage specially for the study.

Isotope administration and sample collection

The subjects were nursed on a metabolic bed throughout the experimental period. The diet fed during the study was given for a minimum period of 48 hr before the study commenced in the acute state and considerably longer during recovery. A greater length of time would have been desirable to reach steady-state conditions but it was considered more important to obtain results in the acute stage before changes due to recovery were well established.

Ammonia-\(^{15}\)N study

Ammonia was given in the form of diammonium citrate prepared by a previously described method (2), from ammonium nitrate\(^{2}\) containing approximately 30% of its nitrogen as the heavy isotope.

Two control subjects and six children with marasmus received diammonium citrate in aqueous solution by stomach tube immediately before the first feed of the day and as soon as possible after urine had been passed. The dose was approximately 5 mg/kg body weight. 50 mg carmine was incorporated into the following feed to act as a stool marker. 48 hr later 50 mg carmine was given with the feed to act as the second stool marker. Stools collected, every precaution being taken to avoid loss, from the appearance of the first marker until the appearance of the second. Stools collected were pooled and frozen at \(-20^\circ\)C until required for analysis. Urine was collected in a polyethylene bag adherent to the perineum. Quantitative removal of urine was made by aspiration and washing with distilled water at the following times after administration of the isotope: 3, 6, 9, 12, 15, 24, 30, 36, and 48 hr. Each urine sample was acidified with sulfuric acid, 1 ml of toluene was added as preservative, and the urine was stored immediately after collection at \(-20^\circ\)C until required for analysis.

One marasmic child received diammonium citrate-\(^{15}\)N by stomach tube in a dose of 5 mg/kg body weight every day for five days. Venipuncture samples were collected at weekly intervals for 7 wk from the commencement of the experiment. The blood was collected into heparinized tubes and the plasma separated by centrifugation. The red cells were washed twice with normal saline. Both erythrocytes and plasma were then stored at \(-20^\circ\)C until analyzed.

Urea-\(^{15}\)N study

The subjects were two control and three marasmic children. After the subject had passed urine he was given intravenously 4 mg/kg body weight of urea having 96% of its nitrogen as the heavy isotope in the form of 1.2% solution in sterile saline. Urine was collected at 3-hr intervals for 48 hr after administration of the dose. Each sample was preserved with toluene and frozen at \(-20^\circ\)C immediately after collection.

In one marasmic child 12 mg urea-\(^{15}\)N was given intravenously as a 1.2% solution in normal saline on each of 3 successive days. 1 wk after commencement of the experiment blood was taken by venipuncture, and treated as described previously.

Analysis of samples

Feces. Samples were homogenized with water and aliquots were analyzed for content of total nitrogen and of \(^{15}\)N. Total fecal nitrogen was measured by Kjeldahl analysis, using mercuric sulfate as catalyst. For isotope measurement ammonia formed from Kjeldahl digestion was steam-distilled into 0.02 N sulfuric acid and the solution frozen until required.

Urine. Each sample of urine from both studies was analyzed for total nitrogen, ammonia nitrogen, and urea nitrogen. Analysis of the samples from the urea study was carried out within 48 hr of the last collection to minimize possible degradation of urea to ammonia. Urinary nitrogen was measured and specimens prepared for isotope analysis as described above for fecal nitrogen.

1Office National Industriel de l'Azote, Paris, France.
2Isomet Corporation, Palisades Park, N. J.
Table I

