Degradation of Human Fibrinogen
by Plasma α_2-Macroglobulin-Enzyme Complexes

PETER C. HARPEL and MICHAEL W. MOSESSON

From the Department of Medicine, Division of Hematology, The New York Hospital-Cornell Medical Center, New York 10021 and the Department of Medicine, Hemostasis Section, Downstate Medical Center, State University of New York, Brooklyn, New York 11203

ABSTRACT This study demonstrates that human plasma α-macroglobulin preparations possess an enzymic activity that degrades fibrinogen, resulting in the formation of products whose structure resembles that of circulating fibrinogen catabolites. The sequence of degradation is similar to that observed in plasmin-catalyzed digests, in that $A\alpha$-chain fragmentation precedes that of $B\beta$-chain. The addition of plasminogen activators to plasma induced an increase in the N-α-tosyl-l-arginine methyl ester HCl esterase and fibrinogenolytic activity associated with α-macroglobulin purified from this plasma, indicating that the enzymic activity of the complex was preserved and could be increased in the presence of other plasma enzyme inhibitors. Immunochemical studies demonstrated that an α-macroglobulin-plasmin complex had formed in urokinase-treated plasma. This α-macroglobulin preparation manifested an esterolytic profile like that of a complex prepared from plasmin and purified α-macroglobulin. After complex formation with α-macroglobulin in plasma, plasmin retained less than 0.1% of its fibrinogenolytic activity. That plasmin expressed its activity while bound to α-macroglobulin was suggested by immunoprecipitation of this activity with α-macroglobulin antibody and by the demonstration that pancreatic trypsin inhibitor did not effectively inhibit its fibrinogenolytic or esterolytic activity. These results raise the possibility that, in addition to its activity as a major plasma proteolytic enzyme inhibitor, α-macroglobulin may modulate enzyme-substrate interactions, such as those resulting in the formation of circulating fibrinogen catabolites, by providing a mechanism for the preservation and protection of a portion of the enzymic activity in the presence of other circulating inhibitors.

INTRODUCTION

The role that circulating enzyme inhibitors play in modulating the interactions involved in hemostatic and inflammatory processes is not well understood. One such inhibitor, plasma α-macroglobulin, apparently participates in the regulation of several different plasma enzyme systems, since it has been shown in vitro to form a complex with plasmin (1-3), thrombin (4-6), and kallikrein (7-9), resulting in inhibition of proteolytic activity. In contrast, the ability of these enzyme-inhibitor complexes to degrade synthetic amino acid ester substrates (esterolytic activity) is only slightly modified, demonstrating that the catalytic potential of the bound enzyme is retained.

Circulating human fibrinogen consists of a heterogenous family of coagulable species identifiable by solubility characteristics ranging in molecular weight from that of "native" fibrinogen, 325,000 (e.g., fraction I-4) to 261,000 (e.g., fraction I-9) (10-12). Turnover studies in rabbits have shown a classical precursor-product relationship between high and low molecular weight forms of isotopically labeled fibrinogen (13). Increased amounts of low molecular weight forms of fibrinogen have been shown in patients receiving urokinase therapy (13). These observations have provided conclusive support for the hypothesis (10) that such fibrinogens are catabolic intermediates. The demonstration that the amino terminal regions of these plasma fibrinogens were intact was unequivocal evidence that
they had not been acted upon by thrombin (11, 12). Furthermore, the suggestion that the reduction in molecular size was the consequence of cleavage of peptide material from the COOH-terminal region of the core molecule (10, 11) has been confirmed (12) and extended by the demonstration that under physiologic circumstances such attack appears to be confined to the Aα-chains (12, 14). Similarities between the plasma catabolites and early fibrinogen derivatives resulting from plasmin-catalyzed hydrolysis (14-18) support the notion that it is plasmin or a plasmin-like enzyme that mediates this in vivo catabolism.

The studies to be reported were designed to examine the possibility that, in addition to its function as an inhibitor of plasmin, plasma α-macroglobulin might participate in fibrinogen catabolism by forming a biologically active complex with plasmin or plasmin-like enzymes. Our data indicate that (a) α-macroglobulin prepared from human plasma has an associated fibrinogenolytic activity; (b) both the fibrinogenolytic and esterolytic activities associated with α-macroglobulin preparations are increased by the addition of plasminogen activators, urokinase, or streptokinase to plasma before its purification; (c) the Aα-chain of fibrinogen is the chain most susceptible to degradation by α-macroglobulin–enzyme complexes, a sequence of proteolysis like that observed in plasmin-catalyzed digests; (d) α-macroglobulin prepared from urokinase-treated plasma is complexed with immunologically identifiable plasmin; (e) the enzymic activity complexed to α-macroglobulin preparations is resistant to inhibition by plasmin inhibitors.

