Estradiol and Testosterone Secretion by Human, Simian, and Canine Testes, in Males with Hypogonadism and in Male Pseudohermaphrodites with the Feminizing Testes Syndrome

R. P. Kelch, M. R. Jenner, R. Weinstein, S. L. Kaplan, and M. M. Grumbach

From the Department of Pediatrics, University of California San Francisco, San Francisco, California 94122

ABSTRACT The role of the human testis in the production of 17β-estradiol (E₂) was investigated by determining the concentration of E₂ and testosterone in peripheral and spermatic vein plasma samples. Specimens were obtained from eight normal men, three men with hypogonadism, and two patients with the incomplete form of the feminizing testes syndrome. For comparison, similar studies were performed in four monkeys, 10 mongrel dogs, and 4 additional dogs who were given 1000 IU of human chorionic gonadotropin/day for 5 days. Plasma E₂ was measured by radioimmunoassay utilizing sheep anti-E₂ serum preceded by ether extraction and thin layer chromatographic separation of plasma steroids. Procedural blanks, which were subtracted from all reported values were 14.1 ± 0.74 (SEM) pg for deionized water and 13.1 ± 0.66 pg for charcoal-adsorbed pooled male plasma. Pooled male and pooled female control plasmas averaged 17 ± 0.71 pg/ml and 95 ± 6.9 pg/ml, respectively; individual adult male specimens ranged between 8 and 28 with a mean of 18 ± 1.4 pg/ml. In the eight normal men, the mean peripheral vein E₂ concentration was 20 ± 1.6 pg/ml, while the spermatic vein concentration was 50 times as great, 1049 ± 57 pg/ml. All three patients with testicular abnormalities had low spermatic vein E₂ concentrations (160, 280, and 416 pg/ml). Lesser E₂ gradients were found across the simian (3-fold) and canine (approximately 12-fold) testes. Testicular testosterone gradients (human 110-, simian 10-, and canine 77-fold) were greater than the E₂ gradients in all three species. In four dogs, HCG treatment elicited a 6-fold increase in peripheral and a 9-fold increase in spermatic vein testosterone concentrations; however, peripheral and spermatic vein E₂ concentrations did not differ from control values. Spermatic vein E₂ concentrations were > 4600 and 2210 pg/ml (post-HCG) in two patients with the incomplete form of the feminizing testes syndrome. Postorchietomy, peripheral E₂ and testosterone concentrations fell precipitously in both patients, confirming the major contribution of the testes, in this syndrome, to circulating E₂ and testosterone. These studies provide direct evidence that the human testis secretes estradiol.

INTRODUCTION

The role of the human testis in estrogen production has been a controversial subject for many years. As early as the late 1920's, estrogen was found in normal male urine by bioassay (1-4). Steinach and Kun in 1937 (5) and later West, Damast, Sarro, and Pearson (6), demonstrated that parenteral testosterone could be converted to estrogens. Leach, Maddock, Tokuyama, Paulsen, and Nelson (7) and others (8-11) showed that HCG increased urinary estrogen excretion while...
castration produced a fall. With advances in chemical and tracer methodology, E_2 was isolated from human testes (12), E_2 synthesis from acetate was demonstrated in testicular homogenates (13), and radiolabeled androgens were shown to be estrogen precursors in blood (14, 15) and urine (16-18).

Quantitative studies of the source of estrogens in men indicated that peripheral conversion could not account for all of estrone (E_1) production. However, Brenner, Hutchinson, Sitteri, and MacDonald (19) concluded that all of E_1 production could be accounted for by peripheral conversion while Longcope, Kato, and Horton (15) stated that at least 50% of E_2 production was derived from peripheral conversion. Direct proof of the secretion of a hormone requires the demonstration of a greater concentration in the venous effluent of the gland than in the peripheral blood. Testicular-estrogen gradients have been demonstrated in six male pseudohermaphrodites with the syndrome of feminizing testes (20-22) and in one male with gynecomastia (23). However, the secretion of estrogens by normal testes had not been established before the simultaneous reports by Leonard, Flocks, and Korenman (24) and from our laboratory (25) at the 53rd meeting of the Endocrine Society.

The purpose of this study was to determine whether the normal human testis secretes E_2 by measuring E_2 in peripheral and spermatic venous samples in men. For comparison, results of similar studies in monkeys, dogs, and in patients with primary hypogonadism and in male pseudohermaphrodites with the incomplete feminizing testes syndrome are also presented.

