Limited Binding Capacity Sites for L-Triiodothyronine in Rat Liver Nuclei

NUCLEAR-CYTOPLASMIC INTERRELATION, BINDING CONSTANTS, AND CROSS-REACTIVITY WITH L-THYROXINE

JACK H. OPPENHEIMER, HAROLD L. SCHWARTZ, DIONA KOERNER, and MARTIN I. SURKS

From the Endocrine Research Laboratory, Division of Endocrinology, Department of Medicine, Montefiore Hospital and Medical Center and the Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10467

ABSTRACT Further studies have been performed to define the kinetic characteristics of nuclear triiodothyronine (T3) binding sites in rat liver (J. Clin. Endocrinol. Metab. 1972. 35: 330). Sequential determination of labeled T3 associated with nuclei and cytoplasm over a 4-h period allowed analysis of the relationship of T3 in nuclear and cytoplasmic compartments. A rapid interchange of hormone between nuclei and cytoplasm was demonstrated, and in vitro incubation experiments with nuclei yielded no evidence favoring metabolic transformation of T3 by the nuclei. In vivo displacement experiments were performed by subcellular fractionation of liver 3 h after injection of [125I]T3 with increasing quantities of unlabeled T3. The nuclear binding capacity for T3 could be defined (0.52 ng/mg DNA). Analysis of these experiments also allowed an estimation of the association constant of nuclear sites for T3 (4.7 × 10^9 M^-1). The affinity of these sites for T3 was estimated to be 20–40 fold greater than for thyroxine (T4). Chromatographic analysis of the nuclear radioactivity after injection of labeled T3 indicated that the binding of T3 by the nucleus could not be attributed to in vivo conversion of T3 to T4 but reflected intrinsic cross-reactivity of the two iodothyronines at the nuclear binding sites.

INTRODUCTION

We have previously demonstrated limited capacity nuclear binding sites for L-triiodothyronine (T3) in rat liver and kidney nuclei (1). Our findings were based on in vivo displacement studies and suggested a high degree of specificity for T3, since thyroxine (T4) appeared to be much less avidly bound to nuclei and the degree of displacement of radioactive T3 by nonradioactive T4 was far less pronounced than in the case of T3. Since Tata and Widnell (2) had previously shown that pulse injection of T3 into thyroidectomized rats stimulates nuclear RNA metabolism before biochemical changes in other subcellular fractions, the finding of limited capacity nuclear sites suggested to us the possibility that such sites might represent hormonal "receptors" responsible for the initiation of the hormonal message. Accordingly, we initiated a series of studies designed to explore the nature and significance of these sites in greater detail. In the present communication, we have addressed ourselves to the following quantitative and kinetic problems: (a) the compartmental relationship between T3 in nuclei and T3 in cytoplasm of liver cells; (b) measurement of the nuclear binding capacity of T3 per gram of liver; and (c) the extent of cross-reactivity of these sites between T3 and T4.

METHODS

The methods for measuring nuclear binding have been briefly reported in our previous communication (1). As

Dr. Surks is the recipient of a National Institutes of Health Research Career Development Award, KO 4AM 19502-01 A1.

Received for publication 19 March 1973 and in revised form 15 June 1973.

The Journal of Clinical Investigation Volume 53 March 1974 768–777
indicated above, this technique depends upon displacement of $[^{131}I]T_3$ by nonradioactive T_3 in vivo. Male Sprague-Dawley rats weighing between 150 and 250 g were obtained from Carworth Div., Becton, Dickinson & Co., New City, N. Y., and were maintained on a Wayne Lab Rat diet (1 µg 1/g) (Wayne Kerr Lab Ltd., Chessington, Surrey, England). Animals were used within 2 wk of shipment. Rats were injected through the tail vein with isotopic and nonisotopic iodothyronines in a 1% albumin solution. $[^{131}I]T_3$ (sp act approximately 60–80 µCi/µg) and $[^{131}I]T_4$ (sp act approximately 60–80 µCi/µg) were obtained from Abbott Laboratories (North Chicago, Ill.). Nonradioactive T_3 and T_4 were obtained from Mann Research Labs, Inc., New York. Unless otherwise indicated, animals were killed 30 min after injection by exsanguination under light ether. Blood was obtained from the abdominal aorta, after which the liver was removed, blotted, and processed at 0°C. Approximately 4 g of liver was weighed and homogenized in 3.0 vol of 0.32 M sucrose containing 2 mM MgCl$_2$ in a mechanically driven Teflon pestle. The homogenate was brought to 10 vol of 0.32 M sucrose and centrifuged at 700g for 10 min. The 700g pellet was resuspended in 2.4 M sucrose and subjected to an additional centrifugation at 28,000g for 45 min in a Spinco 40 rotor (Beckman Instruments, Inc., Spinco Div., Palo Alto, Calif.) (3). The purity of the nuclear preparations was checked by electron and phase microscopy. Radioactive measurements were made in a Packard automatic well scintillation counter with standard techniques with a statistical counting error of less than 5% (Packard Instrument Co., Inc., Downer's Grove, Ill.). In the case of T_3, chromatographic studies indicated that in the time interval studied, over 95% of the radioactivity in both the total liver homogenate and the purified nuclear pellet was in the form of T_3. After injection of T_3, the nuclei selectively bound the small quantity of radioactive T_3 derived both from the in vivo T_3 to T_4 conversion (4) and the trace contamination (up to 2% of total radioactivity) in the doses of radioactive T_3 used (5). The problem created by the selective retention of T_3 by nuclei will be discussed in detail in the Results section. Ethanolic extract of liver homogenate and nuclear pellets were subjected to paper chromatography in t-amyl alcohol: 2 N ammonium: hexane (6). Plasma samples were precipitated with trichloroacetic acid to remove radiiodide. DNA determinations on total liver homogenate and nuclear pellets were performed according to the method of Burton (7). Plasma T_3 in a group of normal rats was measured by radioimmunoassay (8). In order to assess the possibility that nuclei can metabolize T_3, liver nuclei were incubated for 1 h at 37°C with tracer $[^{131}I]T_3$ in a Tris buffer (pH 7.4) containing 1 mM MgCl$_2$, 10$^{-3}$ M ATP, and a NADPH-generating system of 10$^{-4}$ M NADH, 0.1 M glucose-6-phosphate, and glucose-6-phosphate dehydrogenase. Calculations used in the analysis will be discussed in conjunction with the results of individual experiments.

