Deletion of the Platelet-Specific Alloantigen PlA1 from Platelets in Glanzmann’s Thrombasthenia

THOMAS J. KUNICKI and RICHARD H. ASTER, Elser Hemostasis Research Laboratory, Milwaukee Blood Center, Inc., the Department of Biology, Marquette University, and the Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53233

ABSTRACT Expression of a platelet-specific alloantigen (PlA1) was studied in five unrelated patients with Glanzmann’s thrombasthenia using immunologic techniques based on release of 51Cr from tagged platelets by PlA1-specific antibody. Less than 1\% of the normal quantity of PlA1 could be detected on platelets of patients 1, 2, and 3; platelets from patients 4 and 5 contained 22 and 12\% of normal levels, respectively. After treatment with bromelain, platelets from patients 4 and 5, but not those from patients 1, 2, and 3, released 51Cr as well as normal PlA1-positive platelets when exposed to anti-PlA1. Platelets from each of the five patients reacted normally with drug-dependent antibodies and with autoantibodies specific for platelets.

Polyacrylamide gel electrophoresis of thrombasthenic platelets showed marked deficiencies of glycoproteins IIb\textalpha\textsubscript{3} and III (P < 0.0005), confirming recent reports of others. Deficiency of the two proteins as determined by gel scanning was more pronounced in patients 1, 2, and 3 than in patients 4 and 5. Normal levels of glycoproteins IIb\textalpha and III were found in platelets from normal subjects negative for PlA1.

These observations are consistent with the possibility that the PlA1 antigen is located on one or both of the glycoproteins lacking in Glanzmann’s thrombasthenia, although other explanations are possible. They further suggest that patients with thrombasthenia may be heterogeneous in respect to the degree to which these glycoproteins are deleted. The PlA1 antigen can be measured with considerable precision and may provide a marker useful for the diagnosis and study of Glanzmann’s disease.

INTRODUCTION

Glanzmann’s thrombasthenia is a congenital disorder of platelet function originally described in 1918 (1). The major diagnostic characteristics of this disease include markedly reduced or absent clot retraction, prolonged bleeding time in the presence of normal platelet levels, lack of in vitro aggregation after exposure to adenosine diphosphate, epinephrine, and collagen, and normal or slightly reduced aggregation in response to ristocetin (1–4). Although thrombasthenia is rare, it has been studied extensively in the hope that recognition of the basic effect in this disorder may lead to increased understanding of normal platelet function.

Various molecular abnormalities have been reported in thrombasthenic platelets. The earliest consistent observations indicated a subnormal content of externally absorbed and intrinsic platelet fibrinogen (5–9). A single report of a lower content of surface-bound IgM has not been confirmed (10). Observations on the level of reduced glutathione in thrombasthenic platelets are conflicting (11, 12). Deficiency of an unidentified membrane protein has been described (8).

Using newer methods for characterization of membrane glycoproteins, it has been found that thrombasthenic platelets exhibit quantitative, and possibly qualitative abnormalities of certain membrane constituents. Specifically, reduced content of a protein designated glycoprotein II and possible reduction of another glycoprotein, III, have been reported (13). Recent observations by Phillips et al. (14) and Phillips and Agin (15) strongly suggest that two glycoproteins (designated by them, IIb and III) are deficient in the thrombasthenic platelet.

These reports led us to study the expression of surface antigens on thrombasthenic platelets. We here

Received for publication 12 October 1977 and in revised form 19 December 1977.
report observations on the reactions of normal and thrombasthenic platelets with a variety of platelet-specific antibodies. Our findings indicate that thrombasthenic platelets are markedly deficient in a platelet-specific alloantigen (PlA1) (16) (also called Zw; [17]), but contain normal quantities of the membrane receptor(s) for drug-dependent platelet antibodies (18) and for autoantibodies obtained from patients with idiopathic (autoimmune) thrombocytopenic purpura (ITP). Quantitative measurement of the amount of PlA1 antigen present in the platelets of our patients and electrophoretic analysis of their membrane glycoproteins lend support to the view that the membrane abnormality in Glanzmann’s disease is heterogeneous.

METHODS

Selection of patients. Each of the five unrelated patients studied fulfilled the diagnostic criteria of Glanzmann’s thrombasthenia in that each had a consistently normal platelet count, markedly prolonged bleeding time, lack of aggregation in response to adenosine diphosphate, epinephrine, and collagen, and virtual absence of clot retraction. Platelets from each of four patients tested aggregated in response to ristocetin. The patients were studied through the courtesy of Doctors Jack Lazerson (Milwaukee, Wis.), Walter Bowie (Rochester, Minn.), David Green (Chicago, Ill.), Lilia Tallarico (Boston, Mass.), and John Penner (Ann Arbor, Mich.). Two of the cases have been reported previously (19, 20). The five patients did not differ obviously from one another in their bleeding history, but a detailed analysis of the severity of hemorrhage has not yet been made.