Nitrogen Balance over 48 hr of Subjects in Ammonia-\textsuperscript{15}N Study

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day of study</th>
<th>Dietary nitrogen</th>
<th>Fecal nitrogen</th>
<th>Urinary nitrogen</th>
<th>Nitrogen retained as per cent of intake</th>
<th>Per cent of urinary nitrogen as urea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1</td>
<td>—</td>
<td>16.21</td>
<td>1.02</td>
<td>7.44</td>
<td>7.75</td>
<td>47.8</td>
</tr>
<tr>
<td>Kwashiorkor</td>
<td>3</td>
<td>3.07</td>
<td>0.42</td>
<td>0.88</td>
<td>1.77</td>
<td>57.7</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>7.91</td>
<td>1.47</td>
<td>6.86</td>
<td>-0.42</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>10.25</td>
<td>0.85</td>
<td>7.75</td>
<td>1.65</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>129</td>
<td>14.06</td>
<td>1.06</td>
<td>9.74</td>
<td>3.26</td>
<td>23.2</td>
</tr>
<tr>
<td>Marasmus</td>
<td>3</td>
<td>4.12</td>
<td>1.30</td>
<td>1.74</td>
<td>1.08</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.92</td>
<td>0.79</td>
<td>2.20</td>
<td>2.93</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>4.40</td>
<td>0.82</td>
<td>3.51</td>
<td>0.07</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>6.03</td>
<td>1.17</td>
<td>2.66</td>
<td>2.20</td>
<td>36.5</td>
</tr>
<tr>
<td>Marasmus</td>
<td>7</td>
<td>3.16</td>
<td>0.41</td>
<td>0.93</td>
<td>1.82</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>9.96</td>
<td>1.29</td>
<td>3.28</td>
<td>5.39</td>
<td>54.1</td>
</tr>
<tr>
<td>Marasmus</td>
<td>15</td>
<td>5.90</td>
<td>1.47</td>
<td>1.53</td>
<td>2.90</td>
<td>49.2</td>
</tr>
<tr>
<td>Marasmus</td>
<td>84</td>
<td>6.97</td>
<td>0.85</td>
<td>2.41</td>
<td>3.71</td>
<td>53.2</td>
</tr>
<tr>
<td>Marasmus</td>
<td>23</td>
<td>4.40</td>
<td>0.90</td>
<td>1.35</td>
<td>2.15</td>
<td>48.9</td>
</tr>
</tbody>
</table>

Urinary ammonia was collected by aspiration with nitrogen into acid solution, after adjustment of the sample to pH 10 with saturated sodium tetaborate. Total ammonia was determined by titration and aspirates for isotope measurement were frozen until required for analysis. Samples of urine for total urea analysis were adjusted to pH 7, incubated with 25 mg urease\textsuperscript{a} at 37°C for 2 hr and the resulting ammonia then aspired into acid solution as described for ammonia. The urea concentration was derived by difference. Urine samples for urea isotope measurements were used directly.

Nitrogen was released from the samples prepared for isotope assay and from 1 ml of each urine sample by reaction with alkaline sodium hypobromite (2). The resulting nitrogen was admitted to a commercial symmetrical single focusing mass spectrometer. The mean value of 10 readings of the relative abundance of masses 28, 29, and 30 was used for calculation of the excess of \textsuperscript{15}N in the specimens.

\textit{Blood}. Water-insoluble proteins were precipitated from the plasma by dialysis against running water. Blood cells and water-insoluble and water-soluble proteins of plasma were each subjected to Kjeldahl digestion and the \textsuperscript{15}N content determined in the mass spectrometer.

RESULTS

Table I shows the nitrogen balance of each subject in the ammonia-\textsuperscript{15}N study for each 48 hr period of study. The percentage of urinary nitrogen excreted as urea is also shown. In all studies except one, there was positive nitrogen balance. The exception was probably caused by mild infection which became apparent 2 days after the study was completed, but absorption and retention of \textsuperscript{15}N were not affected. In the acutely malnourished state urea excretion was low, but returned to a normal figure during rehabilitation. Low urinary nitrogen excretion was, in all cases where it occurred, due to low urea output.

Table II shows the fate of \textsuperscript{15}N administered as ammonium citrate. In all subjects absorption of the ammonium citrate was high. In the acutely malnourished state the subjects with marasmus and kwashiorkor retained considerable amounts of the \textsuperscript{15}N. During recovery the balance was completed, but absorption and retention of \textsuperscript{15}N were not affected. In the acutely malnourished state urea excretion was low, but returned to a normal figure during rehabilitation. Low urinary nitrogen excretion was, in all cases where it occurred, due to low urea output.