RESULTS

Compartmental relationship between T_3 in the nucleus and T_3 in the cytoplasm. Previous studies have indicated that T_3 is bound to nuclear constituents by noncovalent linkage, since the hormone can be easily extracted with ethanol. It was not clear, however, whether in the cell nuclear T_3 is readily exchangeable with T_3 in the cytoplasm (=extranuclear cellular T_3) under in vivo conditions. In an effort to answer this question, we analyzed the concentration of $[^{131}I]T_3$ in the nucleus and cytoplasm (=homogeneous radioactivity—nuclear radioactivity) in livers of animals killed 5 min, 15 min, 30 min, 1.5 h, 2.5 h, and 4 h after the injection of tracer hormone. Four animals were used at each time point. Paper chromatography of ethanolic extracts of nuclear pellets and total liver homogenates indicated that over 95% of the radioactivity was in the form of T_3. The dose of T_3 injected (3.85 ng T_3/100 g body wt) was determined to be in the true tracer range by establishing that smaller quantities of hormone injected produced identical distribution of radioactivity among plasma, liver, and nuclei. The largest increments of T_3 in plasma due to injected hormone were achieved in animals killed 5 min after the injection and averaged 0.016 ng/ml, a value only 2% of the estimated normal T_3 plasma concentration. In other experiments we have shown that when the plasma T_3 concentration is increased by less than 20% of its normal concentration, no alterations in the parti-

In this and following analyses we have assumed that the partition of T_3 between specific nuclear sites and the remainder of the cell as determined by differential centrifugation provides an accurate representation of the relationship that exists in the intact cells. This assumption appears reasonable since at 0°C there is extremely poor exchange of T_3 between specific nuclear sites, and the cytoplasm in vitro. Thus, nuclear binding of tracer T_3 added to the liver homogenate at 0°C is much weaker than binding observed after in vivo injection of isotope (1). Conversely, we have added as much as 200 µg T_3/g liver to the final homogenate without displacing in vivo injected tracer T_3. Moreover, when the final nuclear pellet is recentrifuged through sucrose, less than 2% of the radioactivity is lost. Finally, an experiment was carried out to determine whether dilution of the liver homogenate in increasing volumes of sucrose would promote the dissociation of T_3. The liver homogenate was brought up to 5, 10, and 20 vol of 0.32 M sucrose and centrifuged at 700g for 45 min. The pellet was resuspended and centrifuged at 28,000g in heavy sucrose as described above. No consistent effect of dilution was noted (1: 5, 0.32% dose in the nuclear fraction per gram liver; 1: 10, 0.34%; 1: 20, 0.32%).

The possibility that nuclear T_3 is instantaneously lost when the homogenate is placed in hypertonic sucrose should be considered. Although losses due to this mechanism cannot be easily estimated experimentally, theoretical considerations can serve to set an upper limit. Assume that 20% of hepatocellular binding is due to "specific" nuclear sites. If these are saturated, the liver: plasma ratio is reduced from about 10 to 8, barely detectable given biological variations (1). If, on the other hand, we assume that 40% of liver binding was due to specific nuclear sites, then saturation would reduce the L/P ratio from 10 to 6, which should be easily detected. In the absence of an observable reduction in the L/P ratio with saturating doses, one must consider that any possible losses due to "osmotic shock" are less than 50% of the amount originally bound to the limited-capacity nuclear sites.

Nuclear Binding of Triiodothyronine 769
clearance of a cytoplasm was k, led data contained between relationships a fraction detectable. are plasma, cytoplasm, in FIGURE 1 of
tion of hormone among nuclei, cytoplasm, and plasma are detectable.
The results of sequential analyses of radioactive T₃ distribution are illustrated in Fig. 1. A progressive fall in the concentration of radioactive T₃ in plasma and cytoplasm was noted from the earliest point of observation (5 min). The concentration of nuclear [¹³¹I]T₃ rose to a peak at 30 min and thereafter appeared to approach a fractional decay rate similar to that of cytoplasm and plasma. The ratio between T₃ in plasma and cytoplasm was constant throughout the experiment, a

![Figure 1](image1.png)

Figure 1 Time-course of concentration of radioactive T₃ in plasma, cytoplasm, and nuclei after intravenous injection of a single dose of tracer T₃.

