Effect of Adrenergic-Blocking or -Stimulating Agents on Plasma Growth Hormone, Immunoreactive Insulin, and Blood Free Fatty Acid Levels in Man

Hiroo Imura, Yuzuru Kato, Masaki Ikeda, Masachika Morimoto, and Mikio Yawata

From the Department of Medicine, Kyoto University School of Medicine, Kyoto, Japan

Abstract In order to determine whether an adrenergic mechanism is involved in the secretion of growth hormone and insulin, the effect of adrenergic-blocking or -stimulating agents on plasma human growth hormone (HGH), immunoreactive insulin, blood free fatty acids (FFA), and glucose levels was studied in normal human subjects.

The intravenous infusion of propranolol, a beta adrenergic-blocking agent, caused a rise in plasma HGH, a transient decrease in blood FFA, and no significant change in plasma insulin. This increase in plasma HGH was inhibited either by the combined administration of isoproterenol, a beta adrenergic-stimulating agent, along with propranolol or by oral glucose loading immediately before the start of propranolol infusion. The concomitant administration of epinephrine and propranolol brought about a rise in plasma HGH comparable with that produced by propranolol alone, without any significant change in blood FFA. Alpha adrenergic blockade by the intravenous infusion of phenotolamine significantly suppressed plasma HGH responses to insulin-induced hypoglycemia and to arginine infusion, and enhanced plasma insulin response to arginine infusion. It also stimulated lipid mobilization significantly.

The intravenous infusion of alpha adrenergic-stimulating agents, phenylephrine and methoxamine, caused an increase in plasma HGH, a slight decrease in blood FFA, and no significant change in plasma insulin. This increase in plasma HGH was significantly inhibited by the simultaneous administration of phenotolamine along with methoxamine. On the contrary, a beta adrenergic stimulant, isoproterenol, raised plasma insulin and blood FFA, and abolished the plasma HGH response to propranolol. Another beta stimulator, isoxsuprine, raised blood FFA but not plasma insulin.

It is concluded that either beta adrenergic blockade or alpha stimulation enhances HGH secretion and inhibits insulin secretion and fat mobilization, whereas either alpha blockade or beta stimulation stimulates insulin secretion and fat mobilization and inhibits HGH secretion.

Introduction

It has been clarified in recent years that secretion of human growth hormone (HGH) is influenced by several factors, such as rapid changes in blood glucose level, amino acid ingestion, exercise, and stress (1-3). These stimuli appear to act through the hypothalamus, although the exact mechanism is still unknown. Several investigators (4-6) have demonstrated evidence for the presence of growth hormone-releasing factor (GRF), which is produced in the hypothalamus, transported to the anterior pituitary via the portal vessels, and stimulates HGH secretion. However, the chemical structure and the mechanism of secretion of GRF remain obscure. Since chemical transmitters such as norepinephrine, dopamine, acetylcholine are abundant in the hypothalamus, it is possible that these agents play an important role in regulating GRF secretion.

We have observed that resting levels of plasma HGH tended to be elevated in patients with pheochromocytoma, with a tendency to an exaggerated response to insulin.

1 Abbreviations used in this paper: FFA, free fatty acids; GRF, growth hormone-releasing factor; HGH, human growth hormone; IRI, immunoreactive insulin.
induced hypoglycemia and the lack of a normal response to oral glucose administration (7). These abnormalities suggest that catecholamines may play a role in regulating HGH secretion. Although it has been reported that the injection of catecholamines did not influence plasma HGH levels in man (1, 8, 9), we thought it interesting to study further the role of the adrenergic mechanisms in regulating HGH secretion.

These studies are also interesting in another aspect. Porte, Graber, Kuzuy, and Williams (10) and Porte (11) have reported that the adrenergic mechanism is involved in insulin secretion and that beta adrenergic receptor blockade suppresses insulin secretion, whereas alpha blockade stimulates it. Since there are close relationships between insulin and HGH secretion, it seemed worthwhile to compare the adrenergic receptor mechanisms for the secretion of these two hormones.

In the present experiments, the effect of adrenergic-blocking or -stimulating agents on plasma HGH and IRI levels were studied in normal subjects. It was demonstrated that either beta adrenergic blockade or alpha stimulation enhanced HGH secretion and suppressed insulin secretion, whereas either alpha blockade or beta stimulation enhanced insulin secretion and suppressed HGH secretion.

METHODS

Male and female volunteers, aged 19-42, were used throughout the experiments. None of them had a family history of diabetes nor elevated fasting blood sugar level. They were nonobese (less than 15% above ideal body weight) and apparently normal in endocrine and autonomic nervous function. Some subjects were used for several experiments with an interval of at least 1 wk between the two experiments, whereas others were used for only one experiment.