METHODS

The chemicals used were reagent grade and were obtained from the following sources: N-α-tosyl-l-arginine methyl ester HCl (TAME), N-benzoyl-l-arginine methyl ester HCl (BAMe), N-α-acetyl-l-lysine methyl ester HCl (ALMe), and N-α-acetylglycyl-l-lysine methyl ester acetate (AGLMe) from Cyclo Chemical Co., Los Angeles, Calif.; Kunitz pancreatic trypsin inhibitor (grade PSIF) and soybean trypsin inhibitor (grade SI) from Worthington Biochemical Corp., Freehold, N. J.; ε-aminocaproic acid from Fluka AG, Basel, Switzerland; streptokinase, 10,000 U per vial, lot no. 10024, manufactured by A. B. Kabi, Stockholm, Sweden; polybrene (hexadimethrine bromide) and urea, 200,000 U/vial from Abbott Laboratories, North Chicago, Ill.; dithiothreitol (DTT) from Calbiochem, San Diego, Calif.; sodium dodecyl sulfate (SDS) from Sigma Chemical Co., St. Louis, Mo.

Human plasma α-macroglobulin was prepared from venous blood freshly collected from normal individuals into plastic containers to minimize activation of Hageman factor (Factor XII). The plasma was harvested after centrifugation at 2000 g for 15 min at 4°C. The anticoagulant used contained soybean trypsin inhibitor (0.5 mg/ml of 3.8% sodium citrate), unless subsequent incubation with plasminogen activators was planned. For these latter experiments plasma was incubated with urokinase at a final concentration of 100 U or 500 U/ml, or with streptokinase, 500 U/ml, for 1 h at 37°C, before the addition of soybean trypsin inhibitor to a final concentration of 0.1 mg/ml. Soybean trypsin inhibitor in this concentration was also added to buffers used in the chromatographic procedures. In some preparations, Polybrene (25 μg/ml, final concentration), an inhibitor of Hageman factor activation (19), or 0.1 M ε-aminocaproic acid in addition to soybean trypsin inhibitor was added to the anticoagulant and subsequent buffers.

α-Macroglobulin was prepared from these plasma samples by the following procedures, described previously in detail (7). After initial adsorption with barium chloride and barium sulfate, and precipitation with polyethylene glycol, the preparation was subjected to gel filtration chromatography and Pevikon block electrophoresis (Kema Nord, Stockholm, Sweden). The final product, by immunoelectrophoretic analysis, formed a single precipitin arc against rabbit or human whole antiserum (20) and was identified as α-macroglobulin using specific antisera.

The human fibrinogen used had been rendered plasminogen-free by precipitation (21) and was further purified by DEAE-cellulose column chromatography (22). The final material was more than 99% coagulable and showed no signs of degradation after 48 h of incubation at 37°C in the presence of urokinase as assessed by SDS-polyacrylamide gel electrophoresis.

Plasmin, spontaneously activated in 50% glycerol, containing 77 caseinolytic U/ml (23), was obtained from the Michigan Department of Public Health, Lansing, Mich. Plasmin was also prepared by urokinase-induced activation of plasminogen prepared by affinity chromatography (24), and provided by Dr. Alan Johnson, New York University School of Medicine.

Antisera against human α-macroglobulin, and plasminogen, and serum prepared in rabbits were obtained from Behring Diagnostics, Inc., subsidiary of American Hoechst Corporation, Woodbury, N. Y. Immunoochemical quantitation of α-macroglobulin preparations was performed by single diffusion analysis (25), using plates obtained from Hyland Div., Travenol Laboratories, Inc., Costa Mesa, Calif. The IgG fraction of rabbit antihuman α-macroglobulin containing 5.5 mg antibody/ml (Lot JA23032) was provided by Miles Laboratories, Inc., Miles Research Div., Kankakee, Ill.

Esterolytic assays using different amino acid methyl ester substrates at a final concentration of 0.015 M were carried out as previously described (26).

Fibrinogen and the various purified α-macroglobulin preparations were incubated at 37°C in the concentrations detailed in the figure legends. Portions of the incubation mixtures were removed at intervals and heated for 10 min at 56–61°C to precipitate the fibrinogen, which was then dissolved and reduced in a solution of 10 M urea, 1% SDS and 14 mM DTT for 45 min at 37°C. Alternatively, the incubation mixture was added to this solution directly. The samples were analyzed by SDS-polyacrylamide gel electrophoresis (9% gels) as described by Weber and Osborn and were stained with coomassie brilliant blue (27). Comparison of fibrinogen chains prepared from the heat

2176 P. C. Harpeli and M. W. Mosesson
precipitate or from the whole mixture showed no appreciable qualitative or quantitative differences. Although there was no overlap between the α_2-macroglobulin preparations and the intact α_2-, β_2-, and γ-chain positions of fibrinogen, it was convenient for gel scanning and rendering fibrinogen subunit chains more prominent to separate the fibrinogen from most of the other materials in the mixture by heat precipitation. Densitometric scans of gels were carried out in a Gilford model 240 spectrophotometer, equipped with a gel scanning attachment (Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a Densicord recorder equipped with an integrator (Photovolt Corp., New York City).

