Triiodothyronine Radioimmunoassay

JEFFREY LIEBLICH and ROBERT D. UTIGER

From the Endocrine Section, Department of Medicine, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

Highly specific antisera to triiodothyronine (T₃) were prepared by immunization of rabbits with T₃-bovine serum albumin conjugates. Antisera with T₃ binding capacity of up to 600 ng/ml were obtained. The ability of various thyronine derivatives to inhibit the binding of T₃-thyroid hormone (T₃) to anti-T₃ serum was found to vary considerably. L-T₃, D-T₃ and several triiodoanalogues were potent inhibitors of the reaction. Little inhibition of T₃ binding was produced by L-thyroxine (T₄) or other tetraiodoanalogues, thyronine or iodothyroxines. Chromatography of several T₃ preparations indicated that most of their very slight activity could be ascribed to contamination with T₄.

Successful assay of T₃ in serum was accomplished by the addition of diphenylhydantoin to the assay system. Under these circumstances, recovery of T₃ added to serum was excellent, and addition of T₄ was without significant effect. Serum T₃ concentrations in normal subjects averaged 145 ± 25 ng/100 ml (SD). Increased concentrations (429 ± 146 ng/100 ml) were observed in hyperthyroid patients whereas those with hypothyroidism had serum T₃ levels of 99 ± 24 ng/100 ml. Elevated T₃ concentrations were found also in hypothyroid patients receiving 25 µg or more of T₄ daily and in those receiving 300 µg of T₄ daily. Serial measurements of T₃ concentrations in subjects after oral T₃ administration revealed peak T₃ concentrations 2-4 hr after T₃ administration. Intramuscular administration of thyrotropin (TSH) resulted in earlier and more pronounced increases in serum T₃ than in serum T₄ concentrations.

Triiodothyronine (T₃)¹ was recognized to be a biologically active secretory product of the thyroid gland over a decade ago (1). Recent studies have indicated that it is formed extrathyroidally as well (2, 3). Nevertheless, relatively little information concerning the role of T₃ secretion in different thyroid disorders has been accumulated until very recently. Methods for the measurement of T₃ which require its extraction from plasma, and often its separation from thyroxine as well, have been described by several investigators (4-11). These methods have proven useful, but they are relatively complicated, the number of samples that can be assayed is limited, and they may be affected by in vitro deiodination of thyroxine. More recently the radioimmunoassay technique has been applied to the measurement of T₃. Several preliminary reports have appeared describing the preparation of antibody to triiodothyronine by immunization of animals with T₃-protein conjugates and its use for the measurement of T₃ in serum (12-15). The present report describes the development of a radioimmunoassay for the measurement of T₃, studies of its specificity, and some initial studies which indicate that the method is applicable to the measurement of T₃ in unextracted serum.

Methods

Materials. L-Triiodothyronine (T₃) was obtained from Sigma Chemical Co., St. Louis, Mo. L-T₃-thyroxine (1-¹³¹I with specific activities of 50 mCi/mg or greater were obtained from Abbott Laboratories, Chemical Marketing Div., North Chicago, Ill. Various thyroid analogues were obtained from Sigma or provided through the courtesy of Dr. Leonard Ginger of Baxter Laboratories, Inc., Morton Grove, III. Bovine serum albumin (BSA) was obtained from Nutritional Biochemicals Corporation, Cleveland, Ohio, and human serum albumin (HSA) from Armour Pharmaceutical Co., Chicago, Ill. and Hyland Laboratories, Los Angeles, Calif.

Preparation of T₃-bovine serum albumin conjugates. The immunogen used was prepared by coupling T₃ to BSA with a water-soluble carbodiimide. In the three conjugate preparations made, 40 mg of T₃ was dissolved in 2 ml 0.1 N NaOH. To this was added 20 mg BSA in 3 ml water and then 200 mg 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl. The pH of the reaction was adjusted to 9.0 with 0.1 N HCl. The mixture was stirred at 5°C for 24 hr and subsequently dialyzed for 96 hr against water and finally for 24 hr against 0.15 µ NaCl. Conjugates of BSA alone or BSA and L-thyroxine (T₄) were prepared in a similar manner.

The final product of these reactions was analyzed for protein by the method of Lowry, Roseborough, Farr, and

---

¹ Abbreviations used in this paper: BSA, bovine serum albumin; HSA, human serum albumin; PBI, protein bound iodine; T₃, triiodothyronine; T₄, thyroxine; TBG, thyroxine binding globulin; TSH, thyrotropin.
Randall (16), for protein bound iodide (PBI) by the autoanalyzer technique and ultimately in the T3 radioimmunoassay. The results of these analyses (Table I) indicate that significant conjugation of T3 to albumin had occurred, the calculated T3 to BSA molar ratios of the T3-BSA conjugates ranging from 1.82-678:1. The reason for this variability is not known. Since good agreement was found between the T3 content of the preparations calculated from the PBI data and from the immunoassay results (Table I), it was concluded that little deiodination of T3 had occurred during the preparation of the conjugates.