![Figure 2](image2.png)

Figure 2 Three model systems describing the possible relationships between cytoplasm and nuclei. On the basis of data contained in Fig. 1, k₁ and k₂ were evaluated for Model B. It was determined that the calculated value of k₂ led to an estimate of irreversible clearance rate of T₃ from the nuclei several times larger than entire metabolic clearance rate of the animal. Since Model B is not possible, there must be a return of T₃ from nuclei to cytoplasm as indicated in Model A or Model C. See text for details.

![Table 1](table1.png)

Table 1

<table>
<thead>
<tr>
<th>Dose T₃ injected</th>
<th>Hepatic T₃ concn.</th>
<th>100N {[T₃]}</th>
<th>100N {[T₃]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng/100 g body wt</td>
<td>ng/g liver</td>
<td>ng/liter</td>
<td>ng/liter</td>
</tr>
<tr>
<td>11</td>
<td>65</td>
<td>11.2</td>
<td>8.56</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>16.2</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td>176</td>
<td>17.5</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td>232</td>
<td>21.2</td>
<td>5.32</td>
</tr>
<tr>
<td></td>
<td>344</td>
<td>33.6</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>1,961</td>
<td>150.1</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>10,049</td>
<td>825.0</td>
<td>1.03</td>
</tr>
<tr>
<td>16</td>
<td>79</td>
<td>16.0</td>
<td>6.85</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>18.8</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td>288</td>
<td>32.4</td>
<td>4.24</td>
</tr>
<tr>
<td></td>
<td>2,100</td>
<td>180.0</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>9,767</td>
<td>667.0</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>20,919</td>
<td>1,844.0</td>
<td>0.98</td>
</tr>
<tr>
<td>25A</td>
<td>5</td>
<td>9.4</td>
<td>12.54</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>24.7</td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>41.0</td>
<td>4.73</td>
</tr>
<tr>
<td></td>
<td>2,047</td>
<td>149.0</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>9,798</td>
<td>614.0</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>20,092</td>
<td>1,263.3</td>
<td>1.77</td>
</tr>
<tr>
<td>27A</td>
<td>5</td>
<td>8.7</td>
<td>10.73</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>13.1</td>
<td>8.92</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>26.2</td>
<td>5.75</td>
</tr>
<tr>
<td></td>
<td>10,212</td>
<td>642.1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>40,011</td>
<td>2,341.0</td>
<td>1.28</td>
</tr>
<tr>
<td>28B</td>
<td>5</td>
<td>9.50</td>
<td>10.96</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>13.05</td>
<td>9.65</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>16.27</td>
<td>6.20</td>
</tr>
<tr>
<td></td>
<td>10,088</td>
<td>642.8</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>20,069</td>
<td>1,436.0</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>40,092</td>
<td>2,526.0</td>
<td>1.49</td>
</tr>
<tr>
<td>30B</td>
<td>5</td>
<td>8.16</td>
<td>9.75</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>11.06</td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td>196</td>
<td>21.86</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>579</td>
<td>47.04</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>10,092</td>
<td>331.9</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>20,033</td>
<td>603.8</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Each entry represents the average of four animals.

Abbreviations: 100N {[T₃]} = 100 × % dose nuclear fraction/g liver

(100N {[T₃]})ₜ = 100N {[T₃]} corrected for nonspecific binding as determined by minimal values for 100N {[T₃]} found when the dose injected equaled or exceeded 10,000 ng/100 g body wt. When more than one "loading" dose was used, the average value for 100N {[T₃]} for the high doses indicated by brackets, was subtracted from the uncorrected 100N {[T₃]} at the low dose.

Each entry represents the mean of four values. The average coefficient of variation of (100N {[T₃]})ₜ was 12.5%.

770 J. H. Oppenheimer, H. L. Schwartz, D. Koerner, and M. I. Surks
finding indicating that the equilibrium between the cytoplasm and plasma is rapidly established.

Three possible compartmental models can be proposed to account for these relationships between T₃ in nucleus and cytoplasm (Fig. 2). Model A assumes that there is a two-way interchange between T₃ in cytoplasm and nuclei. Model B assumes that once T₃ has been transported from the cytoplasm to the nucleus, it does not return as such to the cytoplasm but is irreversibly degraded by nuclear metabolism. Model C is a combination of A and B and assumes both backward movement of T₃ and irreversible metabolism of T₃ from the nuclei. It is possible to exclude Model B for the following reason. If we assume that all T₃ reaching the nucleus is irreversibly metabolized, it is possible to calculate the metabolic clearance rate attributable to the postulated nuclear metabolism (Appendix A). This clearance value would be 72 ml/hr/100 g. The total metabolic clearance rate of T₃ in these animals, however, varies between 15.3 and 26.0 ml/hr/100 g body wt, as determined in two previous studies (10, 11). Thus, the estimated unidirectional nuclear clearance rate is three- to five-fold greater than the metabolic clearance rate, clearly an impossible situation. The concept that T₃ once delivered to the nucleus, is removed exclusively by irreversible processes (Model B) must, therefore, be rejected.

We have also performed in vitro experiments in which isotopically labeled T₃ in tracer quantities has been incubated with nuclei in the presence of ATP and cofactors at 37°C for 1 h. Chromatographic analysis of the nuclei and medium showed no metabolic transformation of T₃. Thus, no support could be elicited to favor the concept that nuclei metabolize T₃.

On the basis of these kinetic considerations and the negative biochemical studies, it appears reasonable to conclude that nuclear T₃ must exchange with cytoplasm (Models A or C). The possibility that some nuclear metabolism occurs (Model C) cannot be rigorously excluded because of the inherent limitations posed by the application of results from any in vitro model to the intact organism.