Electroimmunoassay of the α_2-macroglobulin preparations was performed in agarose gels containing plasminogen antiserum (1% vol/vol) at 40 V/cm for 1 h as described by Laurell (28, 29) and as applied to the plasmin-rich α_2-macroglobulin preparations by Nilén and Ganrot (30).

Quantitation of the fibrinogenolytic activity of α_2-macroglobulin preparations. Approximate quantitative estimates of the fibrinogenolytic activity of α_2-macroglobulin preparations were made from comparison of the degree of hydrolysis of fibrinogen rendered by known amounts of plasmin and of α_2-macroglobulin. The means selected for achieving this estimate was comparison of the band pattern of SDS-polyacrylamide gels of samples from fibrinogen digests. In these comparisons, the time required to reach a selected degradation pattern was noted (viz. time for plasmin versus time for α_2-macroglobulin). The results were then converted to caseinolytic units per milligram of α_2-macroglobulin by extrapolation. For example, if plasmin at a concentration of 1×10^{-8} caseinolytic U/ml required 15 min to achieve a given gel pattern of degradation, and α_2-macroglobulin required 24 h to achieve the same degree of degradation, the caseinolytic activity of the α_2-macroglobulin-enzyme complex was approximately 1×10^{-4} caseinolytic U/mg α_2-macroglobulin.

Immunoprecipitation studies were performed by adding 6 mg of the IgG fraction of α_2-macroglobulin antiserum to an equal amount of α_2-macroglobulin from urokinase-treated plasma (500 U/ml plasma), or adding 0.15 M NaCl to the α_2-macroglobulin control in place of the antibody prepa-

RESULTS

The effect of urokinase and streptokinase on the TAME esterase activity associated with human plasma α_2-macroglobulin (Table 1). α_2-Macroglobulin, prepared from platelet-poor human plasma, processed entirely in plastic containers in the presence of soybean trypsin inhibitor, was associated with a low level of TAME esterolytic activity, a finding previously reported (7) and extended in this study to include those processed in the presence of Polybrene or ϵ-amino- caproic acid, α_2-Macroglobulin purified from plasma

<table>
<thead>
<tr>
<th>Table I</th>
<th>The TAME Esterase Activity of Human Plasma α_2-Macroglobulin Prepared from Plasma Incubated with Urokinase (UK) and Streptokinase (SK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2-Macroglobulin prepared from plasma incubated with:*</td>
<td>TAME esterase activity‡</td>
</tr>
<tr>
<td></td>
<td>µmol hydrolyzed/mg α_2 M/h</td>
</tr>
<tr>
<td></td>
<td>Pancreatic</td>
</tr>
<tr>
<td></td>
<td>No trypsin inhibitor</td>
</tr>
<tr>
<td>Buffer</td>
<td>0.5</td>
</tr>
<tr>
<td>100 U UK/ml plasma</td>
<td>7.3</td>
</tr>
<tr>
<td>500 U UK/ml plasma</td>
<td>20.0</td>
</tr>
<tr>
<td>500 U SK/ml plasma</td>
<td>19.6</td>
</tr>
</tbody>
</table>

* The α_2-macroglobulin was prepared as described in Methods. ‡ The TAME esterase activity of the α_2-macroglobulin preparations was measured in the presence and absence of pancreatic trypsin inhibitor (100 µg/ml, final concentration). Plasmin (two preparations), under the conditions of this experiment, hydrolyzed 28.2 µmol TAME/caseinolytic U/h; this activity was completely inhibited by pancreatic trypsin inhibitor.

preincubated with urokinase possessed greatly enhanced TAME esterase activity and the increase in activity was commensurate with the final concentration of urokinase. A plasma urokinase concentration of 100 U/ml resulted in a 15-fold increase in TAME esterase activity, whereas α_2-macroglobulin obtained from plasma incubated with 500 U urokinase/ml demonstrated a 40-fold increase in activity. The possibility that the esterolytic activity associated with the α_2-macroglobulin from urokinase-treated plasma was due to an α_2-macroglobulin-urokinase complex was eliminated by the following control experiment. A 10-min incubation mixture of α_2-macroglobulin purified from untreated plasma (6.5 mg) and urokinase (500 U) was applied to a Sephadex G-75 column (Pharmacia Fine Chemicals, Inc., Piscataway, N. J.). The TAME esterase activity of the α_2-macroglobulin fractions was identical to the activity of the control α_2-macroglobulin preparation. The TAME esterase peak associated with the urokinase preparation was completely separated from the α_2-macroglobulin fractions by this procedure. Streptokinase, which has no intrinsic esterase activity, produced an enhancement in α_2-macroglobulin-associated esterase activity similar to that obtained after the addition of urokinase to plasma. Though pancreatic trypsin inhibitor (100 µg/ml) completely inhibited the TAME esterase activity of plasmin, it failed to inhibit the esterolytic activity of α_2-macroglobulin preparations studied. Soybean trypsin inhibitor was equally ineffective.