Preparation and detection of anti-T3 antibody. Rabbits were immunized by foot pad injection of 0.4-0.8 mg T3-BSA conjugate emulsified in 0.75-1.0 ml complete Freund’s adjuvant at monthly intervals. Sera were obtained before each booster injection and stored at -5°C. Sera obtained after the first injection of conjugate were found to contain some anti-T3 antibody but those obtained after three to four injections had a much greater quantity of antibody and were used exclusively in the studies to be described. Initially, four animals were immunized and most of the studies herein reported were done using serum obtained following the third injection of one of these animals. Subsequently, additional animals have been immunized and additional anti-sera of similar potency and affinity obtained. Micro agar gel diffusion studies showed a single precipitin line when anti-T3 sera were reacted with T3-BSA and BSA treated with carbodiimide and a line of identity was observed when the antigens were placed in adjacent wells. No precipitin lines were seen between wells containing unmodified BSA and anti-T3 serum.

Antibody to T3 was detected by reaction of 0.04-0.08 ng T3-125I with varying quantities of anti-T3 antibody for 24-48 hr and then separation of free and antibody bound T3-125I by addition of goat anti-rabbit IgG serum. With potent anti-T3 sera as little as 0.5 μl bound 90% of the T3-125I added. The binding capacity of the most potent antiserum obtained, estimated by addition of 0.04-0.42 ng quantities of T3-125I to antiserum diluted such that 40-60% of the radioactivity of 0.04 ng of T3-125I was bound, was 600 ng T3/ml. Less than 25% of the radioactivity added was precipitated when T3-125I was reacted with normal rabbit serum.

Radioimmunoassay of T3. For T3 assay duplicate tubes containing the following reagents were prepared: (a) 100 μl of unlabeled T3 diluted in 4% HSA, 0.05 M phosphate, pH 8.0, or the serum to be assayed. Serum samples were always tested in at least two doses, usually 50 and 100 μl. When serum volumes of less than 100 μl were used, albumin-phosphate buffer was added to bring the volume to 100 μl. The concentrated human albumin solution was used to approximately equalize the protein concentration in each tube. (b) 50 μl T3-125I (0.04-0.08 ng, approximately 3000-6000 dpm) in 0.25% BSA, 0.05 M phosphate pH 8.0, containing 1.0 mg/ml diphenylhydantoin. To ensure solubility of the diphenylhydantoin, this solution was adjusted to pH 10.2-10.4 with NaOH. The pH of the complete reaction mixture was 8.2-8.3. (c) 50 μl anti-T3 serum diluted so that 40-60% of the added T3-125I was precipitated in the absence of unlabeled T3. The buffer used for the anti-serum dilution was 0.25% BSA, 0.05 M phosphate, pH 8.0. containing 0.05 M EDTA. With the anti-T3 serum used in most of these studies, this dilution was 1:200.

After 48 hr at 5°C, goat anti-rabbit IgG serum was added in sufficient quantity to precipitate all the rabbit IgG present. The presence of human IgG (in serum) or addition of purified human IgG to solutions of T3 in buffer did not require the addition of larger quantities of anti-rabbit IgG serum. Subsequent to an additional 18-24 hr at 5°C, the tubes were centrifuged at 1000 g and the radioactivity in the precipitate determined. Shorter periods of incubation of the T3-125I and anti-T3 serum resulted in reduced binding of T3-125I to antibody. The proportion of radioactivity precipitated in duplicate tubes rarely varied by greater than 2%. When anti-T3 antibody and/or anti-rabbit IgG were omitted from the reaction mixture, no more than 1.5% of the total radioactivity was precipitated.

Fractionation studies. Several fractionation procedures were employed in the course of these studies. For the purpose of determining the T3 content of various T3 preparations, 10-20 μg quantities of T3 were chromatographed on 1 x 50 cm columns of Sephadex G-25 (Pharmacia Fine Chemicals, Inc, Piscataway, N. J.) in 0.01 M NaOH as described by Mougey and Mason (17). With the use of T3-125I and T3-125II, it was found that T3 and T4 were separated satisfactorily by this procedure, T3 emerging from the column well before T4. When unlabeled T3 was applied to these columns, fractions corresponding to the T3 peak and the T4 peak, determined by radioactivity and/or esterified T3 in preceding runs, were pooled, neutralized with 0.1 N acetic acid, and lyophilized. The lyophilized fractions were reconstituted in 1-2 ml for T3 immunoassay and T3 assay by the competitive protein binding procedure (18). In several instances, one-half of the T3 fraction from such a chromatographic separation was used on the Sephadex G-25 in the same manner.