Table II

Fate of Absorbed \textsuperscript{15}N from Ammonium Citrate

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day of study</th>
<th>\textsuperscript{15}N absorbed</th>
<th>\textsuperscript{15}N lost as urea</th>
<th>\textsuperscript{15}N lost as ammonia</th>
<th>Total urinary loss</th>
<th>\textsuperscript{15}N retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>98.5</td>
<td>55.2</td>
<td>2.8</td>
<td>96.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Kwashiorkor</td>
<td>3</td>
<td>100</td>
<td>9.5</td>
<td>3.9</td>
<td>22.3</td>
<td>77.7</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>100</td>
<td>36.5</td>
<td>0.6</td>
<td>52.2</td>
<td>47.8</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>94.0</td>
<td>46.5</td>
<td>0.7</td>
<td>61.0</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>129</td>
<td>95.7</td>
<td>45.9</td>
<td>2.3</td>
<td>92.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Marasmus</td>
<td>3</td>
<td>100</td>
<td>18.1</td>
<td>2.6</td>
<td>29.8</td>
<td>70.2</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>95.3</td>
<td>27.5</td>
<td>5.7</td>
<td>77.6</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>94.4</td>
<td>58.2</td>
<td>4.7</td>
<td>90.7</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>96.3</td>
<td>47.0</td>
<td>3.1</td>
<td>82.1</td>
<td>17.9</td>
</tr>
<tr>
<td>Marasmus</td>
<td>7</td>
<td>100</td>
<td>19.0</td>
<td>2.2</td>
<td>35.0</td>
<td>65.0</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>92.4</td>
<td>54.3</td>
<td>3.6</td>
<td>78.8</td>
<td>21.2</td>
</tr>
<tr>
<td>Marasmus</td>
<td>15</td>
<td>65.3</td>
<td>43.5</td>
<td>6.3</td>
<td>76.7</td>
<td>23.3</td>
</tr>
<tr>
<td>Marasmus</td>
<td>84</td>
<td>90.0</td>
<td>56.2</td>
<td>6.3</td>
<td>93.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Marasmus</td>
<td>23</td>
<td>94.9</td>
<td>54.0</td>
<td>11.6</td>
<td>89.4</td>
<td>10.6</td>
</tr>
</tbody>
</table>

\textsuperscript{a}Urease-Dunning 25 mg tablets, Hynson, Westcott & Dunning, Inc., Baltimore, Md.

\textsuperscript{4}Type MS10, Associated Electrical Industries Limited, Instrumentation Division, Manchester, England.
subject and children with kwashiorkor and marasmus during rehabilitation. In marasmus return to normal of total \( ^{15}N \) excretion occurred more rapidly than in kwashiorkor.

\( ^{15}N \) excretion as urea reached a normal level more slowly in marasmus than in kwashiorkor. This is in contrast to the pattern found for total \( ^{14}N \) elimination.

Labeled ammonium citrate fed over 5 days to one acutely marasmic subject resulted in appreciable amounts of the label appearing consistently in the blood cells and water-soluble and water-insoluble proteins of plasma as shown in Table III.

The \( ^{15}N \) study was carried out on two normal and four marasmic children. Table IV shows the total amount of \( ^{15}N \) excreted in the urine, and in the urinary urea and ammonia fractions as percentages of the administered isotope. The amount of \( ^{15}N \) excreted in forms other than urea in three acutely marasmic subjects suggests that there is considerable metabolism of urea nitrogen by these subjects. The very low excretion of \( ^{14}N \) as ammonia is in contrast to the results obtained for the subjects given ammonia, in whom several per cent was excreted by this route.

Fig. 4 shows the rate of excretion of \( ^{15}N \) in a control and in a typical acutely marasmic child. Of the total of 89% of the administered urea nitrogen excreted by the end of 48 hr by the control, almost 80% had been excreted at the end of 24 hr. The relative amounts excreted as urea at these times were 75 and 67%. In the marasmic subject the amounts of \( ^{15}N \) excreted at the same times were 70 and 56% for total nitrogen, and 40 and 30% as urea.