Isolation of platelets. Platelets were isolated by differential centrifugation of whole blood anticoagulated with EDTA (21). In four instances, in which blood was obtained from individuals in another city, a second sample was drawn from a normal individual at the same time; both samples were processed, transported, and handled under identical conditions. All studies were performed on the day the blood was drawn. The longest interval between blood drawing and the initiation of tests was 8 h.

Preparation of 51Cr-labeled platelets and treatment with bromelain. Labeling of platelet suspensions with sodium 51Cr (Amersham-Searle Corp., Arlington Heights, Ill.) and treatment with bromelain (Sigma Chemical Co., St. Louis, Mo.) were performed as previously described (21, 22), with the following minor modification: the bromelain suspension contained 1 mg/ml bromelain and 1 mg/ml cysteine in phosphate-buffered saline (PBS). Bromelain treatment increases the sensitivity of 51Cr-tagged platelets to immune lysis four- to eightfold (12).

The 51Cr lysis test and the inhibition assay. Antibody detection by release of 51Cr from target platelets and quantitative measurement of platelet antigens by inhibition of 51Cr release have been described in detail (22–24). Release of 51Cr from platelets was assayed in the following system: 0.02 ml of suspension of 51Cr-labeled platelets in PBS at 100,000 per mm3 were incubated for 2 h at 37°C with 0.02 ml of the specific serum, 0.02 ml of 0.1 M magnesium chloride, and 0.1 ml of fresh, ABO-compatible, platelet-poor plasma from a normal subject anticoagulated with EDTA as a source of complement. With quinidine- and quinine-dependent antibodies, 0.02 ml of 0.1 mM quinine in PBS or 0.02 ml of 1 mM quinine in PBS were also added. After incubation, 2 ml of 0.5% EDTA in 0.145 M NaCl was added, the tubes were centrifuged at 3,000 g for 30 min, and the radioactivity of the supernate and the platelet button was measured. Percent immune release of 51Cr was calculated as previously described (21). Control sera typically released 5–10% of 51Cr, whereas antibody-containing sera released 50–80% (23).

The quantity of PlA1 antigen and of the receptor(s) for quinidine- and quinine-dependent antibodies on platelets was measured by determining the number of unlabeled test platelets required to inhibit by 50% the release of 51Cr from tagged platelets by specific antibody in a two-stage assay (22, 24). Inhibition of lysis of the 51Cr-labeled platelets added in the second stage provides a measure of the quantity of antigen in the test material added to antibody in the first stage.

Selection of antibodies. Three anti-PlA1 antisera were obtained from patients with post-transfusion purpura (16). The specificity of each was confirmed by its reactions against a large panel of platelets from PlA1-positive and PlA1-negative donors. The frequency of PlA1 antigen in the general population is 98% (16). Quinidine- and quinine-dependent antibodies were obtained from two patients who developed thrombocytopenia after ingestion of those drugs. These sera react with normal platelets in the presence of the appropriate drug, but fail to react in the absence of the drug (18, 23). Autoantibodies were obtained from two patients with ITP. Sera from about 25% of patients with ITP release significant amounts of 51Cr from bromelain-treated normal platelets. Each of the seven antisera was shown to lack detectable HLA antibodies by screening it against a panel of 60 lymphocyte donors, using the standard National Institutes of Health lymphocytotoxicity assay.

Preparation of platelet suspensions for sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A platelet button was prepared by centrifugation and was washed three times at 4°C in 0.01 M Tris-HCl, 0.001 M EDTA, 0.145 M NaCl, pH 7.5. After the last wash, the button was resuspended in this buffer, and the platelet concentration was determined by phase microscopy. The ratio of erythrocytes and leukocytes to platelets was always <1:3,000. A platelet button containing 109 platelets was prepared by centrifuging a portion. The supernatant buffer was discarded and as much residual buffer as possible was removed by inverting the tubes for several minutes and flushing out excess liquid with nitrogen. The total protein content of a separate portion of each platelet preparation was determined by the method of Lowry et al. (25). The platelets were then prepared for SDS-PAGE as described by Phillips and Poh Agin (15, 26). The resolving slab gel contained 7.5% acrylamide and 0.1% SDS, and was covered by a 3% acrylamide stacking gel.