METHODS

Subjects. Peripheral and spermatic venous blood samples were drawn from eight normal men (23-61 yr old) during an elective herniorrhaphy (seven subjects) or varicocelectomy (one subject) under spinal anesthesia. The spermatic venous samples were obtained by carefully inserting a 21 gauge scalp vein needle into a large venule of the spermatic plexus, close to the external inguinal ring. Paired specimens were also obtained from two subjects with unilateral testicular atrophy, one subject with oligospermia and a varicocele, and two patients with the incomplete form of the feminizing testes syndrome. Both patients with "partial" feminizing testes had an XY karyotype, female body habitus including breast development, minimal (L. B.) to modest virilization (C. R.), and inguinal testes and epididymis with Leydig cell hyperplasia and defective spermatogenesis. L. B. (age 13 yr, 5 months) was given daily intramuscular injections of 1000 IU of human chorionic gonadotropin (HCG)1 for the 4 days before her orchiectomy. Informed consent was obtained from all subjects in this study.

1 *Abbreviations used in this paper: Δ^A, androstendione; DHEA, dehydroepiandrosterone; FSH, follicle-stimulating hormone; HCG, human chorionic gonadotropin; LH, luteinizing hormone.*

Femoral arterial and spermatic venous blood samples were obtained from 10 mongrel dogs while under barbiturate anesthesia. An additional four mongrel dogs were given 1000 IU of HCG (A.P.L., Ayerst) intramuscularly/day for 5 days with peripheral venous specimens drawn before treatment.2 Femoral arterial and spermatic venous samples post-HCG were obtained under control conditions. Paired specimens were also obtained from four adult male monkeys.

The plasma concentrations of LH and FSH were determined by a double-antibody radioimmunoassay, as previously described utilizing the highly purified NIH pituitary standards LER 960 for luteinizing hormone (LH) and LER 869 for follicle-stimulating hormone (FSH) (26, 27). Plasma testosterone concentrations were determined by competitive protein-binding analysis (28). 17β-Estradiol radioimmunoassay. 24, 67 3H-17β-Estradiol (SA 95 Ci/m mole) obtained from New England Nuclear Corporation, Boston, Mass., was used without further purification. Radiochemical homogeneity (>95%) of the 3H-E$_2$ was frequently verified by thin-layer chromatography (Gelman ITLC-SA: benzene: ethyl acetate, 4:1). Rivanol-treated and bovine serum albumin-absorbed sheep antiserum to 17β-estradiol-17 succinyl-BSA was kindly supplied by Dr. Raymond Vande Wiele of Columbia University. 1-ml portions of a 1:10,000 dilution of this antiserum were stored at -20°C and were diluted with 0.1 M phosphate buffer to a final concentration of 1:500,000 immediately before each assay. After the addition of 1000 cpm of 3H-E$_2$ to monitor procedural losses, 0.1-2.0 ml plasma samples were treated with 1/10th volume 1 N NaOH and then extracted twice with 5-10 ml of freshly distilled, anesthetic grade anhydrous diethyl ether. The combined ether extracts were evaporated under air at 37°C and then submitted to thin-layer chromatography (Gelman ITLC-SA) in a 4:1, benzene: ethyl acetate system before a preliminary development with benzene alone: estrone (Rf = 0.77); 17β-estradiol (Rf = 0.61); testosterone (Rf = 0.45). The 2×2 cm E_2 areas were localized by comparison with a "cold" E_2 marker and placed in 2.0 ml deionized water before reextraction twice with 5 ml diethyl ether. The combined ether extracts were evaporated to dryness in 12×75 mm disposable, methanol-washed assay tubes. The residues were dissolved in 1.0 ml spectrophot grade MeOH, and 0.2 ml was removed for monitoring recovery (average recovery = 61 ±1% SEM) and the remaining 0.8 ml was evaporated to dryness and submitted to radioimmunoassay. All of the spermatic vein samples were processed utilizing two or more different plasma portions.

A 10 point standard curve was prepared in triplicate using 0.3-300 pg of authentic estradiol (Cal-Biochem). Unknowns and standards were dissolved in 0.6 ml of 0.1 M phosphate buffer followed by the sequential addition of 0.1 ml portions of 0.1% Knox gelatin,1 1/500,000 antibody solution and 3H-E$_2$ (12,000 cpm/0.1 ml phosphate buffer). Control tubes without antibody were run in all assays. After the addition of 3H-E$_2$, the tubes were swirled for 5 sec

2 This study was performed with the assistance of Dr. F. Ganong and Mr. Roy Shackelford of the Department of Physiology, University of California San Francisco under U. S. Public Health Service Grant No. AM-06074.