The subjects were not allowed to smoke or to take anything by mouth except water after 10 p.m. the night before the study. They came to the laboratory at 8:00-8:30 a.m. and then lay still throughout the experiment. Two control blood specimens were withdrawn between 9:00 and 9:30 a.m., and a slow intravenous infusion of 500 ml of physiologic saline containing adrenergic-blocking or -stimulating agents was given at a constant rate over a period of 2 hr through a 20 gauge needle into the antecubital vein. Blood was withdrawn from the opposite antecubital vein every 15 or 30 min until 1 hr after the end of the infusion. Repeated venopuncture was usually performed for drawing blood with a 21 gauge needle and a heparinized syringe. An aliquot of blood was used for the determination of blood glucose and free fatty acids (FFA) levels. The remaining portion was centrifuged as soon as possible. Plasma was separated, frozen, and stored for the measurement of plasma immunoreactive insulin (IRI) and HGH.

Blood glucose was measured by a ferricyanide reduction method with a Technicon AutoAnalyzer (Technicon Co., Inc., Tarrytown, N. Y.). Blood FFA concentration was determined by a modification of the colorimetric method of Itaya and Ui (12). In this modified method, hydroxylation hydrochloride, acetic acid, and batho-cuprine* were used instead of sodium diethyldithiocarbamate to develop the color of the copper salts of fatty acids extracted in chloroform because this modification gives better reproducibility. Plasma IRI was measured by the immunoassay kit of the Radiochemical Centre (Amersham, England) which is based upon the double antibody immunoprecipitation technique (method C) of Hales and Randle (13). The minimal detectable quantity of IRI for the assay was 5 μU/ml. Repeated determinations of two pooled plasma on 10 different days gave coefficients of variance of 8.8% and 10.1%, for the two pools.

Plasma HGH was measured by the double antibody radioimmunoassay of Schalch and Parker (14). Anti-HGH serum was prepared in a guinea pig by several weekly injections of 1 mg of HGH (Li) emulsified in 0.5 ml of complete Freund's adjuvant. This antisera showed one precipitation arc with HGH, but not with human serum when tested by immunoelectrophoresis. Anti-guinea pig γ-globulin serum was obtained from rabbits which received repeated injections of guinea pig γ-globulin in complete Freund's adjuvant. HGH (Wilhelmi, HS705A) was labeled with 131I by the method of Greenwood, Hunter, and Glover (15). Specific activities of 150-450 μCi/μg were obtained. All standards (Wilhelmi's HGH) and plasma samples were assayed in duplicate. The minimal detectable value of HGH for the assay was 0.1 mg/ml. In plasma assays at various levels, the range of difference between duplicates as millimicrograms per milliliter was usually less than 10%.

In order to determine the effect of beta adrenergic blockade, intravenous infusions of 10 mg of propranolol were given to 14 subjects (7 males and 7 females). Concomitant administration of 10 mg of probanolol with 0.36 mg of isoproterenol or with 0.72 mg of epinephrine was performed in four and five subjects, respectively. In five subjects, 50 g of glucose was given orally immediately before the start of propranolol infusion, to determine whether glucose administration influences the HGH response to propranolol.

In the second series of experiments, the effect of an alpha adrenergic-blocking agent on plasma HGH and IRI was studied. Either 10 mg or 20 mg of phenolamine dissolved in 500 ml of saline was infused in six normal subjects. In another six subjects, intravenous infusions of 20 mg of phenolamine in 500 ml saline and 30 g of 1-arginine in 500 ml solution were started at the same time in both antecubital veins and continued for 2 hr and 30 min, respectively. 1 wk later, 500 ml of physiologic saline and 1-arginine solution were infused in the same normal subjects as a control experiment. In another three subjects, 20 mg of phenolamine was infused over a period of 2 hr. Immediately after the start of infusion, glucagon-free insulin (0.1 U/kg body weight) was injected intravenously. After 1 wk, insulin was given during the infusion of 60 mg of phenolamine in the same subjects, and 1 wk later, insulin was injected during the infusion of physiologic saline as a control experiment.