The hydrolysis of substituted arginine and lysine methyl esters by plasmin, by an α_2-macroglobulin-plas-
min complex, and by α2-macroglobulin prepared from urokinase-treated plasma (Table II). Amino acid esters were employed as substrates to identify the enzyme associated with α2-macroglobulin prepared from urokinase-treated plasma, because previous studies had

Figure 1 Immunoelectrophoretic pattern of α2-macroglobulin (α2-M) from urokinase-treated plasma (12 mg/ml, upper slide) diffused against human plasminogen or α2-macroglobulin antibody. The immunoelectrophoretic pattern of human plasminogen or urokinase-activated plasmin is shown in the lower slide. The anode is to the right.

Figure 2 The binding of plasmin to α2-macroglobulin as determined by the ability of increasing concentrations of α2-macroglobulin to protect the TAME esterase activity of a constant concentration of plasmin from inhibition by soybean trypsin inhibitor. Dilutions of α2-macroglobulin were added to human plasmin (0.2 caseinolytic U). After 1 min preincubation, 100 µg soybean trypsin inhibitor was added, and the mixture was incubated with TAME. The data in the upper graph are plotted to indicate the capacity of α2-macroglobulin to protect bound plasmin against inhibition by soybean trypsin inhibitor. The data in the lower graph are plotted to indicate the specific activity of α2-macroglobulin.

suggested that proteolytic enzymes could be identified by the rates at which they catalyze the hydrolysis of different synthetic esters (31–33). α2-Macroglobulin prepared from urokinase-treated plasma had a hydrolytic profile similar, but not identical, to that found for the α2-macroglobulin-plasmin complex, suggesting that plasmin or plasmin-like activity was bound to this α2-macroglobulin. On the other hand, though the observed ratio of the plasmin-catalyzed hydrolysis of BAME, ALMe, and AGLMe relative to that of TAME was characteristic for the free enzyme (32), the profile differed markedly from that of the α2-macroglobulin-plasmin complex. This was clearly apparent in the impaired ability of the complex to hydrolyze BAME, ALMe, and AGLMe, and on this basis, permits the conclusion that plasmin bound to α2-macroglobulin has an altered substrate specificity.

Table II

<table>
<thead>
<tr>
<th>Substrate*</th>
<th>Plasmin†</th>
<th>α2M-plasmin complex‡</th>
<th>α2M from UK-treated plasma§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µmol/ml/h</td>
<td>ratio</td>
<td>µmol/ml/h</td>
</tr>
<tr>
<td>TAMe</td>
<td>3.34</td>
<td>1.0</td>
<td>3.94</td>
</tr>
<tr>
<td>BAME</td>
<td>5.43</td>
<td>1.6</td>
<td>2.64</td>
</tr>
<tr>
<td>ALMe</td>
<td>10.28</td>
<td>3.1</td>
<td>5.10</td>
</tr>
<tr>
<td>AGLMe</td>
<td>18.32</td>
<td>5.5</td>
<td>15.30</td>
</tr>
</tbody>
</table>

* The incubation mixture contained one of the following substrates in a final concentration of 0.015 M: TAMe, BAME, ALMe, and AGLMe. Hydrolysis rates shown are the means of duplicate analyses. The ratios of these rates relative to that of TAME are listed.
† 0.1 ml plasmin (2.0 caseinolytic U/ml) was added to 2.2 ml 0.1 M phosphate buffer, pH 7.6, containing 0.015 M of each of the substrates and the hydrolysis rates measured.
‡ 0.1 mg purified α2-macroglobulin from untreated plasma in a volume of 0.01 ml was preincubated for 1 min at 37°C with 0.01 ml plasmin (20 caseinolytic U/ml). 100 µg soybean trypsin inhibitor in 0.1 ml phosphate buffer was then added to inhibit residual plasmin not bound to α2-macroglobulin. The mixture was made to a final volume of 2.3 ml as above, and then was assayed for esterolytic activity.
§ 0.1 ml α2-macroglobulin (0.3 mg) from plasma incubated with 500 U urokinase/ml was added to 2.2 ml phosphate buffer containing the ester substrates.
plasminogen or urokinase-activated plasmin produced precipitin arcs similar to those described previously (34) (Fig. 1, lower slide) but differing in their electrophoretic mobilities from the α-M preparations. Since the antigenic properties of plasmin and plasminogen are the same (34), these findings suggest that in the samples tested, plasmin is complexed with α-macroglobulin and is the enzyme responsible for the esterolytic activity demonstrated in Table I.