4 Conversion factors to LER 907 in this assay system are: 1 ng LH (LER 960) = 40 ng LER 907; and 1 ng FSH (LER 869) = 100 ng LER 907.

5 Kindly suggested by Dr. Julie Hotchkiss and Dr. E. Knoebel of the Department of Physiology, University of Pittsburgh.

1 Abbreviations used in this paper: Δ^A, androstendione; DHEA, dehydroepiandrosterone; FSH, follicle-stimulating hormone; HCG, human chorionic gonadotropin; LH, luteinizing hormone.

Es and Testosterone Secretion by Human, Simian, and Canine Testes 825
and incubated for 2 hr at room temperature. Bound and free E2 were separated by the addition of 0.1 ml of dextran-coated charcoal (0.5% Norit A, 0.05% dextran-80 in phosphate buffer). After the addition of charcoal, the contents were vigorously mixed, the tubes placed in an ice bath for 1 hr, and then centrifuged for 10 min at 3000 rpm and 4°C. The supernatants, containing the bound fraction, were decanted into glass scintillation vials and counted for 20 min in a liquid scintillation counter (Packard TriCarb model 3375) using 10 ml of a modified Bray's solution. Counting efficiency was 30%. Absolute binding varied between 40 and 50%; in the control tubes, 2.7±0.2% SEM of the total 3H-E2 remained in the supernatant.

The reproducibility of the standard curve, plotted as B/B0 versus picograms of estradiol, is illustrated in Fig. 1. When plotted semilogarithmically, a linear relationship was obtained between 15 and 200 pg (Fig. 2). Cross-reactivity of E1 was 30-60% while the cross-reactivity of testosterone was insignificant (<0.001%).

Blank and control values. 2 ml deionized water and charcoal-adsorbed plasma specimens were processed completely for each assay and averaged 14.1±0.74 and 13.1±0.66 pg, respectively. In an attempt to determine the source of the methodologic blank, a reagent blank (water/ether and methanol) was incorporated into each assay tube in eight assays. This yielded a residual plasma blank of 8.3±1.1 pg, presumably secondary to the chromatographic step. Procedural blanks were always subtracted before the calculation of the reported values. Pooled male and pooled female plasma samples averaged 17±0.71 pg/ml and 95±6.9 pg/ml, respectively, while individual adult male specimens ranged between 8 and 28 with a mean of 18±1.4 pg/ml. Interassay coefficient of variation was 24% for the pooled male plasma and 17.7% for the pooled female plasma. The results of the addition of 25-200 pg of "cold" E2 to 2.0 ml charcoal-adsorbed plasma aliquots are graphically illustrated in Fig. 3.

RESULTS

Normal and hypogonadal men. Table I lists the results in eight normal males (23 to 61 yr old) and three young men (22-28 yr old) with testicular pathology.

![Figure 1](image1.png)

Figure 1 Composite standard curve (18 assays) for the 17β-estradiol radioimmunoassay plotted as relative per cent bound, B/B0, vs. picograms of 17β-estradiol.

![Figure 2](image2.png)

Figure 2 Cross-reactivity of estrone (30 to 60%) and testosterone (<0.001%) in the 17β-estradiol radioimmunoassay. Estrone and estradiol are plotted on the abscissa as picograms, testosterone as nanograms (10⁶ pg).

The mean peripheral plasma E2 concentration in this group of normal male subjects was 20±1.6 pg/ml, while the mean concentration in spermatic vein plasma was 50 times as great, 1049±57 pg/ml. The mean peripheral testosterone concentration, 5.97±0.52 ng/ml, agreed well with our previously reported normal male values, 6.25±0.27 ng/ml (28). The mean spermatic vein testosterone concentration was 712±79 ng/ml, a 110-fold testicular gradient for testosterone. The three patients with testicular abnormalities (patients 1, J, and K), two with unilateral atrophy, and one with oligosperma, all had normal peripheral E2 values, but low concentrations of spermatic vein E2. Two of the three (1 and K) had low spermatic vein testosterone concentrations, although their peripheral testosterone values were in the normal male range.