Three methods for the extraction of thyroid hormones from serum were used. One employed chromatography of serum on the cation exchange resin Dowex AG 50 W-X2 (11+ form) (Dow Chemical Co., Midland, Mich.) as described by Sterling, Bellabara, Newman, and Brenner (8). The fraction containing both the unabsorbed serum and 0.15 M ammonium acetate, pH 8.5, which was passed through the column immediately after the serum, was lyophilized and subsequently reconstituted to the initial serum volume with 0.01 M phosphate, 0.15 M NaCl, pH 7.5. The T3 was eluted with 7.4 M NH4OH. This fraction was evaporated to dryness at 70°C and reconstituted to the initial serum volume with 4% HSA, 0.05 M phosphate, pH 8.0. Thyroid hormones were also extracted from serum by ethanol precipitation. 1 volume of serum and 2 volumes of 95% ethanol were mixed, centrifuged at 1000 g, and samples of the resulting supernatant dried at 40°C under an air stream. In several experiments, the initial ethanol precipi-
tates were recovered for immunoassay by suspension in water, dialysis, and lyophilization. The dried supernatants were suspended in a volume of 4% HSA, 0.05 M phosphate, pH 8.0, equal to the initial serum content of the dried extract. They were then centrifuged and a sample of the resulting supernatant tested in the Ts immunoassay. The centrifugation step was included because the resuspended dried ethanol extracts contained varying quantities of particulate material. This particulate material was found to bind irreversibly, in the absence of anti-Ts or second antibody, a variable quantity of Ts-I$^{131}$ (4.5-24.7%) when incubated with it and the reaction mixture sedimented at the usual centrifugation speed (1000 g). This was not reduced by centrifugation of the initial serum-ethanol mixture at 10,000 g. When Ts-I$^{131}$ was added to serum before the ethanol precipitation, 95.4±3.1% (sn) of the added radioactivity could be recovered after resuspension of the dried supernatants. Of this radioactivity, however, 18.6-37.2% (mean 26.0, n=9) sedimented at 1000 g.

Ts was also extracted from serum to which diphenylhydantoin, in a final concentration of 500 μg/ml, had been added by treatment three times with Tetrasorb resin sponges (Abbott Laboratories, North Chicago, Ill.).

Clinical material. Serum was obtained from patients hospitalized on the Medical Service or the Clinical Research Center at the Hospital of the University of Pennsylvania or the Philadelphia Veterans Administration Hospital and from patients who were attending the Endocrine Clinic of the University Hospital. The hyperthyroid patients studied all had typical clinical and laboratory manifestations of hyperthyroidism. Each patient considered to be hypothyroid had signs and symptoms compatible with this diagnosis and, in addition, a low serum Ts concentration, as determined by the competitive protein binding method (18). Of the 45 hypothyroid patients studied, 42 had elevated serum immunoreactive TSH concentrations (19), ranging from 10.8 to 2350 μU/ml. The remaining three patients all had serum Ts concentrations below 2.4 μg/100 ml and undetectable or barely detectable TSH levels. After separation, serum samples were stored at −5°C.

**RESULTS**

**Antibody specificity studies.** Results of studies showing the ability of unlabeled Ts and various analogues of it to inhibit the binding of Ts-I$^{131}$ to antibody are shown in Figs. 1 and 2. Addition of both Ts and various thyroid analogues resulted in progressive reduction in the proportion of Ts-I$^{131}$ bound to antibody. The dose response lines produced by Ts and the compounds studied were similar in all instances. Significant inhibition of Ts-I$^{131}$ binding to antibody occurred with as little as 0.05 ng unlabeled Ts. Multiple preparations of Ts were tested and no significant differences among them were observed. It is apparent from Fig. 1 that the two triiodothyronine analogues shown were nearly as effective as L-Ts in inhibiting the binding of Ts-I$^{131}$ to antibody, the most potent being D-Ts. In contrast, the tetraiodothyronine analogues tested were effective only when much larger quantities were added (Fig. 2). Table II shows the potency, on a weight basis, of all of the various compounds tested compared to that of unlabeled Ts. Each was tested in multiple doses in at least two assays. As indicated in the table, several L-thyroxine preparations were tested. All inhibited the binding of Ts-I$^{131}$ to antibody when added in large quantities but their potency varied considerably. Contamination of the Ts preparations with Ta was known in some instances, but said to be absent by the manufacturer in others. The preparations were indistinguishable when tested in the competitive displacement assay for Ta. Ta and Ts were tested in reaction
mixtures employing other buffers ranging in pH from 5.2 to 9.2 with similar results.

Results of T₃ immunoassay and T₄ analysis of the fractions obtained by Sephadex chromatography of several T₄ preparations are shown in Table III. Similar analyses of the T₄ preparations subjected to chromatography are also shown. In experiment 1, the T₃ fraction from the column contained the equivalent of 0.17% T₃ (1.7 ng T₃/1 µg T₄). The T₃ fraction in the second experiment contained 0.10% T₃ (1 ng T₃/1 µg T₄). In experiment 3, the T₃ fraction after the initial chromatography contained 0.03% T₃. Repurification of this T₃ fraction further lowered the T₃ content to 0.01% (0.1 ng T₃/1 µg T₄). These results indicate that the reactivity of T₃ with anti-T₃ serum can be largely attributed to T₃ contamination. The very slight T₃ immunoreactivity of the twice purified T₃ could be due to the presence of small amounts of T₄ generated from T₃ during the fractionation procedure or might represent very slight intrinsic reactivity of T₃ with anti-T₃ serum.