*Trivial names used in this paper: propranolol, 1-isopropylaminol-3-(1-naphthoxy)-2-propanol; isoproterenol, 3,4-dihydroxy-a-[(isopropylamino)methyl]-benzyl alcohol; phenolamine, 2-[N-(m-hydroxyphenyl)-ß-toluidinomethyl]imidazoline; phenylephrine, 1-m-hydroxy-a-[(methyl-amino)methyl]benzyl alcohol hydrochloride; methoxamine, a-(1-aminomethyl)-2,5-dimethoxybenzyl alcohol hydrochloride; isoxsuprine, a-hydroxy-a-[(1-methyl-2-phenoxyethyl)-amino]ethyl benzyl alcohol; batho-cuprine, 29-dimethyl-4,7-diphenyl-1,10-phenanthroline.
Table I
Effect of Intravenous Infusion of 10 mg of Propranolol on Plasma HGH and Blood FFA Levels in Normal Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Age</th>
<th>Sex</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>135</th>
<th>150</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma HGH (mg/dl)</td>
<td>Blood FFA (μEq/liter)</td>
<td></td>
</tr>
<tr>
<td>H. I.</td>
<td>19</td>
<td>F</td>
<td>2.4</td>
<td>1.0</td>
<td>1.6</td>
<td>8.2</td>
<td>17.6</td>
<td>8.0</td>
<td>3.2</td>
<td>5.6</td>
<td>10.8</td>
</tr>
<tr>
<td>T. M.</td>
<td>36</td>
<td>F</td>
<td>11.6</td>
<td>9.4</td>
<td>12.0</td>
<td>18.4</td>
<td>14.4</td>
<td>19.2</td>
<td>14.4</td>
<td>19.6</td>
<td>15.2</td>
</tr>
<tr>
<td>S. U.</td>
<td>42</td>
<td>F</td>
<td>7.8</td>
<td>9.2</td>
<td>10.6</td>
<td>24.0</td>
<td>17.2</td>
<td>9.6</td>
<td>10.4</td>
<td>11.2</td>
<td>9.0</td>
</tr>
<tr>
<td>M. I.</td>
<td>23</td>
<td>F</td>
<td>10.6</td>
<td>10.8</td>
<td>10.4</td>
<td>9.6</td>
<td>15.0</td>
<td>20.4</td>
<td>15.8</td>
<td>11.2</td>
<td>10.6</td>
</tr>
<tr>
<td>S. W.</td>
<td>20</td>
<td>F</td>
<td>4.6</td>
<td>20.0</td>
<td>34.4</td>
<td>15.2</td>
<td>15.2</td>
<td>10.9</td>
<td>15.7</td>
<td>16.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Y. M.</td>
<td>20</td>
<td>F</td>
<td>5.3</td>
<td>10.0</td>
<td>20.9</td>
<td>20.6</td>
<td>6.6</td>
<td>4.4</td>
<td>3.4</td>
<td>3.9</td>
<td>5.2</td>
</tr>
<tr>
<td>H. S.</td>
<td>20</td>
<td>F</td>
<td>1.9</td>
<td>0.8</td>
<td>1.2</td>
<td>7.2</td>
<td>6.5</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>T. Y.</td>
<td>42</td>
<td>M</td>
<td>2.9</td>
<td>3.4</td>
<td>14.4</td>
<td>32.4</td>
<td>27.6</td>
<td>13.6</td>
<td>9.9</td>
<td>8.4</td>
<td>4.2</td>
</tr>
<tr>
<td>R. S.</td>
<td>36</td>
<td>M</td>
<td>3.5</td>
<td>3.2</td>
<td>16.0</td>
<td>28.8</td>
<td>7.2</td>
<td>3.8</td>
<td>4.4</td>
<td>5.6</td>
<td>6.8</td>
</tr>
<tr>
<td>S. I.</td>
<td>23</td>
<td>M</td>
<td>3.5</td>
<td>2.8</td>
<td>2.7</td>
<td>5.4</td>
<td>11.4</td>
<td>18.0</td>
<td>9.4</td>
<td>6.2</td>
<td>11.4</td>
</tr>
<tr>
<td>K. F.</td>
<td>25</td>
<td>M</td>
<td>3.7</td>
<td>3.8</td>
<td>4.9</td>
<td>4.6</td>
<td>6.3</td>
<td>4.3</td>
<td>5.0</td>
<td>5.3</td>
<td>3.9</td>
</tr>
<tr>
<td>G. Y.</td>
<td>22</td>
<td>M</td>
<td>3.3</td>
<td>3.1</td>
<td>3.4</td>
<td>3.4</td>
<td>25.2</td>
<td>39.8</td>
<td>22.8</td>
<td>11.3</td>
<td>8.1</td>
</tr>
<tr>
<td>K. M.</td>
<td>24</td>
<td>M</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>16.2</td>
<td>7.6</td>
<td>7.0</td>
<td>7.8</td>
<td>6.6</td>
<td>7.6</td>
</tr>
<tr>
<td>N. K.</td>
<td>21</td>
<td>M</td>
<td>2.6</td>
<td>1.8</td>
<td>1.8</td>
<td>2.5</td>
<td>2.4</td>
<td>3.2</td>
<td>---</td>
<td>1.8</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Intravenous infusion of an alpha adrenergic-stimulating agent, 1 mg, 3 mg, or 10 mg of phenylephrine, in 500 ml of saline solution was performed over a period of 2 hr in 10 subjects. Another alpha-stimulating agent, 25 mg of methoxamine, was infused in seven subjects. Combined administration of 25 mg of methoxamine and 20 mg of phentolamine in 500 ml of saline was performed in four subjects. Intravenous infusions of two different beta adrenergic-stimulating agents, 15 mg or 30 mg of isosuxiprine and 0.36 mg of isoproterenol, were given to six and four subjects, respectively. As a control, 500 ml of physiologic saline was given intravenously over a period of 2 hr in six normal subjects.