Table II

Specific Activity of Nuclei and Total Liver Homogenate ½ h after Injection of [¹²³I]T₃

<table>
<thead>
<tr>
<th>Rat</th>
<th>Homogenate</th>
<th>Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose in extract</td>
<td>T₃ in extract</td>
</tr>
<tr>
<td>1</td>
<td>%</td>
<td>ng</td>
</tr>
<tr>
<td>2</td>
<td>2.49</td>
<td>2.40</td>
</tr>
<tr>
<td>3</td>
<td>1.91</td>
<td>2.58</td>
</tr>
<tr>
<td>4</td>
<td>3.46</td>
<td>1.96</td>
</tr>
<tr>
<td>Mean</td>
<td>2.03</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Four rats were injected with 2 ng/100 g body weight [¹²³I]T₃ and killed 30 min thereafter. Nuclei were prepared as described in Methods. The nuclear pellet was resuspended in 2.0 ml sucrose, (0.32 M), and the resuspended nuclei as well as a sample of the original homogenate were extracted with 95% ethanol. Four extractions with 4 vol of ethanol were sufficient to remove 95% of the counts. These ethanolic extracts were taken to dryness in a flash evaporator in vacuo at a temperature less than 45°C. Evaporation flasks were then washed with 2% bovine serum albumin. Three 1-ml washes were required to remove 95% of the [¹²³I]T₃ counts. The counting rates of these solutions were then determined and portions were taken for measurement of nonradioactive T₃ by radioimmunoassay (9). * Specific activity of nuclear T₃ is not significantly different from specific activity of T₃ in total homogenate as determined by paired t test.

* Pearson, Veall, and Vetter (12) have shown that in a two-compartment system there exists a single time point when the specific activity in both compartments is the same. Thus, in the example under consideration, after the injection of tracer T₃, the specific activity in the nuclear pool is at first less than that of the cytoplasmic and plasma T₃. From a kinetic point of view, the liver cytoplasm and the plasma can be considered to be a single compartment, since there is no significant time lag in equilibrium (Fig. 1). Subsequently, the specific activity of the nuclear T₃ will be greater than that of the extranuclear T₃. According to the principles of the analysis by Pearson et al., the single point at which the specific activity into the two kinetic pools is the same can be determined by the time point at which the rate of change of nuclear T₃ is 0. This occurs ½ h after injection (Fig. 1) (12).

Nuclear Binding of Triiodothyronine
Figure 3: Calculation of nuclear binding capacity (Exp. 11). The uncorrected percent of the dose of T_3 per gram liver (= 100N/L) and the corresponding corrected value (100N/L), determined by subtracting nonspecific binding, are plotted as a function of the concentration of T_3 in liver. The product of (100N/L) and the concentration of T_3 in liver shows that the amount of T_3 specifically bound to the nuclei is remarkably constant. It would thus appear that the limited capacity binding sites are close to saturation at endogenous concentration of T_3. The first point represents the injection of trace quantities of T_3.

was confirmed in experiments in which the specific activity of nuclear and cytoplasmic T_3 was measured by radioimmunoassay of T_3 (Table II). Accordingly, all radioactive measurements for assessing nuclear T_3 pools were made 1/2 h after injection.

As the dose of injected T_3 was increased, a progressive decrease was observed in the percent of total liver radioactivity associated with the nuclear pellet (designated 100 N/L). These results thus confirm our previous observations (1). For a given group of animals, the observed 100 N/L with tracer levels of injected T_3 assumed a value ranging from 7 to 13 with a mean of 9.3. As the injected dose of T_3 was increased above 10,000 ng/100 g body wt, 100 N/L remained constant (see Table I). It appeared reasonable, therefore, to assume that when 100 N/L had reached minimal values, the specifically bound material would become a negligible proportion of the total. This lower limit for 100 N/L was therefore considered to represent largely nonspecific binding. Additional support for the concept of specific and nonspecific binding is derived from the demonstration that specifically bound nuclear T_3 is largely extracted with 0.4 M KCl, whereas nonspecifically bound T_3 is not (13).

In order to quantitate the amount of T_3 bound to specific T_3 nuclear sites, the nonradioactive concentration of T_3 in the liver was determined by multiplying the liver/plasma (L/P) concentration ratio of radioactive T_3 by the estimated total plasma T_3 concentration. The latter value was determined from the sum of the endogenous T_3 concentration, 0.84 ng/ml and the exogenous T_3 as calculated from the specific activity of the injected T_3 and the counting rate of trichloroacetic acid-precipitated serum. The product of the estimated liver T_3 concentration and the difference between the 100 N/L value observed at a particular dose and the 100 N/L value at the loading dose of T_3 (10,000 ng/100 g or greater) yielded the calculated mass of T_3 specifically bound to nuclei for a particular dose of injected T_3.