The reactivity of T₃-BSA and other conjugates in the immunoassay was also examined. Both T₃-BSA and T₄-BSA conjugates inhibited the binding of T₃-¹³¹I to antibody, though the activity of the T₄-BSA conjugate was minimal (Table I). The dose response pattern of the conjugate inhibition was similar to that of T₃ alone. The carbodiimide treated albumin did not inhibit T₃-¹³¹I binding to antibody in doses up to 0.5 mg. Both human and bovine albumin preparations also slightly inhibited the reaction when tested in doses of 5–30 mg.

Assay of T₃ in serum. Initial attempts to determine the T₃ in serum in incubation mixtures not containing diphenylhydantoin yielded results of 300 ng/100 ml or higher in most instances and these values bore little relation to the quantity expected considering the clinical status of the patient. Furthermore, with many samples little dose response effect was evident when varying quantities of serum were tested. Since in all instances the amount of T₃-¹³¹I bound to antibody when serum was added was low, these results suggested that T₃-¹³¹I was reacting with the thyroxine binding globulin (TBG) in serum and thus was not available for binding to anti-T₃ antibody. The addition of diphenylhydantoin, a known competitive inhibitor of the binding of thyroxine to TBG (20–23), was found to prevent this. Addition of diphenylhydantoin in albumin solution in doses up to 200 µg/tube did not inhibit the binding of T₃-¹³¹I to antibody or alter the sensitivity of the system to unlabeled T₃. When added in increasing quantities to different serum samples, the proportion of T₃-¹³¹I bound to antibody gradually increased until a plateau was reached (Fig. 3). These findings indicate that these quantities of diphenylhydantoin prevent binding of T₃-¹³¹I to TBG and allow reaction of the endogenous serum T₃ with anti-T₃ serum. In other experiments the effect of diphenylhydantoin in doses up to 200 µg/tube was studied. The results were similar to those observed when 25 or 50 µg/tube was used. On the basis of these results a dose of 50

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross-activity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-triiodothyronine</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>D-triiodothyronine*</td>
<td></td>
<td>81.8</td>
</tr>
<tr>
<td>D-triiodothyronine†</td>
<td></td>
<td>89.5</td>
</tr>
<tr>
<td>Triiodothyroacetic acid*</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>Triiodothyropropionic acid*</td>
<td></td>
<td>52.7</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>1.34</td>
</tr>
<tr>
<td>D-thyroxine†</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-thyroxine*</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid†</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid*</td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>Desaminothyroxine*</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Monoiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Diiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>L-3,5-diiodothyronine†</td>
<td></td>
<td>0.094</td>
</tr>
<tr>
<td>DL-thyronine†</td>
<td></td>
<td>&lt;0.0012</td>
</tr>
</tbody>
</table>

* Obtained from Sigma Chemical Co., St. Louis, Mo.
† Baxter Laboratories, Inc., Morton Grove, Ill.

A further attempt to inhibit the binding of T₃-¹³¹I to antibody was made using diphenylhydantoin in varying amounts and mixing with different quantities of T₃-¹³¹I. The results are shown in Table I.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross-activity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-triiodothyronine</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>D-triiodothyronine*</td>
<td></td>
<td>81.8</td>
</tr>
<tr>
<td>D-triiodothyronine†</td>
<td></td>
<td>89.5</td>
</tr>
<tr>
<td>Triiodothyroacetic acid*</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>Triiodothyropropionic acid*</td>
<td></td>
<td>52.7</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>1.34</td>
</tr>
<tr>
<td>D-thyroxine†</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-thyroxine*</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid†</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid*</td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>Desaminothyroxine*</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Monoiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Diiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>L-3,5-diiodothyronine†</td>
<td></td>
<td>0.094</td>
</tr>
<tr>
<td>DL-thyronine†</td>
<td></td>
<td>&lt;0.0012</td>
</tr>
</tbody>
</table>

TABLE II
Thyronine Derivative Cross-Reactivity in T₃ Immunoassay

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross-activity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-triiodothyronine</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>D-triiodothyronine*</td>
<td></td>
<td>81.8</td>
</tr>
<tr>
<td>D-triiodothyronine†</td>
<td></td>
<td>89.5</td>
</tr>
<tr>
<td>Triiodothyroacetic acid*</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>Triiodothyropropionic acid*</td>
<td></td>
<td>52.7</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>L-thyroxine†</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>L-thyroxine*</td>
<td></td>
<td>1.34</td>
</tr>
<tr>
<td>D-thyroxine†</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-thyroxine*</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid†</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Tetraiodothyroacetic acid*</td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>Desaminothyroxine*</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Monoiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Diiodothyrosine*</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>L-3,5-diiodothyronine†</td>
<td></td>
<td>0.094</td>
</tr>
<tr>
<td>DL-thyronine†</td>
<td></td>
<td>&lt;0.0012</td>
</tr>
</tbody>
</table>

* Obtained from Sigma Chemical Co., St. Louis, Mo.
† Baxter Laboratories, Inc., Morton Grove, Ill.