Propranolol (Inderal) was kindly supplied by Sumitomo Chemical Industry Co., Osaka, Japan. Phentolamine (Regitine) was purchased from Ciba Products Co., Osaka, Japan. Phenylephrine (Neo Synesin) and methoxamine (Vasoxyl) were gifts from Kowa Co., Nagoya, Japan, and Burroughs Wellcome Co. Inc., Tuckahen, N. Y., respectively. Isosuxiprine (Duvidilan) was supplied by Dai-ichi Seiyaku Co., Tokyo, Japan. Isoproterenol (Protermol-L) was purchased from Nippon Kagaku Co., Tokyo, Japan. Arginine solution was kindly supplied by Tanabe Pharmaceutical Co., Osaka, Japan.

RESULTS

Effect of beta adrenergic-blocking agent on plasma HGH, IRI, blood FFA, and glucose. Table I summarizes the effect of intravenous infusion of propranolol on plasma HGH and IRI, blood FFA, and glucose levels. Plasma HGH rose significantly during the infusion of propranolol in 13 of 14 subjects and reached a peak 30-120 min after the start of the propranolol infusion. Mean plasma HGH level 60 min after the start of the infusion was 14.1 mg/dl with the standard error of 2.61 mg/dl. The peak plasma HGH levels in the 13 cases were from 6.3 to 39.8 mg/dl, with the mean value of 21.9 mg/dl. No significant sex difference was observed in the plasma HGH response to propranolol. Blood FFA exhibited a transient decrease with the minimum mean level at 60 min of the infusion and then returned to the basal levels in 11 of 12 subjects tested. Case 14 who failed to exhibit an HGH response to propranolol showed a rise in blood FFA during the infusion of propranolol. No significant difference was observed in blood sugar and plasma IRI in any of the subjects tested.

The concomitant administration of isoproterenol, a beta adrenergic-stimulating agent, with propranolol completely abolished plasma HGH response to propranolol in all subjects tested as shown in Fig. 1. The plasma IRI response to isoproterenol, described later in this paper, was also completely suppressed by the simultaneous infusion of propranolol. A transient rise in blood FFA was observed, whereas no significant change was noted in blood glucose throughout the experiment.

Combined intravenous infusion of epinephrine with propranolol brought about almost the same rise in plasma HGH as did propranolol alone as shown in Fig. 2. Peak plasma HGH levels during the combined infusion were from 8.4 to 35.9 mg/dl. Blood FFA concentrations did not change significantly until 90 min after the start of the infusion and then declined gradually. Blood glucose rose significantly to a peak 90 min after the start of the infusion. Plasma IRI rose slightly only after the end of the infusion, in spite of the significant increase in blood glucose levels during the infusion.

The oral administration of 50 g of glucose given immediately before the start of the propranolol infusion
completely suppressed plasma HGH response to propranolol as shown in Fig. 3, although a slight but significant rise in plasma HGH was observed in three of five subjects 150-180 min after the start of the infusion. Plasma IRI response to the oral administration of glucose was significantly lower during the infusion of propranolol (mean peak level was 21.0 \(\mu U/ml \) with the standard error of 4.59 \(\mu U/ml \)), since the mean peak IRI value after oral glucose was 78.2 \(\mu U/ml \) with the standard error of 10.2 \(\mu U/ml \) in 14 normal subjects without infusion of propranolol (\(P < 0.01 \), in paired \(t \) test). Although the plasma IRI response to glucose was thus significantly suppressed during the infusion of propranolol, blood glucose curves were not significantly different from those obtained without the infusion of propranolol. Blood FFA levels were decreased gradually through the experiment when propranolol infusion was performed, whereas rebound of blood FFA was observed 180 min after the oral glucose loading without the infusion of propranolol.