Results of six individual experiments are summarized in Table I. The binding capacity achieved in these experiments varied between 0.91 and 1.22 ng/g liver with a mean value of 0.99 ng/g. The average concentration of DNA in the final nuclear pellet determined in 32 animals was 1.7 mg/g liver. In these animals the average recovery of DNA from the homogenate was 62%. Thus the nuclear binding capacity per gram of tissue can be estimated to be approximately 1.60 ng T_3. A graphic representation of one of these studies is presented in Fig. 3. These results indicate a sharply defined binding capacity over a wide range of injected T_3, from 5 to 2,000 ng/100 g body wt. The average pool of exchangeable T_3 in the rat can be estimated to be approximately 130 ng/100 g body wt. When 2,000 ng/100 g body wt are injected, the plasma and total liver concentrations are observed to increase about 15-fold over the endogenous levels of T_3. Since the endogenous concentration of T_3 was not individually determined in these experiments, only a gross approximation can be offered of the percentage saturation of the nuclear sites under physiological conditions. Inspection of Table I, however, does suggest that over 70% of the sites are normally saturated.

Relationships of binding constants for T_3 and T_4. In our previous studies (1), we had demonstrated that nuclear binding sites showed a substantially greater avidity for T_3 than for T_4. To provide some quantitative estimate of the relative strength of association of T_3 and T_4, the following studies were undertaken. An additional point requiring resolution was whether the apparent cross-reactivity between T_3 and T_4 could be attributed to either in vivo conversion of T_3 to T_4 or to the existence of contaminating T_4 both in radioactive and nonradioactive preparation of T_4 used. As previously discussed, one could postulate that because of selective nuclear binding of T_3, any tracer T_3 derived from radioactive contamination of T_3 or metabolic conversion from labeled T_3 would be concentrated by the nucleus. Loading quantities of T_3 would present large amounts of nonradioactive T_3 to the nucleus and displace the tracer T_3 present.

Based on the mean value determined in the sera of 52 rats by a radioimmunoassay technique (8). The standard error was ±0.04 ng/ml.
In order to assess the binding characteristics of T_s, saturation experiments were analyzed according to expressions derived from the law of mass action. The ratio of T_s bound nonspecifically to cytoplasm ($T_{x} = \text{total hepato} shave$ T_s — specific nuclear T_s) to specifically bound nuclear T_s (T_{x}) was plotted as a function of T_{x} on the abscissa. From Eq. 6 (Appendix B) it is apparent that the slope of the resulting function is $(1/M)$ where M is the nuclear binding capacity and intercept on the ordinate $1/Mk_s$, where k_s is the equilibrium constant governing the interaction of T_s between cytoplasmic and nuclear sites as defined in Eq. 5 (Appendix B). The value of k_s can therefore be calculated. When experiment 11 was analyzed in this fashion (Fig. 4) the following results were obtained, $k_s = 1.4 \times 10^8$ kg/mol and $M = 1.8$ mol/kg.

Experiments were also carried out to assess the equilibrium constant governing the interaction of T_s between cytoplasmic and specific nuclear sites. This was accomplished by determining the effect of increasing doses of unlabeled T_s on the distribution of tracer $[^{125}I]T_s$ between cytoplasmic and specific nuclear sites. From Eq. 11 (Appendix B) it is apparent that when (T_{sa}/T_{sa}) is plotted as a function of T_{sa}, the concentration of T_s in the cytoplasm, the resulting function will have a limiting slope of (k_s/k_s) which will extrapolate to an intercept on the ordinate with a value of $(1/k_s M)$. In order to evaluate T_{sa}, tracer $[^{125}I]T_s$ was injected together with tracer $[^{125}I]T_s$ and unlabeled T_s. T_{sa} was calculated from the L/P concentration ratio of $[^{125}I]T_s$ and the known plasma concentration of T_s. The results are illustrated in Fig. 4 in an experiment with the same group of animals used in estimating k_s. It was estimated that $k_s = 1.1 \times 10^8$ mol/kg and that the ratio k_s to k_s was 13.

In this analysis the assumption is made that the equilibrium time point for T_s is the same as for T_s. Serial measurements of nuclear $[^{125}I]T_s$ have verified this assumption, with maximal radioactivity occurring between 15 and 30 min after intravenous injection of tracer.

The following experiments were carried out to evaluate the possibility that the observed cross-reactivity between T_s and T_s was due exclusively to contamination of the T_s preparation with T_s or the conversion of T_s to T_s in vivo. In Table III we have summarized two experiments in which tracer amounts of radioactive T_s were injected alone as well as with loading doses of T_s and T_s. With loading doses of either T_s or T_s, approximately 33% and 40% of the nuclear radioactivity at tracer levels was displaced in Exp. 31 and 22, respectively. Chromatographic analysis of radioactivity of nuclear extracts from animals injected with tracer T_s only (Exp. 31, group A), however, showed that only 7% of nuclear radioactivity was in the form of T_s. The remainder was T_s. Thus, on the basis of T_s contamination or conversion, one could expect only a 7% decrease in

Table III

<table>
<thead>
<tr>
<th>Exp</th>
<th>Iodothyronine injected</th>
<th>(100N/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/100 g body wt</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>A. tracer T_s only</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>B. tracer $T_s + 80$ µg T_s</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>C. tracer $T_s + 20$ µg T_s</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>D. specifically bound</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(= \left(A + \frac{B + C}{2} \right))</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A. tracer T_s only</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>B. tracer $T_s + 1.2$ µg T_s</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>C. tracer $T_s + 24.2$ µg T_s</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>D. tracer $T_s + 20$ µg T_s</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>E. specifically bound T_s</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(= \left(A + \frac{C + D}{2} \right))</td>
<td></td>
</tr>
</tbody>
</table>
the counting rate of nuclear radioactivity with loading doses of \(T_3 \). Therefore, intrinsic cross-reactivity by nuclear sites for \(T_3 \) and \(T_4 \) exists and only a fraction of the observed cross-reactivity can be attributed to \(T_3 \) contamination or conversion to \(T_4 \).