TABLE III
T₃ and T₄ in Fractions after Gel Filtration of T₄

<table>
<thead>
<tr>
<th></th>
<th>T₃</th>
<th>T₄</th>
<th>T₃/T₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₄</td>
<td>80.0</td>
<td>15.00</td>
<td>6.0</td>
</tr>
<tr>
<td>&quot;T₃&quot; fraction</td>
<td>60.8</td>
<td>0.19</td>
<td>320.0</td>
</tr>
<tr>
<td>&quot;T₄&quot; fraction</td>
<td>16.3</td>
<td>9.85</td>
<td>1.7</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₄</td>
<td>28.8</td>
<td>16.7</td>
<td>1.7</td>
</tr>
<tr>
<td>&quot;T₃&quot; fraction</td>
<td>20.5</td>
<td>0.64</td>
<td>33.8</td>
</tr>
<tr>
<td>&quot;T₄&quot; fraction</td>
<td>12.6</td>
<td>12.60</td>
<td>1.0</td>
</tr>
<tr>
<td>Experiment 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₄</td>
<td>57.4</td>
<td>20.0</td>
<td>2.9</td>
</tr>
<tr>
<td>&quot;T₃&quot; fraction</td>
<td>25.2</td>
<td>0.15</td>
<td>164.0</td>
</tr>
<tr>
<td>&quot;T₄&quot; fraction</td>
<td>3.0</td>
<td>9.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Second column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;T₃&quot; fraction</td>
<td>0.7</td>
<td>0.09</td>
<td>0.8</td>
</tr>
<tr>
<td>&quot;T₄&quot; fraction</td>
<td>0.8</td>
<td>7.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>
µg/tube was chosen for regular use. Under these conditions, the pattern of inhibition of binding of T₃ to antibody produced by varying doses of serum was similar to that produced by unlabeled T₃ (Fig. 4). Hypothyroid serum treated with resin sponges as outlined above did not inhibit the reaction in the presence of diphenylhydantoin whereas significant inhibition of T₃ binding to anti-T₃ occurred in the absence of diphenylhydantoin.

**Effect of added T₃ and T₄ on serum T₃ concentrations.** Although the studies with the T₃ analogues showed that the anti-T₃ serum was highly specific and suggested that most of the T₃ cross-reactivity observed was due to T₃ contamination, the effect of addition of T₄ to serum on the immunoassayable T₃ concentration was studied. The T₃ preparation available which had the least cross-reactivity in the T₃ immunoassay was used (Table II). The results are shown in Table IV. For these studies, multiple serum samples of widely varying endogenous T₃ and T₄ concentrations were used. When T₄ in a concentration of 25 µg/100 ml was added, the mean serum T₃ concentration was 102 ±4.2% (SD) of the unmodified serum result. At added T₃ concentrations of 50 and 100 µg/100 ml, the mean serum T₃ values were 107.9 ±11.3% and 121.3 ±16.9% of the unmodified serum results, respectively. Thus, it is clear that T₃ in any quantity likely to be encountered clinically would not artifactually elevate the serum T₃ level as measured in this system.

In Table V are shown the results of serum assays after the addition of unlabeled T₄. Serum from normal, hypothyroid, hyperthyroid, and estrogen-treated subjects was enriched with T₄ in concentrations ranging from 31.2 to 500 ng/100 ml (usually in quantities ranging from 0.015 to 0.250 ng/50 µl). In all instances the mean recovery was greater than 90%. In one experiment, T₄ was reacted with serum for 24 hr at 5°C before assay. Recovery values similar to those described above were found.

**Reproducibility.** The quantity of T₄ found to produce a 50% reduction in the quantity of radioactivity bound to anti-T₄ antibody in 21 assays was 0.276 ±0.037 ng (SD). Both intra- and interassay variability was examined repeatedly with samples of widely varying T₄ concentration. The mean coefficient of variation (SD/mean × 100) for 15 samples, each of which was assayed in two doses twice in the same assay, was 6.0 ±4.9% (SD). The mean coefficient of variation for 50 samples assayed in two doses from two to five times in different assays was 7.9 ±4.8% (SD). No differences in reproducibility were found in assays of serum containing low, normal, or high T₄ concentrations.