Electroimmunoassay utilizing agarose gel containing plasminogen antibody (28-30) confirmed the presence of a plasmin-related antigen in α-M preparations from urokinase-treated plasma and permitted a semi-quantitative analysis of the lower limit of detectability of such an antigen by this technique. The lowest concentration of this α-M sample that formed an immunoprecipitate was 0.6 mg/ml (20-fold dilution of the sample shown in Fig. 1). Though α-M from untreated plasma failed to show immunoreactivity in this system at a protein concentration as high as 18 mg/ml, the 40-fold difference in the TAME esterase activity (Table I) suggested that the enzymic activity in the untreated α-M sample, even if attributable to plasmin, was too low to have been identified by this immunochemical method.

The binding capacity of α-M for human plasmin (Fig. 2). The residual TAME esterase activity of a mixture of α-M and plasmin, after the addition of plasmin inhibitors (e.g., pancreatic or soybean trypsin inhibitor) reflects the plasmin that has been bound to α-M and thereby protected from inhibition (3). Since the addition of α-M to plasmin does not inhibit its TAME esterase activity (Table II), such activity in the presence of a plasmin inhibitor can be used to measure α-M-bound plasmin directly.

Based upon these considerations, the following experimental design was employed. After an incubation period of 1 min to allow for complex formation between α-M and plasmin, soybean trypsin inhibitor was added. By comparison of specific activity (Fig. 2, lower graph) and esterase activity (Fig. 2, upper graph), it was evident that the lower concentrations of α-M bound plasmin maximally. Since 1 caseinolytic U of plasmin catalyzed the hydrolysis of 28.2 μmol TAME/h (Table I), it can be calculated that, under these conditions, 1 mg of the α-M preparation bound approximately 1 caseinolytic U of plasmin. If we assume that the TAME esterase activity of α-M preparations from urokinase- or streptokinase-treated plasma was due to plasmin or a plasmin-like enzyme, similar calculations may be made. Therefore α-M from plasma incubated with 100 U urokinase/ml bound approximately 0.2 caseinolytic U/mg α-M, whereas α-M prepared from plasma incubated with 500 U urokinase or streptokinase/ml bound 0.7 caseinolytic U/mg.

Degradation of fibrinogen by α-M preparations (Figs. 3 and 4). The ability of α-Macroglobin...
of fibrinogen assessed by preparations of determination inhibitor, purified those of scans by periodic (KPTI) was induced from U), caseinolytic 24- (UK) was incubated at 37°C with human plasmin (0.07 caseinolytic U), or with a2-macroglobulin (4.8 mg) prepared from urokinase-treated plasma. Samples were taken at 24 h. The gels referred to in the text are numbered from left to right.

Figure 4 Sequential changes in the Aa- and Bβ-chains of fibrinogen induced by a2-macroglobulin preparations as assessed by densitometric scans. The data are derived from scans of gels 1-6 of Fig. 3 and the corresponding 48-h samples. The ratios of the areas under the Aa- and Bβ-position, respectively, to that of the γ-chain position is expressed as percent of the ratio found at time 0.

Figure 5 SDS-polyacrylamide gel electrophoresis of subunit chains of heat-precipitated fibrinogen after incubation with a2-macroglobulin prepared from plasma treated with 500 U urokinase/ml. Fibrinogen (1.6 mg/ml) in the presence or absence of Kunitz pancreatic trypsin inhibitor (KPTI) was incubated at 37°C with human plasmin (0.07 caseinolytic U), or with a2-macroglobulin (4.8 mg) prepared from urokinase-treated plasma. Samples were taken at 24 h. The gels referred to in the text are numbered from left to right.

The earliest and ultimately most extensive change was depletion of the intact Aa-chain position. Accompanying this, but at a slower rate (clearly evident in the densitometric scans) was a depletion of the intact Bβ-chain position and the appearance of a Bβ-chain derivative, termed /β-1 (36), which appeared in more extensively degraded samples (e.g., Fig. 3, gels 6-8). The /β-1 chain migrates in a position intermediate to that of intact Bβ- and γ-chains (12, 15, 37). Since this chain was often indistinct or not well resolved by the densitometric scan, its scan area was included in computation of the “intact” Bβ-chain position. Thus, the calculation of depletion of the Bβ-position in 24- and 48-h samples of urokinase- or streptokinase-treated a2-macroglobulin was somewhat underestimated.

Compared with the proteolytic activity of a2-macroglobulin from plasma, a far more extensive degradation of fibrinogen structure occurred in a2-macroglobulin obtained from urokinase- or streptokinase-treated plasma. The fibrinogenolytic activity of the a2-macroglobulin from urokinase-treated plasma (100 or 500 U/ml) was commensurate with the amount of urokinase added. Fibrinogen incubated with buffer or with urokinase alone showed no appreciable change in its subunit structure under the same experimental conditions, indicating that the structural changes that did occur were attributable solely to the proteolytic activity associated with the a2-macroglobulin. Incubation of the a2-macroglobulin preparations with urokinase failed to enhance their fibrinogenolytic activity, demonstrating the absence of detectable plasminogen.