Effect of alpha adrenergic-blocking agent on plasma HGH, IRI, blood FFA, and glucose. Intravenous infusion of phentolamine caused a slight decline in plasma HGH, a slight increase in plasma IRI, a significant increase in blood FFA, and no significant change in blood glucose as shown in Fig. 4. There were no significant differences in plasma HGH, IRI, blood FFA, and glucose between the two groups given 10 mg and 20 mg of phentolamine, respectively.

The plasma HGH response to the intravenous infusion of arginine was significantly lower during the infusion of phentolamine than in control experiments (\(P < 0.02 \)), as shown in Figs. 5 and 6. On the other hand, the plasma IRI response to arginine infusion was significantly higher during the infusion of phentolamine than in control experiments (\(P < 0.05 \)). There was no significant difference in blood glucose and FFA responses to arginine infusion.

The plasma HGH response to insulin-induced hypoglycemia was significantly suppressed during the infusion of phentolamine as shown in Table II. The peak HGH values after insulin injection were much lower in subjects given 60 mg of phentolamine than in those given 20 mg.

Effect of alpha adrenergic-stimulating agents on plasma HGH, IRI, blood FFA, and glucose. The intravenous infusion of 1 or 3 mg of phenylephrine, an
an alpha adrenergic-blocking agent, as phentolamine, signifi-
cantly blunted the increase in plasma HGH caused by me-
thoxamine. Blood FFA rose slightly during the combined
administration, whereas it tended to decrease during the in-
fusion of methoxamine alone.

Effect of beta adrenergic-stimulating agents on plasma
HGH, IRI, blood FFA, and glucose. Plasma HGH
levels tended to decrease during the infusion of iso-
prine, a beta adrenergic-stimulating agent, although they
increased slightly in four of six subjects after the end of
infusion as shown in Fig. 9. Blood FFA concentrations
rose significantly during the infusion, whereas plasma
IRI and blood glucose were not significantly changed.

The intravenous infusion of isoproterenol, another
beta adrenergic-stimulating agent, caused a significant
rise in plasma IRI and blood FFA and no significant
change in plasma HGH and blood glucose as shown in
Fig. 10.

Effect of saline infusion on plasma HGH, IRI, blood
FFA, and glucose. Plasma HGH levels tended to de-
crease in three and were almost unchanged in two of five
subjects during the infusion of saline solution. No con-
sistent change was noted in plasma IRI, blood FFA, and
glucose as shown in Fig. 11.

alpha adrenergic-stimulating agent, caused a significant
increase in plasma HGH during the infusion in two and
after the end of the infusion in three of seven subjects
tested (Table III). There seemed to be no significant
difference in plasma HGH response between three sub-
jects given 1 mg and four subjects given 3 mg of phenyleph-
rine. However, no significant change in plasma
HGH was noted in subjects given 10 mg of phenyleph-
rine (Table III). Blood FFA concentrations were
transiently decreased during the infusion of 1 mg of
phenylephrine, but increased during the infusion of 10
mg of the drug as shown in Table III. No significant
change was observed in blood glucose and plasma IRI in
all the subjects tested.

Intravenous infusion of another alpha adrenergic-
stimulating agent, methoxamine, caused a rise in plasma
HGH during the infusion in all subjects tested as shown in
Fig. 7. A transient, slight decline in blood FFA con-
centrations was observed during the infusion, whereas
no significant change was noted in blood glucose.

Plasma HGH response to methoxamine was signifi-
cantly blunted by the simultaneous administration of
phenolamine, an alpha adrenergic-blocking agent, as
shown in Fig. 8 (P < 0.05). The increase in plasma
IRI caused by phentolamine was also suppressed by the
combined administration of methoxamine. Blood FFA
rose slightly during the combined administration,
whereas it tended to decrease during the infusion of
methoxamine alone.

Effect of Adrenergic Agents on Plasma HGH, Insulin, and Blood FFA
Figure 5 Plasma HGH, IRI, blood FFA, and glucose (BS) responses to arginine during the infusion of phentolamine in six normal subjects. Intravenous infusion of 1-arginine (30 g in 500 ml) and phentolamine (20 mg in 500 ml saline solution) were started at the same time. The former continued for 30 min and the latter for 2 hr. Means \pm SEM are shown.

Figure 6 Plasma HGH, IRI, blood FFA, and glucose (BS) responses to arginine during the infusion of saline in six normal subjects. Intravenous infusions of 1-arginine (30 g in 500 ml) and 500 ml of saline were started at the same time and continued for 30 min and 2 hr, respectively. Means \pm SEM are shown.