**Table IV**

<table>
<thead>
<tr>
<th>T₄ added (µg/100 ml)</th>
<th>% unmodified serum result ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>105.0 ±1.9</td>
</tr>
<tr>
<td>20</td>
<td>106.3 ±2.8</td>
</tr>
<tr>
<td>50</td>
<td>108.1 ±3.1</td>
</tr>
</tbody>
</table>

**Table V**

<table>
<thead>
<tr>
<th>T₄ added (ng/100 ml)</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>95.7 ±4.1</td>
</tr>
<tr>
<td>20</td>
<td>92.5 ±6.9</td>
</tr>
<tr>
<td>50</td>
<td>95.8 ±12.2</td>
</tr>
<tr>
<td>100</td>
<td>96.8 ±7.4</td>
</tr>
<tr>
<td>200</td>
<td>102.5 ±9.2</td>
</tr>
</tbody>
</table>
Results of serum assays. The results of measurements of serum T₃ concentrations are shown in Table VI. Since the largest quantity of serum used was 100 µl and usually 0.06 ng unlabeled T₃ produced significant inhibition of T₃₁²⁵I binding to antibody, the minimum detectable T₃ concentration was 60 ng/100 ml. In normal adult subjects serum T₃ concentrations ranged from 102 to 215 ng/100 ml. The mean (±SD) in the normal sera was 145 ±25. No differences were found in serum T₃ results in males and females. In 10 normal subjects, T₃ concentrations in serum collected on different days differed by an average of 20 ng/100 ml. In hyperthyroid patients serum T₃ concentrations ranged from 205 to 793 ng/100 ml, all values but one being higher than the highest of the normal serum T₃ results. Serum T₃ concentrations ranged from <60 to 136 ng/100 ml in the patients with hypothyroidism; in three of these T₃ levels <60 ng/100 ml were found. In the three patients with secondary hypothyroidism, serum T₃ levels were 68, 70, and 115 ng/100 ml. The values were within two standard deviations of the normal mean in 52% of the hypothyroid patients. In pregnant women and patients receiving estrogen-containing medications, the mean serum T₃ concentration was 186 ng/100 ml.

Effects of thyroid hormones and TSH on serum T₃ concentrations. Serum T₃ concentrations in hypothyroid patients receiving various forms of replacement therapy are shown in Table VII. The T₃-treated subjects had received therapy in the dosage shown for at least 1 wk; in all others the duration of therapy at the appropriate dose was 1 month before serum sampling. In the patients receiving 25 µg T₃ daily, serum T₃ levels ranged from 90 to 370 ng/100 ml. All of these patients had elevated TSH levels. Those receiving larger doses of T₃ had, with one exception, T₃ levels greater than 200 ng/100 ml and most had TSH levels within the normal range. The range of values found in all of the T₃-treated patients varied widely; this may be due to the fact that blood sampling was not done at any fixed interval after the last previous dose of medication (see below). In the patients receiving 200 µg T₃ daily, serum T₃ concentrations were usually within the normal range. Patients receiving 300 µg T₃ daily had T₃ concentrations ranging from 159 to 260 ng/100 ml. The mean value in this group, 206 ng/100 ml, differed significantly from the normal mean (P < 0.01). All of these patients were considered clinically euthyroid. In only one of the T₃-treated patients was a pretreatment serum T₃ value available. This clinically hypothyroid woman initially had a serum T₃ level of 122 ng/100 ml, a serum T₄ of 1.0 µg/100 ml and a serum TSH of 255 µU/ml. The serum T₃ concentration was 225 ng/100 ml after 1 month and 159 ng/100 ml after 2 months of therapy with T₃ 300 µg/day in this patient.

Serial T₄ measurements were made after a single oral dose of 100 µg T₄ in five normal subjects. The results of these studies are shown in Fig. 5. In each subject, the serum T₄ concentration increased promptly, reached a peak 2–4 hr after T₄ administration, and then declined. The serum T₄ was slightly higher than control in each subject 24 hr after the T₄ administration. T₄ in a dose of 200 µg was given to two subjects after a similar protocol. The peak T₄ values observed were 800 ng/100 ml in each subject.

![Figure 5](image-url)
100 ml 8 hr after T₃ in one subject and 1,100 ng/100 ml at 6 hr in the other.

Results of serum T₃ and T₄ assays in three patients before and after the intramuscular administration of bovine TSH are shown in Fig. 6. Two of the patients had single functioning thyroid nodules and were euthyroid; the TSH was given to determine the functional capacity of the adjacent thyroid tissue. Post-TSH thyroid scans showed increased ¹³¹I uptake in the extranodular thyroid tissue in both patients. In each of these patients, serum T₃ and T₄ concentrations increased subsequent to TSH administration. It is apparent that the serum T₃ concentrations increased to higher levels and returned toward control more quickly than did the T₄ concentrations. In the third subject, who had primary hypothyroidism and an elevated TSH level, the serum T₄ concentration did not change.

Studies on the stability and extraction of T₃ in serum. Storage of serum at 5°C for 7 days did not lead to significant reduction in the measured T₃ concentration. The T₃ concentration of 10 serum samples so treated averaged 91.7% (range 83.1–112.8%) of that found in paired samples stored at -5°C.