The data in Table III can also be used to provide an independent estimate of the ratio of \(k_s \) to \(k_a \). Thus, from the law of mass action, it can be shown that:

\[
\frac{k_s}{k_a} = \frac{(T_{3N}/T_{3R})}{(T_{4N}/T_{4R})}.
\] (13)

If we assume from Table I that the average (corrected) percent bound to the nucleus is 8.61, then it follows that \((T_{3N}/T_{3S}) \) is equal to 8.61/91.39 = 0.0942. From Table III, similar calculations of specific binding would indicate that the corresponding ratio for \(T_4 \) is 0.00472. Hence, \(k_s/k_a \) is equal to 20. This contrasts with the value of 13 calculated from the experiments illustrated in Fig. 4. Whereas the agreement between the two values is not ideal, the estimates have the same order of magnitude and are useful approximations of the relative avidity of the nuclear sites for \(T_3 \) and \(T_4 \) in cytoplasm.

It should be emphasized that the values for \(k_s \) and \(k_a \) provided in these studies are not association constants since the equilibrium assessed was between the nuclei and cytoplasm, not between the nuclei and an aqueous medium. Nevertheless, if one knows the strength of protein binding as determined by equilibrium dialysis studies for \(T_3 \) and \(T_4 \), one can calculate the order of magnitude of the apparent association constants. The approximate dialyzable fraction for \(T_3 \) (\(DF_3 \)) is 0.003 and that for \(T_4 \) (\(DF_4 \)) is 0.0003 (11). If we designate \(k'_{3N} \) as the apparent association constant

\[
\frac{k'_{3N}}{k_{3N}} = \frac{(L/P)_S}{(DF_3)} = \frac{10}{0.003} = 3333.
\] (14)

if \(k_{3N} = 1.4 \times 10^6 \), \(k'_{3N} = (10/0.003) \times (1.4 \times 10^6) = 4.7 \times 10^9 \) liters/mol. Similarly, since \(DF_4 = 0.0003 \) and the average \((L/P)_S = 0.6 \), \(k'_{4N} = 0.6/0.003 \times 1.1 \times 10^6 = 2.2 \times 10^8 \). The ratio of \(k'_{4N} \) to \(k_{4N} \) is therefore about 21.

Alternatively, if one accepts the ratio of \((k_s/k_a) = 20 \) as derived from Eq. 12, then similar considerations can be applied to show that \((k'/k') = 333 \).

DISCUSSION

The demonstration of specific nuclear binding sites for \(T_3 \) derives potential significance, not only from previously cited data by Tata and associates indicating early nuclear events after pulse injection of \(T_3 \), but also from rapidly accumulating evidence, that a number of steroid hormones exert their action at a nuclear level (14, 15). The hypothesis has been advanced by several investigators that progesterone, estradiol, dihydrotestosterone, and cortisol are first bound to a cytosol receptor and that the cytosol receptor hormone complex in turn is transferred to the nucleus. There remains considerable controversy as to whether the steroid receptor in the nuclear chromatin fraction is the same as that in the cytosol.

These considerations raise the problem as to whether specific cytosol receptors also exist for \(T_4 \). This problem is currently under intensive study in our laboratory. A number of investigators have reported \(T_3 \) and \(T_4 \) cytosol-binding proteins (16–19) but the role of these proteins has not been well defined. In previous studies with tracer and loading doses of \(T_3 \), we have analyzed the distribution of \(T_3 \) in cytosol and other subcellular fractions. No evidence was found for appreciable quantities of specific binding sites other than those in nuclei. It is possible, however, that the concentration of cytosol binding sites was too small to allow detection. Regardless of whether \(T_3 \) in the cytoplasm is bound specifically or nonspecifically, the kinetic data presented in the current report indicate a relatively rapid two-way shuttle of \(T_3 \) between the nucleus and the cytoplasm. One-way transport of \(T_3 \) from cytosol to nucleus is not possible, because a model with one-way transport leads to an estimate of the hypothetical unidirectional clearance rate by nuclei several times greater than the total metabolic clearance rate of the entire rat. Moreover, no evidence was found in experiments in vitro to support the concept that nuclei can metabolize \(T_3 \).

Our data indicate that only 9–12% of cellular radioactivity is recovered with the nuclear pellet. On the basis of determinations of DNA in the tissue homogenate and in the nuclear pellet, we estimate that approximately 38% of the nuclear fraction is lost in the purification process. Thus, our data suggest that from 14–19% of the total radioactivity in the cell is associated with the nucleus. These findings explain the relative stability of the total L/P concentration ratio with increasing doses of injected \(T_3 \). Since no more than 19% of total cellular binding is due to specific nuclear binding sites, one would anticipate that maximal doses of \(T_3 \) would reduce the total L/P ratio to 81% of the baseline value. Inherent biological variation makes it difficult to detect changes in this range unless large numbers of animals are used.