Table II

Mean Plasma HGH, Blood FFA, and Glucose Responses to Insulin during the Infusion of Saline or Phentolamine*

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>135</th>
<th>150</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>81.3</td>
<td>40.0</td>
<td>28.7</td>
<td>52.7</td>
<td>66.7</td>
<td>74.7</td>
<td>78.0</td>
<td>84.0</td>
<td>89.3</td>
</tr>
<tr>
<td>Phentolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mg</td>
<td>87.3</td>
<td>42.3</td>
<td>30.0</td>
<td>54.7</td>
<td>70.7</td>
<td>74.7</td>
<td>88.7</td>
<td>84.7</td>
<td>86.7</td>
</tr>
<tr>
<td>60 mg</td>
<td>93.3</td>
<td>76.0</td>
<td>42.0</td>
<td>72.0</td>
<td>87.3</td>
<td>98.0</td>
<td>88.0</td>
<td>90.0</td>
<td>97.3</td>
</tr>
<tr>
<td>Blood FFA (\mu EEq/liter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>389.7</td>
<td>280.7</td>
<td>238.0</td>
<td>368.7</td>
<td>402.3</td>
<td>426.0</td>
<td>468.7</td>
<td>482.7</td>
<td>549.3</td>
</tr>
<tr>
<td>Phentolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mg</td>
<td>264.0</td>
<td>152.3</td>
<td>309.7</td>
<td>335.0</td>
<td>331.3</td>
<td>417.7</td>
<td>454.0</td>
<td>402.3</td>
<td>462.0</td>
</tr>
<tr>
<td>60 mg</td>
<td>383.7</td>
<td>297.0</td>
<td>303.7</td>
<td>413.3</td>
<td>398.3</td>
<td>395.7</td>
<td>395.3</td>
<td>395.7</td>
<td>393.3</td>
</tr>
<tr>
<td>Plasma HGH (\mu g/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>1.9</td>
<td>1.9</td>
<td>6.3</td>
<td>36.2</td>
<td>33.5</td>
<td>21.3</td>
<td>24.0</td>
<td>9.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Phentolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mg</td>
<td>3.1</td>
<td>3.0</td>
<td>4.8</td>
<td>24.4</td>
<td>24.0</td>
<td>14.2</td>
<td>—</td>
<td>8.4</td>
<td>5.6</td>
</tr>
<tr>
<td>60 mg</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>7.8</td>
<td>4.8</td>
<td>4.4</td>
<td>2.8</td>
<td>2.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

*Glucagon-free insulin (0.1 U/kg body weight) was injected intravenously immediately after the start of saline (500 ml) or phentolamine (20 or 60 mg in 500 ml saline) infusion. Means obtained in three subjects are shown.

1074 H. Imura, Y. Kato, M. Ikeda, M. Morimoto, and M. Yawata
TABLE III

Effect of Intravenous Infusion of 1, 3, or 10 mg of Phenylephrine on Plasma HGH and Blood FFA in Normal Subjects

<table>
<thead>
<tr>
<th>Phenylephrine (mg)</th>
<th>Subjects</th>
<th>Age yr</th>
<th>Sex</th>
<th>Plasma HGH (mpg/ml)</th>
<th>Blood FFA (μEq/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. S. 24 M</td>
<td>0</td>
<td>10.9</td>
<td>M</td>
<td>4.1</td>
<td>236</td>
</tr>
<tr>
<td>M. K. 23 M</td>
<td>15</td>
<td>34.4</td>
<td></td>
<td>12.3</td>
<td>201</td>
</tr>
<tr>
<td>T. N. 21 M</td>
<td>30</td>
<td>45.6</td>
<td></td>
<td>15.8</td>
<td>384</td>
</tr>
<tr>
<td>Mean</td>
<td>60</td>
<td>40.0</td>
<td></td>
<td>13.8</td>
<td>405</td>
</tr>
<tr>
<td>3 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y. N. 22 M</td>
<td>90</td>
<td>1.5</td>
<td>M</td>
<td>1.5</td>
<td>374</td>
</tr>
<tr>
<td>T. A. 20 M</td>
<td>120</td>
<td>1.2</td>
<td></td>
<td>1.8</td>
<td>308</td>
</tr>
<tr>
<td>M. T. 20 M</td>
<td>150</td>
<td>1.7</td>
<td></td>
<td>2.0</td>
<td>327</td>
</tr>
<tr>
<td>Y. M. 19 F</td>
<td>180</td>
<td>3.9</td>
<td></td>
<td>2.0</td>
<td>288</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>10.0</td>
<td></td>
<td>8.0</td>
<td>405</td>
</tr>
<tr>
<td>10 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. M. 20 M</td>
<td>0</td>
<td>1.0</td>
<td>M</td>
<td>1.0</td>
<td>198</td>
</tr>
<tr>
<td>N. Y. 22 M</td>
<td>15</td>
<td>0.8</td>
<td></td>
<td>0.9</td>
<td>190</td>
</tr>
<tr>
<td>Y. N. 22 M</td>
<td>30</td>
<td>1.1</td>
<td></td>
<td>1.2</td>
<td>182</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>1.2</td>
<td></td>
<td>1.2</td>
<td>205</td>
</tr>
</tbody>
</table>