To express the fibrinogenolytic potential of a2-macroglobulin preparations in quantitative terms, a comparison was made between a selected degree of fibrinogen degradation catalyzed by known amounts of free plasmin and by a2-macroglobulin. The time required to achieve that degree of degradation (viz., time for plasmin compared with time for a2-macroglobulin) was converted to caseinolytic units by direct extrapolation. The results indicated that each milligram of a2-macroglobulin obtained from untreated plasma had the fibrinogenolytic activity of approximately 10^4 caseinolytic U. Compared to this preparation, a2-macroglobulin from urokinase-
treated plasma had an activity 3–5 times greater. In comparison with the amount of plasmin estimated to be bound to this preparation (i.e., 0.7 caseinolytic U/mg α-macroglobulin), the fibrinolytic potential of bound plasmin had been reduced to less than 0.1% of that of an equivalent amount of the free enzyme.

The effect of pancreatic trypsin inhibitor and e-aminocaproic acid on the proteolysis of fibrinogen by plasmin or by α-macroglobulin-enzyme complexes (Fig. 5). Incubation of plasmin (0.07 caseinolytic U/ml) with fibrinogen resulted in extensive degradation of the subunit chains of fibrinogen within 10 min at 37°C (not shown). Pancreatic trypsin inhibitor (20 μg/ml) added to fibrinogen effectively inhibited this reaction as assessed by the 24-h sample (Fig. 5, gel 1). In sharp contrast, α-macroglobulin from urokinase-treated plasma caused extensive degradation of fibrinogen chains even in the presence of pancreatic trypsin inhibitor (gels 2, 3, and 4), though the preparations containing the inhibitor were somewhat less degraded. Thus, pancreatic trypsin inhibitor had only a slight effect in modifying the proteolytic activity of α-macroglobulin complexes. Parallel studies with e-aminocaproic acid at concentrations of 0.1 M confirmed previous observations (38) that this agent is not an effective inhibitor of plasmin. Consistent with this, α-macroglobulin-mediated degradation of fibrinogen was also not effectively inhibited by e-aminocaproic acid.

The effect of immunoprecipitation upon the fibrinogenolytic activity associated with α-macroglobulin preparations (Fig. 6). To provide even stronger evidence that all detectable fibrinogenolytic activity was closely associated with α-macroglobulin, the relationship of α-macroglobulin to its proteolytic activity was further explored by immunoprecipitation. An IgG fraction, itself possessing no antiplasmin activity as demonstrated by a fibrinolytic assay (39), having antibody specific for α-macroglobulin, was added in optimal amounts (40) to the α-macroglobulin prepared from urokinase-treated plasma. After removal of the precipitate which formed after an 18-h incubation at 4°C, the supernatant fluid contained no detectable α-macroglobulin as determined by electroimmunoanalysis (28). In contrast to the extensive fragmentation of fibrinogen rendered by the α-macroglobulin starting material, the supernatant fluid, depleted of α-macroglobulin, had lost its fibrinogenolytic potential as well.

DISCUSSION

The present study has demonstrated that human plasma α-macroglobulin preparations induce a time-dependent degradation in the subunit chains of fibrinogen. During this degradation certain species form whose structure resembles that of circulating fibrinogen catabolites; the sequence of degradation is similar to that observed in plasmin-catalyzed digests, in that Aα-chain fragmentation precedes that of Bβ-chain (12, 14–18). All α-macroglobulin preparations were capable of degrading fibrinogen, although those prepared from urokinase- or streptokinase-treated plasma had several times the fibrinogenolytic activity of the untreated control. The increase in the fibrinogenolytic activity associated with α-macroglobulin from urokinase- or streptokinase-treated plasma compared with the increase in TAME esterase activity (viz., 3–5-fold vs. 40-fold, respectively), illustrated that only a small proportion of bound enzyme was expressed as proteolytic activity. Quantitation of the inhibition of the fibrinogenolytic activity of plasmin after complex formation with α-macroglobulin in plasma was possible, because mixing experiments established that α-macroglobulin failed to inhibit the TAME esterase activity of plasmin. Therefore the TAME esterase activity of α-macroglobulin preparations from plasma treated with urokinase was a direct reflection of the amount of plasmin bound to the inhibitor. By converting the TAME activity to caseinolytic units plasmin, it could be calculated that 0.7 caseinolytic U of plasmin were bound/mg α-macro-

![Figure 6 SDS-polyacrylamide gel electrophoresis of subunit chains of heat-precipitated fibrinogen after incubation with an antibody-absorbed α-macroglobulin preparation prepared from plasma treated with 500 U urokinase/ml, or with this preparation in the absence of immunoprecipitation. The electrophoretic patterns of samples taken at 48 h are shown in this figure.](image-url)
globulin from urokinase-treated plasma (500 U urokinase/ml plasma). Less than 0.1% of this plasmin was expressed as fibrinogenolytic activity. These data provide in quantitative terms a confirmation of the conclusion drawn by several previous investigators, that α-macroglobulin is a more effective inhibitor of proteolytic than of esterolytic activity (3, 4, 17). Thus, these studies suggest that in addition to the major role of α-macroglobulin as an inhibitor of plasmin, this protein also may function as a preserver of a portion of the proteolytic activity of the bound enzyme.