Siegel and Tobias (20) have reported preferential localization of \([^{3}H]T_3 \) to the nuclei of kidney tumor cells grown in tissue culture. No studies were carried out with \([^{3}H]T_4 \). Saturation studies were not performed, and no information was provided about possible losses of radioactivity from the cells during fixation and radioautography. The concentration of \(T_4 \) in the culture medium was at least 50 times the plasma concentration of \(T_4 \) in mammalian serum. Griswold, Fischer, and Cohen (21) have recently reported temperature-dependent intracellular distribution of \(T_4 \) in amphibian liver. After in-
jection of T₄ at 25°C, from 40-50% of tadpole liver T₄ was associated with nuclei. The molar concentration of T₄ bound to nuclei was approximately 10,000 times greater than the molar concentration of iodothyronine bound to specific nuclear sites in the rat. Again, no saturation studies were carried out. It is therefore difficult to compare the findings in these reports to the results of our studies.

If we estimate that each gram of liver contains 3.34×10^4 nuclei (22) and if we assume that there has been a 38% loss of nuclear material during preparation, we can calculate from the nuclear binding capacity (0.99 ng T₄/g liver) that each nucleus contains approximately 4.400 molecules of T₄. If we further assume that each nucleus contains 254-cm double-stranded DNA (23) we can also estimate that on the average there is one molecule of T₄ for every 575 am of DNA. It will be of interest to determine whether similar quantitative relationships exist between T₄ and DNA in other tissues.

The results of the present set of experiments indicate that the nuclear sites are not absolutely specific for T₄ since they also interact with T₃. We had previously queried whether the slight depression in the nuclear binding of labeled tracer T₄ by the injection of large doses of nonradioactive T₄ might not have been caused by contaminating T₃ in the T₄ preparations used and the conversion of T₄ to T₃ in vivo (1). The chromatographic studies summarized in Table III effectively exclude this possibility. On the other hand, the current data suggest that the affinity of nuclear sites for T₃ is at least 20 times greater than their affinity for T₄. The relative specificity of nuclear sites for T₃ supports recent metabolic studies which have suggested that the hormonal action of T₃ is derived largely, if not exclusively, from its conversion to T₄ (4, 10, 24). The concept that T₃ is the "active" hormone was first proposed by Gross and Pitt-Rivers (25) but subsequently rejected on the basis of a report by Lassiter and Stanbury (26) negating T₃ to T₄ conversion in man. The concept of T₄ to T₃ conversion was subsequently revived by Braverman, Ingbar and Sterling (28) who found significant conversion of T₄ to T₃ in athyreotic subjects maintained on T₄.

If one assumes that metabolic effects of T₄ and T₃ are equivalent, molecule-for-molecule bound to the specific nuclear sites, it is possible to provide an estimate of the overall intrinsic metabolic contributions of T₄ and T₃ (independent of its conversion to T₂) both in rat and in man. On the basis of the isotopic measurements and the known concentration of T₄ and T₃ in plasma, it is possible to calculate that the quantity of T₃ bound specifically to nuclei per gram of rat liver is 20.3×10^{-18} mol, whereas the corresponding mass of T₄ specifically bound is 2.83×10^{-18} mol. Thus one would estimate that the contribution of T₄ to hormonal effects of T₃ exceeds that of T₄ by a factor of 7.1. It is possible to provide a similar estimate in man, since in man the ratio of T₄/T₃ plasma binding ($=10$) and the approximate molar ratio of total T₄/T₃ ($=45$) are known, and the ratio of the association constants of T₄ to T₃ is probably in the same range as in the rat ($=21-33$). Calculations based on these data suggest that in normal man the contribution to hormonal effect derived from the total blood production of T₄ exceeds the intrinsic contribution of T₃ by a factor in the range of 4.7-7.3. In other words, from 12 to 18% of the total metabolic effect of the iodothyronines may be due to T₃. Thus, a change in one μg/100 ml T₃ would be approximately equivalent to 2.6-3.7 ng T₄/100 ml.

The demonstration of limited-capacity high-affinity T₄ binding sites per se does not prove the biological relevance of such sites. Nevertheless, on the basis of Tata's demonstration of early nuclear response to T₃, the role of nuclei in mediating the effects of other hormones, and the existence of nuclear T₄ sites in a wide variety of tissues, it appears highly likely that these sites are responsible for initiating biochemical reactions that result in the expression of hormonal activity. If so, our data raise an interesting set of questions about the quantitative relationship between the concentration of the T₄-nuclear complex and the hormonal effect. Our data suggest that at least 70% of the nuclear sites are occupied at endogenous concentrations of plasma T₃. For hyperthyroidism one or more of the following would have to occur: (a) that the occupancy of the residual sites exerts a proportionately greater quantitative effect, (b) that there are qualitative or quantitative differences in nuclear T₄ binding in hyperthyroidism, (c) that the transition from the hypothyroid to the euthyroid state is mechanically different from the transition from the euthyroid to the hyperthyroid state. Further experiments are required to resolve these issues.

Lastly, it is important to emphasize the limitations in our analysis. The numerical values for the binding capacity and association constants are approximations only, since their determination is limited by kinetic assumptions, mean group values for plasma hormone concentrations rather than individual animal assays, and the experimental error inherent in the techniques used. Thus, in this study, we did not correct for DNA losses in the preparation of individual nuclear pellets, but simply assumed a mean loss. Also, the possibility that some T₄ dissociates immediately from the nucleus as soon as it is placed in hypertonic sucrose cannot be excluded nor easily tested by available techniques. Moreover, it is important to emphasize that the concept of nuclear binding as used in this study is operationally defined as the mechanism for the selective concentration of T₄ and related compounds at special nuclear sites. Thus, while an analogy is implicit between this process and more con-
conventional examples of binding, such as the binding of hormones by plasma proteins, care should be exercised not to endow kinetic characteristics with specific mechanistic interpretations. For example, we have not excluded the possibility that either the association or dissociation of T_3 with the sites requires the expenditure of metabolic energy.

