Increased Glycosphingolipid Excretion Associated with Proteinuria

R. Reid Townsend, Roger M. Orth, Carolyn M. Clawson, Su-Chen Li, and Yu-Teh Li, Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana; Veterans Administration Hospital, New Orleans, Louisiana 70112; and the Delta Regional Primate Center, Covington, Louisiana 70433.

Abstract The urine of patients with proteinuria of various etiologies was examined to determine if proteinuria alone was associated with significant glycosphingolipiduria. In all cases of proteinuria examined, the level of glycosphingolipids in the urine was found to be markedly elevated. There was no evidence of a glycosphingolipid storage disorder in any case. It was concluded that significant glycosphingolipiduria may occur in proteinuria as well as in the glycosphingolipid storage disorders.

Introduction

With the identification of deficient enzymes (1) and improved methods of glycosphingolipid analysis (2), knowledge of the hereditary glycosphingolipidoses has advanced profoundly in recent years. Improved diagnostic methods for these diseases have been developed. These techniques have included assay of enzyme deficiency in leukocytes, cultured fibroblasts, plasma, and amniotic fluid (3). One of the major characteristics of the glycosphingolipidoses is the accumulation of glycosphingolipids in various tissues. Analysis of accumulated glycosphingolipids has proved very effective in diagnosis (4). In addition, it has been proposed that analysis of glycosphingolipids in the urinary sediment can be a useful adjunct in the diagnosis of a wide variety of glycosphingolipidoses including: Krabbe's leukodystrophy, Gaucher's, Fabry's, Sandhoff's diseases, and metachromatic leukodystrophy (5). Analysis of urinary sediment for trihexosylceramide and digalactosylceramide has been used to screen for hemizygotes and heterozygotes with Fabry's disease (5–12). In screening for patients with lipidoses it was found that both urinary sediment and supernate (sediment-free urine) of patients with proteinuria of various etiologies contained elevated levels of glycosphingolipids. These lipids included globoside, \((\text{GalNAcβ1→3Gal-β1→4Galβ1→4Glсβ→Cer})\); Trihexosylceramide, \((\text{Galα1→4Galβ1→4Glcβ→Cer})\); and lactosylceramide, \((\text{Galβ1→4Glcβ→Cer})\).

Methods

Voided urine samples were collected at 4°C at 12 h intervals and were centrifuged at 6,000 g for 30 min in a Sorval RC-2B refrigerated centrifuge (Ivan Sorvall, Inc., Norwalk, Conn.) using a GS-3 large capacity rotor. The sediment was collected. The pH of the supernate was then adjusted to 7.0. The supernate was concentrated fivefold with an Amicon DC-2 hollow fiber dialyzer/concentrator (Amicon Corp., Scientific Sys. Div., Lexington, Mass.) with an H10101 cartridge. The concentrated supernate was then lyophilized. Glycosphingolipids were isolated from both the lyophilized urinary sediment and supernate according to the method described by Desnick et al. (7). Glycosphingolipids were further purified by DEAE-cellulose chromatography according to Ledeen et al. (13). Separation and quantitation of glycosphingolipids by thin-layer chromatography were performed according to the procedures described (14, 15). Each glycosphingolipid was isolated in pure form by preparative thin-layer chromatography. Specific glucosidases were used to sequentially hydrolyze the saccharide units in the glycolipids (16). Various glycosidase activities in leukocytes were assayed according to the procedure of Wenger et al. (17). Urine from a patient with Fabry's disease was kindly provided by Dr. Robert Hurst, University of Alabama Medical Center, Birmingham, Alabama. Cases studied are presented in Table I.

Results

Fig. 1 shows the thin-layer chromatography of glycosphingolipids derived from the urinary sediment of a normal male subject (lane 1), a patient with classical Fabry's disease (lane 2), and case 1 (lane 3). The major glycosphingolipid excreted in the urine of a patient...
with Fabry’s disease is trihexosylceramide. Case 1 excreted significant amounts of trihexosylceramide as well as globoside. Normal control urinary sediment contained very little detectable glycosphingolipids. Globoside and trihexosylceramide were separately isolated in pure form by preparative thin-layer chromatography. Incubation of the globoside with jack bean β-N-acetylhexosaminidase (18) converted this glycolipid into trihexosylceramide; the trihexosylceramide in turn was converted into lactosylceramide and glucosylceramide by the actions of fig α-galactosidase (19) and jack bean β-galactosidase (20), respectively. Trihexosylceramide isolated from the urinary sediment of case 1 was also converted into lactosylceramide and glucosylceramide, sequentially, by the action of fig α-galactosidase and jack bean β-galactosidase. The structures for these two glycolipids were therefore concluded to be GalNAcβ1→3Galβ1→4Galβ1→4Glcβ1Cer and Galα1→4Galβ1→4Glcβ1Cer, respectively. If the patient was afflicted with Fabry’s disease, one should see a decrease of α-galactosidase activity. However, the activity of this as well as other leukocyte lysosomal glycosidases (β-galactosidase, α-mannosidase, and α-L-fucosidase) were found to be within the normal range. Because globoside contains β-linked N-acetylgalactosamine at the nonreducing end of the saccharide chain, the possibility that this patient may be deficient in β-N-acetylhexosaminidase was considered. With either p-nitrophenyl-β-N-acetylglucosaminide or p-nitrophenyl-β-N-acetylglactosaminide as substrates, no aberration in β-N-acetylhexosaminidase was detected. At autopsy, this patient was found to have primary amyloidosis with no evidence of glycosphingolipid accumulation in any major organ. Because this patient had extensive glomerular pathology by light microscopy (Table I) and a persistent proteinuria, we investigated the urine from several patients with proteinuria.