Quantitation of protein bands on SDS-polyacrylamide gels. The identity of membrane glycoproteins was determined after electrophoresis of solubilized whole platelets (20 μl contain-

1 Abbreviations used in this paper: ITP, idiopathic (autoimmune) thrombocytopenic purpura; PAGE, polyacrylamide gel electrophoresis; PAS, periodic acid-Schiff reagent; PBS, phosphate-buffered saline (0.013 M phosphate, 0.145 M NaCl, pH 7.4); PlA1, a platelet-specific alloantigen; SDS, sodium dodecyl sulfate.

2 Aster, R. H., unpublished observations. Antibody activity in these sera was recovered in IgG fractions and could be totally absorbed with platelets, but not with lymphocytes, granulocytes, or erythrocytes.
ing 100 μg of protein) that had been fully reduced in a sample buffer containing 10% 2-mercaptoethanol (26). The following purified proteins (Sigma Chemical Co.) were co-electrophoresed as molecular weight markers: Escherichia coli β-galactosidase, 130,000 mol wt; bovine serum albumin—fraction V, 68,000 mol wt; ovalbumin, 43,000 mol wt; chymotrypsinogen A, 25,600 mol wt. Platelet myosin (mol wt 200,000) served as an internal molecular weight marker.

Protein bands were stained with either Coomassie Blue R or with periodic acid-Schiff reagent (PAS) (27). The location of membrane protein bands was previously established by numerous electrophoretic analyses of isolated human platelet plasma membranes and whole platelet preparations stained with Coomassie Blue R. Glycoproteins were located by PAS staining of samples run in parallel, or by staining first with PAS reagent, marking the bands obtained with India ink, and then restaining the same gel with Coomassie Blue R (28). To adequately visualize PAS-stained bands, 40-μl platelet samples containing 200 μg of protein were electrophoresed. Molecular weights estimated for glycoproteins 1ba, 1Iba, and III on the basis of their rates of migration were 145,000, 132,000, and 120,000 mol wt, respectively. Essentially the same values have been reported by Phillips and Foh Agin (26).

Gel densitometry was performed with a Gilford spectrophotometer equipped with a linear transport accessory (model 2410; Gilford Instrument Laboratories Inc., Oberlin, Ohio). Gels stained with Coomassie Blue R were scanned at 600 nm (27). The density of each protein band was determined by calculating the peak area on the recorder tracings obtained from the gel scans. Quantitative comparisons of glycoproteins based on the density of bands stained with either Coomassie Blue R or PAS reagent are made difficult by variation in the affinity of individual proteins for these stains as a result of differences in conformation and degree of glycosylation (26).

For this reason the sum of the densities of three platelet proteins—platelet myosin and two as yet unnamed nonmembrane proteins (labeled a and b in Fig. 1)—were used as a reference. The relative density of each of the membrane glycoprotein bands, 1a, 1ba, 1Iba, and III (15, 26) (Fig. 1) was determined by calculating the ratio of the density of that glycoprotein band to the sum of the band densities of the three protein standards in the same gel scan. These three platelet proteins were chosen as reference standards because (a) the level of platelet myosin, as reflected in the level of platelet thrombosthenin, does not vary significantly from one normal platelet preparation to another (30) and the level of thrombosthenin in thrombosthenic platelets is at least 95% of normal (31); (b) the levels of the two other nonmembrane proteins do not vary significantly when different normal platelet preparations are compared to thrombosthenic platelet preparations. The mean ratio of protein a (Fig. 1) to myosin in normal platelets was 0.32±0.08 (SD); in thrombosthenic platelets, 0.35±0.08. The mean ratio of protein b (Fig. 1) to myosin in normal platelets was 0.52±0.05; in thrombosthenic platelets, 0.59±0.10.

RESULTS

Reaction of 51Cr-labeled thrombosthenic platelets with anti-PlA1. Platelets from each of the five patients with thrombosthenia responded subnormally to the three anti-PlA1 antibodies (Fig. 2). Of the nine PlA1-positive normal donors used as controls, six were known to be homozygous, and three heterozygous, for the PlA1 allele. The low reactivity of the thrombosthenic platelets cannot, therefore, be ascribed to heterozygosity for this antigen. Platelets from thrombosthenic patients 4 and 5 reacted more strongly with anti-PlA1 than did platelets from patients 1, 2, and 3. After bromelain treatment of platelets, the contrast between patients 1, 2, and 3 and patients 4 and 5 became accentuated (Fig. 3); platelets from patients 4 and 5 reacted normally, whereas platelets from patients 1, 2, and 3 remained poorly responsive. Identical results were obtained with each of the three anti-PlA1 sera.