APPENDIX A

It follows from the definitions of the model system B (Fig. 1) that

$$N_t = k_1 \int_0^t R dt - k_2 \int_0^t N dt,$$

(1)

where N_t equals the percent of the dose injected in the nuclei per gram tissue at the time t in hours after the injection; R, the percent of the injected dose per gram tissue in the cytoplasm, k_1 the fractional rate (h^{-1}) of transfer of T_3 from compartment R to N; and k_2, the fractional irreversible rate of disposition of T_3 from the nuclei (h^{-1}).

Eq. 1 simply states that the nuclear content of T_3 at any time t represents the difference between the total amount of radioactivity brought to the nuclei and the total amount of T_3 removed from the nuclei.

Similarly, it follows that the difference in nuclear counts between two time intervals after the injection, t and t', is given by the expression

$$N_t - N_{t'} = k_1 \int_0^{t'} R dt - k_2 \int_0^{t'} N dt,$$

(2)

The rate constants k_1 and k_2 can be evaluated by solution of simultaneous equations 1 and 2. Thus, let t' equal 0.5 h and t, 4.0 h. The integral expressions in Eqs. 1 and 2 can be evaluated graphically. The value of both N_{0b} and N_{0s} are known. Solution of the equations will indicate that k_1 equals 0.94/h and k_2 equals 8.53/h. The specific activity of T_3 is uniform throughout the system under consideration at approximately 30 min, the time at which nuclear radioactivity is maximal, i.e., at the time that the rate of delivery of radioactivity to the nuclei equals the rate of removal from the nucleus. From this information we can calculate the unidirectional clearance (c_{ClT_3}) of T_3 from the nuclei.

$$c_{ClT_3} = \rho (N/P)k_3,$$

(3)

where $(N/P) = \text{ratio of nuclei } T_3 \text{ per gram liver to the concentration of } T_3 \text{ per milliliter of plasma}$ and $\rho = \text{ liver weight in grams per 100 g of body weight}$. On the basis of previous studies with similar rats in this laboratory (10), ρ has been estimated to be 4.36. N/P at 30 min is 1.93 and k_3 equals 8.53/h. Thus $c_{ClT_3} = 71.8 \text{ ml/lh/100 g body wt.}$

APPENDIX B

In analyzing the interactions of increasing concentrations of T_3 with nuclear sites, the contributions of endogenous T_4 can be disregarded as a first approximation. Thus,

$$T_{3R} + N = T_{3N},$$

(4)

where T_{3R} is the concentration of T_3 in cytoplasm; T_{3N}, the concentration of T_3 in nuclei; and N, the concentration of unoccupied nuclear binding sites. From the law of mass action one can define an equilibrium constant k_3 such that

$$k_3 = \frac{T_{3R}}{(N)(T_{3R})},$$

(5)

Since $N = M - T_{3N}$, where M is the nuclear binding capacity, one can substitute into Eq. 5 and rearrange terms so that

$$\left(\frac{T_{3R}}{T_{3N}} \right) = T_{3R} \left(\frac{1}{M} \right) + \frac{1}{k_3M},$$

(6)

From the slope and ordinate intercept of a plot of (T_{3R}/T_{3N}) as a function of T_{3R}, M, and k_3 can be determined.

In a system in which the contributing T_4 cannot be ignored, i.e., one in which progressively increasing doses of T_4 are injected, the relationship between the tracer distributing [131I]T_3 in cytoplasm and nucleus T_{3R}/T_{3N} can be related to the concentration of T_4 in cytoplasm (T$_4$R) as follows. Since both T_3 and T_4 occupy the same sites it is apparent that

$$N = \frac{T_{4N}}{(T_{4R})(k_4)}.$$

(7)

where the subscript 4 refers to T_4, in a notation analogous to that for T_3.

From Eq. 7 it follows that

$$k_4 = \frac{T_{4N}}{T_{4R}(M - T_{3N} - T_{3N})}.$$

(8)

Rearrangement of Eq. 8 leads to

$$\left(\frac{T_{3R}}{T_{3N}} \right) = \frac{1}{k_4} + \frac{T_{4R}}{M - T_{3N}}.$$

(9)

From Eq. 7 it is apparent that

$$\left(\frac{T_{3R}}{T_{3N}} \right) = \frac{T_{3R}}{T_{3N}} = \frac{k_1}{k_2}.$$

(10)

Substituting into Eq. 9,

$$\left(\frac{T_{3R}}{T_{3N}} \right) = \frac{1}{k_3} + \frac{k_1}{k_2} \left(\frac{T_{3R}}{T_{3N}} \right) = \frac{1}{k_3M}.$$

(11)

As the mass of injected T_4 is progressively increased T_{3N} approaches 0 and

$$\left(\frac{T_{3R}}{T_{3N}} \right) = \frac{1}{k_3M} + \frac{(k_1/k_3)(T_{3R})}{M}.$$

(12)

ACKNOWLEDGMENTS

The authors thank Mr. Jose Guerra and Mr. Francisco Martinez for their expert technical assistance and Mrs. Mary Ann Mullen for her secretarial support. Mr. Barry Shapiro illustrated the figures.

This work was supported in part by National Institutes of Health grant AM 15421-13 and Department of the Army contract DA-49-193-MD-2967.

REFERENCES