DISCUSSION

The present studies demonstrate that the intravenous infusion of propranolol, a beta adrenergic-blocking agent, stimulates HGH secretion in almost all normal subjects of both sexes. This stimulating effect of propranolol was completely inhibited by the combined administration of a beta adrenergic-stimulating agent, isoproterenol. It suggests that propranolol stimulates HGH secretion through blockade of beta adrenergic receptors.

Effect of Adrenergic Agents on Plasma HGH, Insulin, and Blood FFA
It was also demonstrated that HGH secretion caused by propranolol is suppressed by the oral administration of glucose, like HGH secretion induced by hypoglycemia, exercise, and amino acid infusion (1, 16). The fact that the combined administration of propranolol and epinephrine caused a rise in plasma HGH in spite of an increase in blood glucose needs comment. This can be explained, however, by the time relationship between the increase of blood glucose and HGH secretion. Just as glucose given 45 min after the injection of insulin cannot prevent the rise in plasma HGH (1), so a blood glucose peak occurring 90 min after the start of the propranolol and epinephrine infusion would not affect HGH secretion elicited by propranolol.

The intravenous infusion of propranolol caused a transient decrease in blood FFA in almost all the subjects tested. Inasmuch as Irie, Sakuma, Tsushima, Shizume and Nakao (17) reported that a decrease in blood FFA may be a potent stimulus for HGH secretion, it is possible that the HGH secretion caused by propranolol is due to the effect of decreased blood FFA. This is unlikely, however, because the combined administration of epinephrine and propranolol produced a significant rise in plasma HGH without any significant change in blood FFA.

Blackard and Heidingsfelder (18) observed in their experiments independently performed from ours (19) that the intravenous administration of propranolol caused
no significant change in plasma HGH, although it enhanced plasma HGH response to insulin-induced hypoglycemia. They reported also that blood FFA concentrations were not changed significantly by the administration of propranolol, whereas we observed a decrease in blood FFA. The total dose of the drug was the same in these two experiments, although the schedule of administration was different. Since the average body weight of the Japanese is much lower than that of Americans, the dosage of propranolol per kilogram of body weight was certainly greater in our experiment. Werbach, Gale, Goodner, and Conway (20) demonstrated an increase in plasma HGH during the infusion of propranolol in bacons, using the dose (per kilogram body weight) more than 3 times greater than that in our experiment.

The intravenous administration of phentolamine, an alpha adrenergic-blocking agent, caused a slight decrease in plasma HGH. This observation is not conclusive because a decrease in plasma HGH is often observed only during rest, especially when basal HGH levels are slightly elevated. We observed, however, that phentolamine partially but significantly blunted the plasma HGH responses to insulin-induced hypoglycemia and to arginine infusion. These results agree with the observation of Blackard and Heidingsfelder (18) that phentolamine partially inhibited plasma HGH response to insulin-induced hypoglycemia.

The present experiment also demonstrated that phentolamine significantly enhanced the plasma IRI response to arginine infusion. It has been known that epinephrine inhibits plasma IRI responses to glucose, glucagon, and tolbutamide (10) and that phentolamine stimulates IRI release when infused with epinephrine (11). However, the effect of epinephrine on insulin secretion elicited by amino acids is still controversial (8, 21, 22), and the effect of adrenergic-blocking agents on amino acid-induced insulin release is unknown. The present experiment strongly suggests that alpha adrenergic blockade enhances the insulin secretion elicited by amino acids.

The effect of adrenergic-stimulating agents on plasma HGH and IRI was less clear-cut than that of adrenergic-blocking agents, probably because adrenergic-stimulating agents are usually less specific than blocking agents. For example, phenylephrine is a potent alpha receptor stimulant, but with a little stimulating effect on beta receptors (23). A small dose of phenylephrine brought about a rise in plasma HGH and a decrease in blood FFA in most of the subjects, although a large dose of the drug failed to increase plasma HGH and even raised blood FFA. These results suggest that alpha stimulation is predominant with a small dose of phenylephrine, whereas beta stimulation becomes apparent after a large dose, although the possibility of chance variation could not be ruled out completely because of a small number of the subjects tested.