Our finding that α-macroglobulin preparations possess both fibrinogenolytic and esterolytic activities implies that these activities exist in plasma. It seems less likely that a substantial proportion of the observed activity was generated after blood collection, since the procedures of purification were performed under conditions designed to minimize proteolytic enzyme activation. Furthermore, the addition of plasminogen activators to plasma induces an increase in the TAME esterase and in the fibrinogenolytic activity complexed to α-macroglobulin subsequently purified from this plasma. This indicates that a portion of the activity of the complex is preserved and can be increased in the presence of other plasma proteolytic enzyme inhibitors. The additional fact that the enzymic activities associated with α-macroglobulin cannot be effectively inhibited by pancreatic trypsin inhibitor supports the concept that α-macroglobulin-enzyme complexes provide one mechanism by which enzymic activity can be expressed in vivo. This concept has special relevance in view of the demonstration of the existence of a physiologic fibrinogenolytic catabolic pathway that accounts for a major proportion of fibrinogen turnover (12, 13). The relative contribution of this potential pathway for the production of fibrinogen catabolites as compared with other possible pathways, such as the direct action of plasmin on circulating fibrinogen, has not been explored.

Several methods were used to characterize the enzymic activity associated with α-macroglobulin from urokinase-treated plasma. The first was based on studies (31–33) that showed that proteolytic enzymes such as trypsin, plasmin, kallikrein, and thrombin differ in their relative abilities to hydrolyze various synthetic ester substrates, thus enabling them to be identified by their hydrolytic profile. In this study the ratios of hydrolysis of the substrates BAMe, ALMe, and AGLMe relative to TAME by α-macroglobulin were similar to those of an α-macroglobulin-plasmin complex prepared in vitro, but dissimilar to those of free plasmin. This finding for plasmin is analogous to the reduction in the capacity to hydrolyze low molecular weight substrates observed when α-macroglobulin is added to trypsin (41–43), kallikrein (7), or cationic aspartate aminotransferase (44). The modification of enzymic hydrolysis of synthetic substrates resulting from the presence of α-macroglobulin underscores the difficulty in identifying proteolytic enzymes by their hydrolytic profile in complex biological fluids. Such identifications are based upon the assumption, shown here to be invalid for plasmin, that the substrate specificity of the enzyme is retained in a plasma or serum environment.

Immunoelectrophoretic analysis demonstrated that a plasmin-related antigen was complexed to α-macroglobulin from urokinase-treated plasma. In contrast, plasmin-related antigen could not be identified in α-macroglobulin from untreated plasma. The TAME esterase activity of this preparation was so low, relative to that of α-macroglobulin from urokinase-treated plasma, that even if the activity were due to plasmin, it could not have been detected by this method.

Binding of plasmin by α-macroglobulin in vivo has been suggested by the observation of a decrease in plasma α-macroglobulin concentration after streptokinase (30, 45, 46) and urokinase (46, 47) infusion. Nilén and Ganrot (30) have shown the formation of an α-macroglobulin-plasmin complex after streptokinase infusion by immunochemical techniques. These results have been extended in the present study by the demonstration that the addition of urokinase or streptokinase to plasma resulted in enhanced fibrinogenolytic and esterolytic activity associated with the α-macroglobulin ultimately purified from this incubation mixture, and by the subsequent identification, as outlined, of the enzyme responsible for this activity as plasmin.

The data from this study strongly suggest that α-macroglobulin-enzyme complexes possess fibrinogenolytic activity that cannot be due to free enzyme. This proteolytic activity is closely associated with the high molecular weight complex itself, as evidenced by the observation that pancreatic trypsin inhibitor, when added to fibrinogen, completely inhibited the proteolytic activity of free plasmin but failed to prevent the degradation of fibrinogen by the α-macroglobulin preparations. Furthermore, immunoprecipitation of α-macroglobulin by specific antiserum removed the α-macroglobulin and its fibrinogenolytic activity. Several other investigators have concluded that α-macroglobulin-enzyme complexes produced their proteolytic effect by a dissociation of the enzyme from the complex (30, 48–50). These experiments, however, were not designed to test whether the observed activity was due to dissociation, or as has been demonstrated in this study, due to the complex itself, which protects the bound enzyme from plasmin inhibitors.