Sensitivity of 51Cr-labeled thrombosthenic platelets to other platelet antibodies. Platelets from each of the five thrombosthenic patients reacted normally with quinidine- and quinine-dependent antibodies (Fig. 4) and with the two autoantibodies from patients with ITP (not shown).

Inhibition of 51Cr lysis. The PlA1 content of platelets from patients 3, 4, and 5 was assayed by determining their ability to compete for platelet-specific antibody and thereby inhibit the lysis of 51Cr-labeled target platelets added subsequently (22, 24). As seen in Fig.
Insufficient numbers of platelets were available from patients 1 and 2 to perform this assay.

SDS-PAGE. Platelets from all five thrombasthenic patients exhibited a marked reduction in glycoproteins IIbα and III. The decrease in IIbα (the larger subunit obtained upon reduction of IIb in 10% 2-mercaptoethanol) and III (26) was evident on spectrophotometric scans of gels stained with Coomassie Blue R (Fig. 1). No significant variation is apparent in levels of proteins (a) and (b) or platelet myosin. Membrane proteins Ia and Ib also show little variation. Thrombin-sensitive protein varied significantly in platelets of normal subjects; the variability shown in Fig. 1 is not peculiar to thrombasthenia. Platelets from PIα-negative normal subjects contained normal amounts of glycoprotein IIbα and III. The relative densities of each of four membrane glycoproteins in the platelets of six normal subjects and five thrombasthenic subjects are presented in Fig. 6 which demonstrates (a) a significant decrease ($P < 0.0005$) in the levels of IIb and III in thrombasthenic platelets relative to normal, and (b) heterogeneity of this defect among the five thrombasthenic individuals reflected in significantly lower levels of IIb and III in patients 1, 2, and 3 than in patients 4 and 5 ($P < 0.025$).

DISCUSSION

The PIα antigen, originally designated Zw8, was first recognized by van Loghem and co-workers in 1959...
Weerdt et al. (32) have described an antibody to an antigen that appears to be PlAl. 0.02 ml of this antibody was incubated with 0.02 ml of anti-PlAl antibody for 2 hours at 37°C. Complement and 51Cr-tagged, PlAl-positive target platelets were then added and percent immune lysis (ordinate) was determined after an additional 2 hours of incubation as described in Methods. Inhibition curves shown for normal platelets are typical of those obtained with platelets from 10 normal individuals. Platelets from patient 3 failed to inhibit anti-PlAl in the highest concentration used. Platelets from patients 4 and 5 produced significant but subnormal inhibition. Platelets from a normal, PlAl-negative donor (not shown) behaved like platelets from patient 3.

(17), with an agglutinin present in the serum of a patient who developed severe thrombocytopenia after receiving a blood transfusion. Shulman et al. (16) subsequently detected antibodies of the same specificity in two additional patients with post-transfusion thrombocytopenia and established post-transfusion purpura as a specific disorder associated in nearly all cases with an alloantibody specific for the PlAl antigen. Utilizing complement fixation, they found the gene frequency of the allele coding for PlAl to be 0.87 and the frequency of PlAl in the general population to be 98%. The antigen appears to be restricted to platelets. Van der Weerdt et al. (32) have described an antibody that appears to react with an antigen allelic to PlAl.

Our observations demonstrate a relationship between thrombasthenia and expression of the PlAl antigen. That thrombasthenic platelets are not simply negative for PlAl on a genetic basis is indicated by: (a) contrasting reactions of these platelets and those of PlAl-negative normal individuals (Figs. 1–3); and (b) the statistical unlihood of choosing five successive PlAl-negative persons at random (the frequency of the PlAl-negative phenotype in the normal population is 0.02).3 The normal responsiveness of platelets from patients with thrombasthenia to quinidine- and quinine-dependent antibodies and to autoantibodies from the patients with ITP rules out the possibility that their platelets are unable to undergo immune cytolysis. The inhibition studies performed with platelets from patients 3, 4, and 5 (Fig. 5) confirm their reduction in PlAl content.