Analysis of the fractions prepared by column chromatography on Dowex AG 50 W-X2 (Dow Chemical Co., Midland, Mich.) revealed the following results. In the nine instances in which serum was fractionated by this technique, the initial fraction containing unabsorbed protein and ammonium acetate contained no detectable T₄ (<60 ng/100 ml). The NH₄OH eluates of these sera contained 30.2–85.3% (mean 61.2%) of the T₄ concentration found in simultaneously assayed unextracted serum. Recovery of added T₄ (100 ng/100 ml) averaged 61.0% in two experiments.

The ethanol extraction studies yielded similar results. The reconstituted ethanol precipitates did not inhibit the binding of T₄-¹³¹I to anti-T₄ serum. The ethanol supernatants contained from 36.0 to 79.5% (mean 65.5%, n = 30) of the T₄ concentration found in the unextracted serum samples. Recovery of T₄ (50 and 100 ng/100 ml) added to serum in 13 instances averaged 75.6 ± 11.2% (sn). These results corroborate those described previously indicating substantial loss (26.0%) of T₄-¹³¹I added to serum before extraction by binding to particulate material in the ethanol supernatants and indicate that endogenous T₄ is lost in a similar manner.

It is clear that extraction of T₄ from serum by these two methods effectively removed all of the serum material capable of inhibiting the binding of T₄-¹³¹I to antibody. Furthermore, the proportion of added T₄ recovered was generally similar to the proportion of T₄ found in the serum extracts compared to that found in extracted serum samples.

DISCUSSION

The studies described herein clearly demonstrate that highly specific anti-T₃ serum of suitable affinity for the detection of subnanogram quantities of unlabeled T₃ can be prepared readily. It seems clear from the data presented that the specificity of the antibody is directed primarily to the phenolic ring constituents of the thyronine molecule. Of the compounds studied, all having substantial reactivity with the antibody were 3',3,5-triiodinated analogues. This finding was not unexpected since it is likely that the linkage of T₃ to BSA was accomplished by formation of peptide bonds between the alanine side chain of T₃ and BSA (24). Sterespecificity was minimal since D-T₃ reacted with the anti-T₃ serum almost as well as did L-T₃. The nature of the slight reactivity of the tetraiodinated derivatives with the anti-T₃ antibody bears special comment. The gel filtration data presented suggest that, at least in the case of T₄, most of the reactivity of the T₄ preparations studied was due to contamination with T₃ and even the slight reactivity (0.01%) of the twice purified T₄ could still reflect T₃ contamination. It seems reasonable to conclude that much of the reactivity of other tetraiodo-derivatives tested was due to contamination with their triiodo-analogues as well.
The preparation of anti-T₃ antibody of high specificity has been reported by other workers (12-15). Using a similar coupling procedure, Gharib, Mayberry, and Ryan have prepared an anti-T₃ serum with characteristics much like those of the antisera described in this study (13). Antisera of high, though varying, specificity have been obtained also after immunization with T₄-polysine conjugates (12) and thyroglobulin (15).

The data presented strongly suggest that this radioimmunoassay reliably measures T₃ in serum. This was achieved only with the use of diphenylhydantoin, which serves both to inhibit binding of T₃-¹²⁵I to serum TBG and to displace endogenous T₃ from TBG. If the latter was not the case both low serum T₃ concentrations and poor recovery of added T₃ would be expected. Neither was found. While there is controversy concerning the degree of in vivo binding of T₃ to TBG (25-28), binding of T₃ to TBG in vitro is readily demonstrable though the relative affinity of T₃ for TBG varies from ¾ to ¾ of that of T₄ in different systems (20, 23, 29). Diphenylhydantoin is a weaker competitive inhibitor of the T₃-TBG reaction than is T₄, but it would be expected to inhibit the binding of T₃ to TBG and displace T₄ from TBG more effectively than it would alter T₄-TBG interaction. The studies presented suggest that the binding of both T₃-¹²⁵I and unlabeled T₃ to TBG was completely inhibited by diphenylhydantoin. Whether significant quantities of endogenous T₃ were displaced from TBG by the quantity of diphenylhydantoin used in this system is not known. However, since added T₃ did not alter measured serum T₃ values, they should not be affected by endogenous T₃ displaced from TBG even if such displacement did occur. The fact that diphenylhydantoin in buffer solution did not inhibit the T₃-¹²⁵I-anti-T₃ reaction, whereas it does alter T₄ (and T₃) binding to TBG, provides further evidence that the binding sites for these two reactions differ substantially.

The possibility that the presence of other T₃ binding proteins in serum might influence these results also bears consideration. Such a phenomenon might influence T₃ assay results in several ways. In the first place, T₃-¹²⁵I could become bound and thus unavailable for binding to anti-T₃ antibody. This would result in overestimation of serum T₃ levels. Endogenously bound T₃ or T₃ displaced from TBG by diphenylhydantoin could bind to this protein(s) and thus the serum T₃ level would be underestimated. T₃ does not bind to thyroxine binding prealbumin (23, 30, 31). T₃ binding to albumin is weak and easily interrupted by a variety of materials (23, 31-34). The high affinity of the antibody for T₃ would appear to render this possibility unlikely.