Another alpha-stimulating agent, methoxamine, which is known to stimulate alpha receptors almost exclusively, enhanced HGH secretion more markedly than did phenylephrine. This increase in plasma HGH caused by methoxamine was significantly blunted by the simultaneous administration of phentolamine, an alpha-blocking agent. These results suggest that alpha receptors enhance HGH secretion.

A beta adrenergic-stimulating agent, isoproterenol, raised plasma IRI and blood FFA, as already demonstrated by Porte (24). It completely abolished plasma HGH response to propranolol. Another beta-stimulating agent, isoxsuprine, failed to raise plasma IRI, whereas it increased blood FFA significantly. This discrepancy may be explained either by differences in relative dosage or by different properties of these two drugs. Isoproterenol acts almost exclusively on beta receptors, whereas isoxsuprine is known to have some effect on alpha receptors also (25). Further studies on the effect of beta stimulants on plasma HGH responses to insulin-induced hypoglycemia or to arginine are required to establish the inhibitory effect of beta stimulants on HGH secretion.

Table IV summarizes the results of the present experiment. Beta adrenergic blockade stimulates HGH secretion and inhibits insulin secretion and fat mobilization. Alpha adrenergic stimulation similarly stimulates HGH secretion and inhibits insulin secretion and fat mobilization. On the contrary, either alpha adrenergic blockade or beta stimulation inhibits HGH secretion and enhances both insulin secretion and fat mobilization. The fact that the administration of catecholamines failed to stimulate HGH secretion (1, 8, 9) may be explained by the simultaneous stimulations of beta receptors which inhibit HGH secretion.

It is noteworthy that the adrenergic receptor mechanisms for HGH and insulin secretion are opposite. HGH and insulin secretion are known to be regulated inversely by the change of blood glucose and FFA levels.
A fall in blood glucose stimulates the secretion of catecholamines, which inhibit insulin secretion and probably assist in enhancing HGH secretion through alpha receptors. Although a single injection of catecholamines fails to affect HGH levels in man, we observed that consistent elevation of plasma catecholamines in pheochromocytoma enhances HGH secretion induced by hypoglycemia and prevents suppression of HGH secretion by glucose administration (7).

In vitro experiments on the effect of adrenergic agents on fat mobilization from adipose tissue and on insulin secretion from the islets of the pancreas indicate that the adrenergic mechanism may reside in the fat cells or in the islet cells themselves (26, 27). However, it is still unknown in what process the adrenergic mechanism may be involved in HGH secretion. It might reside anywhere in the hypothalamo-hypophyseal system or even in another portion of the central nervous system. However, the hypothalamus is the most likely site because of its high norepinephrine content as well as abundant adrenergic neurons and because of the fact that norepinephrine depleters block growth hormone release induced by hypoglycemia but not by GRF (28). It is possible, therefore, that the neurons which detect stimuli such as a fall in blood sugar and stimulate discharges of GRF are adrenergic. However, the possibility of dopaminergic neurons cannot be ruled out completely, since Schneider and McCann (29) reported that dopamine stimulates LH release from the pituitary when incubated with stalk median eminence tissue and that phenolamine inhibits the action of dopamine. It seems reasonable to speculate, therefore, that alpha adrenergic receptors stimulated by norepinephrine, or possibly dopamine, enhance GRF secretion.

ACKNOWLEDGMENTS

We are greatly indebted to Professor Masaichi Fukase for his valuable advice to this study. Thanks are also due to Professor C. H. Li and Professor A. E. Wilhemi for the supply of human growth hormone.

REFERENCES

22. Brooks, M. H., A. Guha, E. Danforth, Jr., J. J. Wein-
stein, and K. G. Barry. 1969. Pheochromocytoma: ob-
servations on mechanism of carbohydrate intolerance and
abnormalities associated with development of Goldblatt
18: 445.
postganglionic adrenergic nerve endings and structures
innervated by them (Sympathomimetic drugs). In The
Pharmacological Basis of Therapeutics. L. S. Goodman
and A. Gilman, editors. The Macmillian Company, New
York. 3rd edition. 477.
24. Porte, D., Jr. 1967. Beta adrenergic stimulation of in-
and their receptors. Arch. Int. Pharmacodyn. Ther. 127:
479.
Sci. 139: 879.
1967. A possible role for the adenylcyclase system in in-
28. Müller, E. E., S. Sawano, A. Arimura, and A. V.
Schally. 1967. Blockade of release of growth hormone by
role of dopamine as transmitter to promote discharge of

Effect of Adrenergic Agents on Plasma HGH, Insulin, and Blood FFA