Feminizing testes syndrome. The results of our studies in two patients with the incomplete form of the feminizing testes syndrome are illustrated in Fig. 4. Testicular gradients of dehydroepiandrosterone (DHEA) and androstendione (Δ4A) were also determined in patient C.R. and three control subjects. C.R., age 16 yr, 2 months, had normal adult male values in peripheral blood for DHEA, Δ4A, and E2 and a peripheral testos-
terone concentration (3.37 ng/ml) found in advanced puberty in boys. Spermatic vein concentrations of DHEA, 120 ng/ml, and Δ4A, 53.2 ng/ml, were twice normal (three normals: mean DHEA 64.3 ±7.1 ng/ml SD; mean Δ4A 22.3 ±13.6 ng/ml SD). Spermatic vein testosterone was high normal; however, the spermatic vein E2 was greater than 4600 pg/ml, at least four times normal. Preoperatively, LH was elevated at 8.5 ng/ml and rose to 14.4 ng/ml postoperatively. In contrast, the concentration of plasma FSH was normal (2.2 ng/ml) preoperatively, but rose strikingly to 54 ng/ml 8 days after a bilateral orchiectomy.

L.B. had similar control values for testosterone and E2. After 4 days of HCG treatment, a significant rise in testosterone and a probable rise in E2 were noted in peripheral blood. After treatment with HCG, spermatic vein testosterone concentration was the high normal range, whereas spermatic vein E2 was 2200 pg/ml, approximately twice the normal value for adult males. After orchiectomy, peripheral DHEA and Δ4A in C.R. dropped from 6.9 to 2.3 ng/ml and 1.3 to 0.5 ng/ml, respectively, while testosterone and E2 were virtually undetectable in both patients.

Monkeys. Four monkeys (Table II) had peripheral E2 concentrations similar to those in normal men (<7–33 pg/ml), but their spermatic vein E2 concentrations averaged only 50 pg/ml. Monkey 4 had a remarkably high spermatic vein testosterone value (81.4 ng/ml), while his peripheral testosterone concentration was similar to the other animals. With the inclusion of monkey 4, the mean simian testicular gradients for E2 and testosterone were only 3- and 10-fold, respectively.

![Figure 4 Testicular steroid gradients and the response to orchiectomy in two patients with the “incomplete” testicular feminization syndrome: C. R. 16 yr, 2 months and L. B. 13 yr, 5 months old. 1000 IU HCG/day were given intramuscularly for 4 days to L. B. before orchiectomy.](image)
Peripheral plasma results in a heterogeneous group of mongrel dogs. A 77-fold testosterone and approximately a 12-fold E2 gradient were found across the canine testes. HCG treatment elicited a 6-fold increase in peripheral and a 9-fold increase in spermatic vein testosterone; however, peripheral and spermatic vein plasma E2 concentrations did not differ from the controls.

DISCUSSION

Testicular E2 and testosterone gradients. In agreement with the previous indirect estimates of Fishman et al. (14) and Longcope et al. (15), the data presented clearly demonstrate that the human testis secretes estrogen; the mean spermatic vein concentration of plasma E2 was 1049 pg/ml, 50 times as great as in peripheral plasma. Remarkably similar values were simultaneously reported by Leonard et al. who used celite chromatography and a uterine cytosol-binding assay (24). The testicular testosterone gradient of 706 ng/ml in normal men agrees well with the recent report by Laatikainen, Laitinen, and Vihko (29) and falls within the wide range of values previously reported (30-32). Comparison of the results in man with two other mammalian species reveals that the simian and canine testes also secrete E2, but in smaller amounts. In all three species, testicular testosterone gradients were greater than the E2 gradients.

The peripheral E2 and testicular E2 gradients in this group of mongrel dogs must be regarded as approximate values only since most dogs had undetectable (<7 pg/ml) peripheral E2 levels. This finding agrees well with previous reports indicating either low or absent estrogen excretion in dogs (33). Siegel, Forchielli, Dorfman, Brodey, and Prier, using a fluorometric technique, found a small testicular E2 gradient in three out of four normal dogs, but the reported spermatic vein concentrations were much higher (average of five dogs: 470 pg/ml), attributable to the apparent relative insensitivity of their technique (34). The lack of a significant rise in peripheral or spermatic vein E2 concentrations in the HCG-treated dog may merely reflect our current inability to precisely define low basal values or the marked heterogeneity of values found in this small group of mongrel dogs. Since HCG-treated normal men exhibit an increase in peripheral E2 concentrations, there may be a species difference either in peripheral aromatization of androgens or testicular responsiveness to HCG.