The correlation observed between the degree to which PlAl is expressed (Figs. 2, 3, and 5) and platelet

3 Patients 4 and 5 would have been typed as "PlAl-positive" by 51Cr release if a qualitative test had been performed using undiluted antibody and bromelain-treated target platelets, but as "negative" with untreated platelets and a weaker anti-PlAl typing serum.
content of membrane glycoproteins IIb and III among the thrombasthenic patients (Figs. 1 and 6) is consistent with the possibility that either IIb or III, or both, carry the PlA\(^1\) antigenic determinant. Alternative possibilities are that PlA\(^1\) resides on a third protein, not yet characterized, which is also deficient in Glanzmann’s disease or that deficiency of IIb and III may somehow affect the expression of PlA\(^1\) on the platelet surface. Regardless of the mechanism responsible for deletion of PlA\(^1\), our data suggest that thrombasthenia can be likened to several other disorders in which a membrane alloantigen is subnormally expressed. These are the En(a-) condition, in which erythrocytes of En(a-) individuals lack a major membrane glycoprotein (PAS-1 and part of PAS-2) which appears to carry the M (33) and possibly the Wright a and b alloantigens (34); chronic granulomatous disease in which granulocytes and erythrocytes lack Kx, a precursor in the biosynthetic pathway of the Kell blood group antigen system (35); and (probably) the Rh null anomaly of erythrocytes which is associated with mild hemolytic anemia (36). It is to be expected that thrombasthenic platelets will also be found to lack the antigen PlA\(^2\) (Zw\(^6\)) allelic to PlA\(^1\) (32, 37), but we did not have anti-PlA\(^2\) available to us to confirm this. Degos et al. (38) have described an antibody found in a patient with thrombasthenia which reacts by complement fixation with a platelet membrane glycoprotein of mol wt = 125,000. This antibody reacted equally well with platelets from PlA\(^1\)-positive and PlA\(^1\)-negative normal subjects, but failed to react with platelets from eight patients with thrombasthenia. It is likely that their antibody identifies a second marker, distinct from PlA\(^1\), which is present on one or both of the glycoproteins deleted in thrombasthenic platelets.

Our findings suggest that patients with “thrombasthenia” vary in respect to the degree to which PlA\(^1\) and proteins IIb and III are deleted. The observations summarized in Figs. 2, 3, and 5 indicate that in patients 1, 2, and 3, PlA\(^1\) is almost totally absent (<1% of normal), whereas platelets of patients 4 and 5 contain ~22 and 12% of the normal quantity of PlA\(^1\), respectively. The difference in PlA\(^1\) expression on platelets of the two groups of patients was accentuated when bromelin-treated platelets were used as targets in the cytolytic assay (Fig. 3). Further studies are required to determine whether the normal behavior of bromelin-treated platelets from patients 4 and 5 in this assay is merely a consequence of their increased sensitivity to complement-mediated cytolysis or reflects “unmasking” of additional quantities of PlA\(^1\) antigen by enzymatic treatment.

That thrombasthenia may be a heterogeneous condition has been suggested previously. A decreased content of ATP and decreased activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase have been found in platelets of some patients studied (39), but not in others (3, 5, 9). Variability in the response of platelets from four thrombasthenic subjects to ristocetin has been found (40), and apparent variation in the ability of thrombasthenic platelets to take up latex or Thorotrast (Fellows Manuf. Co., Inc., Detroit, Mich.) has been described (41). In the latter study, it was concluded that thrombasthenia might be classified into two varieties on the basis of abnormalities in cellular metabolism and/or membrane function. However, Degos et al. (38) failed to observe heterogeneity in eight thrombasthenic patients using their complement-fixing antibody and Phillips and Poh Agin (15), using gel electrophoresis, found the membrane protein abnormality to be uniform in thrombasthenic platelets from two families. Quantitation of membrane glycoproteins by scanning of stained gels has serious limitations, due to large measure to incomplete resolution of individuals bands and the variable degree to which individual proteins are glycosylated. Assay of the PlA\(^1\) alloantigen by inhibition of \(^{51}Cr\) release is precise (SE±10%), and the information obtained in this way, coupled with our cytolytic and electrophoretic studies, is consistent with the possibility that Glanzmann’s thrombasthenia is a heterogeneous disorder. Family studies and sequential studies in individual patients are now being undertaken to determine whether expression of PlA\(^1\) is constant in individual patients and to analyze its genetic control. It will also be of interest to study patients with the Bernard-Soulier abnormality whose platelets are deficient in membrane glycoprotein I (42).

ACKNOWLEDGMENTS

We wish to thank Dr. Fumito Takeka (Department of Biochemistry, Medical College of Wisconsin) for allowing us to use essential equipment for the scanning of polyacrylamide gels, Dr. Moses Schanfeld for his constructive criticism, Ms. Nancy Szatkowski for her capable technical assistance, and especially, Dr. David R. Phillips (Memphis, Tenn.) for sending us a preprint of his most recent publication on this subject (15) and for his suggestions and criticism.

This work was supported by grant HL-13629 from the National Heart, Lung, and Blood Institute.

REFERENCES

5. Jackson, D. P., E. E. Morse, P. D. Zieve, and C. L.