The validity of the assay is also supported by the finding that the recovery of T₃ added in a wide range of concentrations and to sera of varying endogenous T₃ and T₄ concentrations was excellent. Furthermore, all of the immunoreactive material present in serum could be removed by procedures known to extract much or all of the endogenous T₃. Finally, when T₄ was added to serum which was subsequently extracted by two methods, the recovery of T₄ added in vitro approximated the proportion of endogenous T₄ found in serum extracts compared to that in unextracted serum. All of these observations strongly suggest that all of the endogenous T₃ in serum is made available to the antibody in the course of the reaction.

The serum T₃ concentration results found with this technique differ somewhat from those previously reported. In general, procedures employing column and paper chromatography coupled with displacement analysis have yielded substantially higher values. For example, Sterling and coworkers found a mean serum T₃ concentration of 220 ng/100 ml (8), and a mean normal T₃ value of 243 ng/100 ml was recently reported by Wahner and Gorman using a similar technique (11). Larsen, using a modification of this procedure, found a mean normal T₃ concentration of 180 ng/100 ml (9). Mean normal T₃ concentrations of 300 ng/100 ml or more were reported by other investigators using a variety of techniques (6, 7, 10). Little data is available as yet concerning radioimmunoassay measurements of serum T₃, but preliminary reports of values both greater and similar to those described here have recently appeared (14, 15, 35). Inadequate separation of T₃ and T₄ (9, 36), in vitro deiodination of T₄ (9, 36) or formation of T₄ esters during extraction (37) are likely explanations for the finding of higher T₃ values in the assays employing various types of chromatography. Possible sources of error in the radioimmunoassay measurements were discussed in preceding paragraphs.

As noted by others, elevated serum T₃ concentrations were found in almost all hyperthyroid patients studied. Only one such patient in this group had a serum T₃ concentration within the normal range. In hypothyroid patients, on the other hand, a substantial number had serum T₃ concentrations within the normal range although the mean values for the two groups differed significantly (P < 0.001). All of these patients had some symptoms and signs compatible with the diagnosis of hypothyroidism and low serum T₄, and low or elevated TSH concentrations. Similar findings have been reported by Wahner and Gorman (11). Thus a near normal T₃ concentration alone is not sufficient to sustain the euthyroid state or prevent increased TSH secretion. The normality of the T₃ concentrations in some of these patients could in part be explained by the ability of high TSH levels to preferentially stimulate thyroidal release of T₃ (38). Greater increments in T₃ than in T₄ concentrations were also observed after exogenous TSH ad-
administration in two patients in this study. In addition, when there is T₃ deficiency undoubtedly relatively more T₄ is bound to TBG than is normally the case (34). This could also explain why patients treated with sufficient T₄ to restore TSH levels to normal almost always had elevated serum T₃ concentrations.

Rapid changes in serum T₃ concentrations were observed when serial measurements were made after single oral doses of 100 μg T₃. The similarity of the peak T₃ levels suggest that fractional absorption varied little among the subjects. The wide variation in serum T₃ levels found in the T₃-treated patients (Table VII) can thus be explained by the fact that in those subjects blood sampling was not carried out at a fixed time after the previous dose of T₃. Rapid, and virtually complete, absorption and disappearance of isotopically labeled T₃ has been reported by Hays (39). In the studies described herein, the mean peak increment in serum T₃ levels was 299 ng/100 ml. Assuming the volume of distribution of T₃ to be 40 liters (40, 41), this increment would reflect the absorption of 119 μg T₃, a value in reasonable agreement with the 100 μg that was in fact administered. These results thus validate, by quite different methods, the previously published estimates of the degree of absorption and volume of distribution of T₃.

In hypothyroid patients receiving replacement therapy with thyroxine, normal or moderately elevated T₃ concentrations were found. The latter occurred largely in the patients receiving 300 μg T₃ daily and the elevations observed were modest. Considerably higher T₃ levels in patients receiving this dose of T₃ were reported by Braverman, Ingbar, and Sterling (2), but the T₃ assay employed (8) yields higher values probably because of in vitro T₃ deiodination and inadequate separation of T₃ and T₄ (9, 36). While values before and during such treatment have been reported for only one patient in the present study, there seems little doubt that these results confirm those of Braverman and coworkers indicating there is peripheral conversion of exogenously administered T₃ to T₃ in human subjects.

**ACKNOWLEDGMENTS**

This work was supported in part by Grants T01 AM 05649, R01 AM 14039, RR 05415, and RR-40 (Clinical Research Center) from the U. S. Public Health Service. The authors are grateful to Mrs. Ann Rosenkranz for expert technical help and Mrs. Elaine Paolini for her secretarial assistance.

**REFERENCES**


**Triiodothyronine Radioimmunoassay** 165