When a urea molecule with both nitrogen atoms of the heavy variety is hydrolyzed, two molecules of \( ^{14}NH_2 \) are formed. If urea is resynthesized from these molecules in the presence of a preponderance of unlabeled ammonia there is only a small chance that two labeled molecules would be incorporated into one urea molecule. It has been shown that when nitrogen molecules are formed by reaction of urea with sodium hypobromite, both atoms of the nitrogen molecule are derived from a single urea molecule (19). It is thus possible, by measuring the ratio of nitrogen molecules of masses 29 and 30, to estimate the rate at which newly formed urea is being produced from ammonia derived from administered labeled urea (20). Fig. 5 shows the change with time of the ratio of nitrogen molecules with weights 30 and 29 formed from urinary urea by reaction with sodium hypobromite. In the normal child the ratio \( ^{15}N/^{14}N \) of \( ^{15}N^2 \) decreased in an exponential fashion showing that a constant proportion of body urea was being degraded and then reforming into urea. The ratio decreased by 50% in 9 hr. In the marasmic child the change in the ratio was quite different. It did not decrease exponentially and the lowering of the ratio proceeded at a greater rate.

**Figure 1** Excretion of total \( ^{15}N \) and urea-\( ^{15}N \) in the urine of a healthy child, one with marasmus and one with kwashiorkor. Values expressed as percentage of \( ^{15}N \) administered as diammonium citrate.
Examination of the blood components from a marasmic child given urea-$^{15}$N showed the presence of 0.011 atoms % excess in the cells and in the water-insoluble proteins from plasma. The water-soluble plasma proteins contained 0.012 atoms % excess of $^{15}$N. In a control subject no detectable excess of $^{15}$N was found.

**DISCUSSION**

The results of the investigation show clearly that the acutely malnourished child, with either kwashiorkor or marasmus, retains a high percentage of $^{15}$N when the isotope is administered as ammonium citrate. The normal child excretes most of it within 48 hr. Since there is every reason to believe that $^{15}$N and the commoner form of nitrogen are treated similarly by the body, it may be assumed that ammonia nitrogen derived from deamination of amino acids is also retained in acute malnutrition. The usual fate of such ammonia nitrogen is to be excreted in the form of urea. In malnourished children, however, urea excretion is low, and considerable amounts of nitrogen derived from ammonia are found in blood proteins where the label persists for a considerable period of time. Alterations in activity of liver enzymes recently reported to occur in malnourished children would help to explain such changes (16). In the healthy child almost all of the administered isotope was excreted within 48 hr and none could be detected in the blood. It has been suggested that incorporation of $^{15}$N into se-

**FIGURE 2** Changes in urinary excretion of total $^{15}$N after administration of diammonium citrate-$^{15}$N during rehabilitation of a child with kwashiorkor (II) and one with marasmus (III). Values for one control (I) are given for comparison. The letters a-d for the malnourished subjects indicate the day of the study (a = day 3; b = day 38 or 32; etc., as indicated in Table II).

**FIGURE 3** Changes in urinary excretion of urea-$^{15}$N after administration of diammonium citrate-$^{15}$N in the same subjects as Fig. 2.
FIGURE 4 Excretion of total $^{15}$N and urea-$^{15}$N in the urine of a control child and one with marasmus. Values expressed as percentage of $^{15}$N administered as urea.
Figure 5 Change with time of the ratio ($^{15}\text{N}^{15}\text{N})/~(^{14}\text{N}^{14}\text{N})$ in urinary urea after administration of urea-$^{15}\text{N}$ in the same subjects as in Fig. 4.

The use of urea with a very high content of $^{15}\text{N}$ and comparison of the amounts of nitrogen formed from urinary urea with molecular weights of 30 and 29 (19, 20) showed that a significant fraction of the excreted urea-$^{15}\text{N}$ had been newly synthesized in the control and the marasmic child. Comparison of the rate of change of the ratio in the malnourished subject, with that in the control shows that resynthesis of urea is proceeding at different rates in the two subjects. The data do not, however, suggest an explanation of the difference.

Since there is evidence that some broad-spectrum antibiotics may destroy bacterial flora responsible for producing ureases (9, 11, 14, 20), use of such compounds may indirectly have an adverse effect on the nitrogen-economizing systems which appear to operate in the malnourished child, and therefore increase the time necessary for rehabilitation.

ACKNOWLEDGMENTS

We wish to acknowledge the assistance of Dr. Nadra Haddad, Pediatrician-in-Charge, and Mary Gheblikian, Head Nurse, Clinical Nutrition Unit, and Shafeekah Abu Samra of the Nutrition Research Laboratories.

This work was supported by grants from the National Institutes of Health, U. S. Public Health Service (AM 05285), and Wyeth International Limited.

REFERENCES