The identification of α-macroglobulin as an enzyme-binding protein with the potential for mediating fibrinogen catabolism suggests that this protein may regulate
other proteolytic enzyme systems as well. Support for this idea has been provided by McConnell (9) and by Dyce, Wong, Adham, Mehl, and Haverback (51), who have identified an α-macroglobulin fraction possessing kallikrein-like activity, and by Rinderknecht and Geo-
kas (52), who have suggested that an α-macroglobulin fraction prepared from serum possessed clotting ac-
tivity. Thus, α-macroglobulin may modulate enzyme-
substrate interactions not only by its well-established
function as an inhibitor of proteolytic activity, but also
by providing a mechanism for the preservation and
protection of a portion of the biologic activity of an
enzyme in the presence of circulating inhibitors.

ACKNOWLEDGMENTS

These studies were performed with the skilled technical
assistance of Mr. Tsun-San Chang, Mrs. Ruth A. Um Ef le t, and
Mrs. Angela Howard. We are indebted to Dr. Ralph
Nachman for his review of this manuscript.

This study was supported by U. S. Public Health Service
grants NB-03346, HL-13993, HL-14810, and HL-11409.

REFERENCES

1. Schultz, H. E., N. Heimburger, K. Heide, H. Haupt,
K. Störiko, and H. G. Schwick. 1963. Preparation and
characterization of α-trypsin inhibitor and α-plasmin
inhibitor of human serum. Proceedings 9th Congress
European Society Haematology, Lisbon. S. Karger AG,
Basel, Switzerland. 1315 (Abstr.).

In Protides of the Biological Fluids. H. Peeters, editor.

3. Ganrot, P. O. 1967. Inhibition of plasmin activity by α-

4. Lanchantin, G. F., M. L. Plesset, J. A. Friedmann, and
D. W. Hart. 1966. Dissociation of esterolytic and clot-
ting activities of thrombin by trypsin-binding macro-

anti-protéase de l'α-macroglobuline. II. Son rôle d'anti-
179.

of radioactive human prothrombin. Fed. Proc. 27: 628,
2321 (Abstr.).

132: 329.

antecedent from kallikrein by the plasma α2-macro-
globulin, kallikrein inhibitor. J. Clin. Invest. 50:
2084.

and properties of human fibrinogen of relatively high
solubility. Biochemistry. 5: 2820.

11. Mosesson, M. W., N. Alkjaersig, B. Sweet, and S.
Sherry. 1967. Human fibrinogen of relatively high solu-
bility. Comparative biophysical, biochemical, and bio-
logical studies with fibrinogen of lower solubility. Bio-
chemistry. 6: 3279.

12. Mosesson, M. W., J. S. Finlayson, R. A. Umfleet, and
I. Structural and related studies of plasma fibrinogens
which are high solubility catabolic intermediates. J.

In vivo transformation between fibrinogens of varying
ethanol solubilities: a pathway of fibrinogen catabolism.

mn fibrinogen: possible relation to proteolysis by throm-
bin and plasmin as studied by SDS-polyacrylamide gel
206.

McKee. 1972. The effect of plasmin on the subunit
structure of human fibrinogen. J. Biol. Chem. 247:
636.

Isolation and characterization of the clottable low molec-
ular weight fibrinogen derived by limited plasmin hy-
drolysis of human fraction I-4. Biochemistry. 8:
1515.

of human fibrinogen suggested by its plasmin degrada-

of human fibrinogen. I. Structural characterization
of degradation products. Biochem. Biophys. Acta. 263:
631.

Invest. 47: 1172.

20. Scheidegger, J. J. 1955. Une micro-méthode de l'im-
munno-électrophorèse. Int. Arch. Allergy Appl. Immuno-
log 7: 103.

57: 204.

22. Mosesson, M. W., and J. S. Finlayson. 1963. Subfrac-
tions of human fibrinogen. Preparation and analysis.

23. Sgouris, J. T., J. K. Inman, K. B. McCall, L. A. Hynd-
fibrinolysin (plasmin). Vox Sang. 5: 357.

25. Mancini, G., J. F. Vaerman, A. O. Carbonara, and
for immunological quantitation of proteins. In Protides
of the Biological Fluids. H. Peeters, editor. Elsevier,

for the measurement of serum Cl inactivator using the
substrate Nα-acetyl-L-lysine methyl ester. J. Immu-
noal. 104: 1024.

molecular weight determinations by dodecyl sulfate-
polyacrylamide gel electrophoresis. J. Biol. Chem.
244: 4406.

by electrophoresis in agarose gel-containing antibodies.
Anal. Biochem. 15: 45.

Lab. Invest. 29:(Suppl. 124) 21.

Fibrinogen Degradation by α-Macroglobulin 2183