Feminizing testes syndrome. The concentration of plasma E2 in testicular venous plasma has been reported in five patients with the complete form (20, 21) and one patient with the incomplete form of the feminizing testes syndrome (22). (The reported values range from 3,100 to 20,000 pg/ml). The results in our two patients, obtained by the more sensitive and specific radioimmuno-assay technique, confirm that the testosterone in this syndrome secrete significant amounts of E2. The

TABLE II

17β-Estradiol and Testosterone Gradients across the Simian Testis

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>17β-Estradiol</th>
<th>Testosterone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peripheral vein</td>
<td>Spermatic vein</td>
</tr>
<tr>
<td></td>
<td>µg/ml</td>
<td>µg/ml</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>460</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td><7</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td><7</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td><7</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td><7</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>135</td>
</tr>
<tr>
<td>8</td>
<td><7</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Mean Concen (±SEM)</td>
<td>8.2 ±0.7</td>
<td>99.6 ±46</td>
</tr>
</tbody>
</table>

TABLE III

17β-Estradiol and Testosterone Gradients across the Canine Testis

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>17β-Estradiol</th>
<th>Testosterone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Femoral artery</td>
<td>Spermatic vein</td>
</tr>
<tr>
<td></td>
<td>µg/ml</td>
<td>µg/ml</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>14/7</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td><7/18</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td><7/7</td>
<td>19</td>
</tr>
<tr>
<td>Mean Concen (±SEM)</td>
<td>60 ±22</td>
<td>1.39 ±0.52/7.75 ±1.9</td>
</tr>
</tbody>
</table>

* All <7 pg/ml values were treated as 7 pg/ml.
† 1000 IU HCG/day for 5 days.

Kelch, Jenner, Weinstein, Kaplan, and Grumbach
elevated testicular E$_A$, DHEA, and A'4A values, and the high normal spermatic vein testosterone concentrations in C.R. were most likely secondary to the intense LH stimulation (plasma LH 8.5 ng/ml) preoperatively. HCG treatment in L.B. (studied at 13 yr and 5 months of age) induced a marked rise in peripheral testosterone and a probable increase in peripheral E$_A$. These data and the precipitous fall in peripheral E$_A$ and testosterone after orchietomy demonstrate the major contribution of the testes, in this syndrome, to circulating E$_A$ and testosterone. The normal peripheral vein E$_A$ values, despite markedly elevated spermatic vein concentrations, may be secondary to decreased peripheral conversion of testosterone to E$_A$, as reported by French et al. (22) or to an increased metabolic clearance rate.

The discordance between the plasma FSH and LH values, as reflected by the elevated LH and normal FSH concentrations preoperatively in C.R., is similar to data presented by Faiman and Winter (35). These findings, in light of the known end-organ androgen unresponsiveness which seems to include impaired testosterone suppression of LH secretion, suggest that E$_A$ is the principal sex steroid controlling gonadotropin secretion in these patients and are further evidence for separate feedback mechanisms for LH and FSH.

Estimation of testicular E$_A$ secretion. The determination of the testicular E$_A$ gradient alone does not permit a direct calculation of testicular E$_A$ secretion. However, based upon the mean testosterone blood production rate of 7 mg/day for normal adult males (36) and upon the experimentally determined testosterone and estradiol gradients, the testicular E$_A$ secretion is estimated at 10
ug/day. A comparison of the reported production rates of E$_A$ (approximately 40
ug/day) (15, 19) with our estimate of testicular E$_A$ secretion indicates that testicular secretion may account for approximately one-fourth of E$_A$ production in normal men.

No attempt was made in this study to determine the testicular site of aromatization of C19 precursors to estradiol, whether this occurs primarily in the Leydig cells, the seminiferous tubules, or in both compartments. Such studies would enhance our understanding of the origin and physiologic significance of E$_A$ in men. The observations reported herein direct attention to the possible role of E$_A$ arising from the testis as well as from conversion from precursor steroids in peripheral tissues, in the regulation of FSH secretion in the male.

ACKNOWLEDGMENTS

We wish to thank Capt. Vernon Fitchett, U. S. Naval Hospital, Oakland, Calif., Dr. Miles Novy of the Oregon Primate Center, Dr. Henry Edmonds and Dr. A. Hall, Department of Surgery, University of California San Francisco, and Dr. F. Ganong and Mr. Roy Shackelford of the Department of Physiology, University of California San Francisco for their generous assistance in obtaining samples of spermatic vein blood. The expert technical assistance of Margaret Tkachuk is greatly appreciated.

This work was supported in part by grants from the National Institutes of Child Health and Human Development and the National Institute of Arthritis and Metabolic Disease, National Institutes of Health.

REFERENCES

EA and Testosterone Secretion by Human, Simian, and Canine Testes

829