Fig. 2 shows the thin-layer chromatogram of glyco-
sphingolipids isolated from the urinary sediment of cases 1–3. It can be noted that the urinary sediment from these patients demonstrated high levels of glyco-
sphingolipids including globoside, trihexosylceramide, and lactosylceramide. We further examined the excretion patterns of glycosphingolipids in urinary supernate and urinary sediment of cases 4–7. As shown in Fig. 3, the 6,000 g supernate contained more glycosphingolipid from the 6,000 g sediment.

To determine if the glycosphingolipids found in the 6,000 g supernate are associated with membrane fragments, the 6,000 g supernate of case 4 was centrifuged at 100,000 g for 2 h. Glycosphingolipids were isolated

Table I

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Urinary protein</th>
<th>Clinical diagnosis</th>
<th>Kidney biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>M</td>
<td>0.6–4.8</td>
<td>Fabry’s disease</td>
<td>Glomerular hyalinization</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>F</td>
<td>0.6–18.0</td>
<td>Nephrotic syndrome</td>
<td>Chronic membranoproliferative glomerulonephritis with benign nephrosclerosis</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>M</td>
<td>2.0–5.5</td>
<td>Nephrotic syndrome</td>
<td>Lipoid nephrosis with focal glomerulosclerosis</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>M</td>
<td>6.0–7.7</td>
<td>Diabetes mellitus</td>
<td>No kidney biopsy, suspected diabetic nephropathy</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>M</td>
<td>3.2–4.8</td>
<td>Nephrotic syndrome</td>
<td>No kidney biopsy, suspected chronic glomerulonephritis</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>M</td>
<td>1.4–11.9</td>
<td>Nephrotic syndrome</td>
<td>Chronic proliferative glomerulonephritis</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>M</td>
<td>8.8–37.4</td>
<td>Nephrotic syndrome</td>
<td>Lipid nephrosis</td>
</tr>
</tbody>
</table>

Figure 1. Thin-layer chromatography of glycosphingolipids in the urinary sediment of normal (N), classical Fabry’s disease (F), and case 1. Standards (Std) are from top to bottom: trihexosylceramide, globoside, and Forssman hapten.
from the resulting 100,000 g supernate and sediment. As shown in Fig. 4, the 100,000 g supernate still contains ≈50% of the glycosphingolipids found in the 6,000 g supernate. The nature of the association of the "soluble" glycosphingolipids remains to be determined.

Table I and II summarize some pertinent clinical data of the cases studied. Table III shows the range of the various glycosphingolipids excreted in 24 h of the patients examined. For comparison, we have included the reported ranges of glycosphingolipids in the urinary sediment of normal controls and patients with Fabry's disease.

DISCUSSION

It has been proposed that analysis of the glycosphingolipids in the urinary sediment can be used in the diagnosis of various glycosphingolipidoses (5). In recent years, analysis of the urinary sediment has been extensively used as a screening technique in the diagnosis of patients with various lipidoses (5–12). In an attempt to confirm the clinical diagnosis of Fabry's disease in case

![Figure 2](image)

Figure 2. Thin-layer chromatography of glycosphingolipids in the urinary sediment of patients (cases 1, 2, and 3) with proteinuria. Standards (Std) are from top to bottom: lactosylceramide, trihexosylceramide globoside, and Forssman hapten.
order despite marked elevation of glycosphingolipids in the urinary sediment. Examination of other patients with proteinuria demonstrated that these patients also had elevated glycosphingolipid levels in the urine as shown in Figs. 2 and 3. Kidney biopsy (performed in all but two cases) revealed no evidence of a storage disorder.

Table III shows that the 24 h excretion of various glycosphingolipids in these patients with proteinuria overlaps the lower range of excretion of some Fabry hemizygotes and most Fabry heterozygotes. Patients with lipidoses excrete a large amount of a specific glycosphingolipid. Patients with proteinuria tend to excrete high levels of several glycosphingolipids such as globoside, trihexosylceramide, lactosylceramide, and to a lesser extent monohexosylceramide. Also, there is considerable variation from case to case in the ratio of each glycosphingolipid. Whether this pattern variation is related to the etiology in each case remains to be determined.

The source of glycosphingolipids in the above cases has not been ascertained. Two major contributing sources are possible: (a) from cellular elements of the urinary tract; and (b) from plasma via abnormal glomerular filtration. The membranes of erythrocytes and leukocytes could contribute significant amounts of globoside and lactosylceramide, respectively (21–23). Inasmuch as the kidney contains globoside and trihexosylceramide (24, 25), exfoliated renal tubular epithelium could contribute to the glycosphingolipiduria. Except for
cases 1 and 4 (Figs. 1–4), the glycosphingolipid pattern does not resemble that of normal kidney (24, 25, 26). Also, kidney is the only visceral organ which contains appreciable amounts of galactosylceramide in addition to glucosylceramide (24). The ratio of glucosylceramide to galactosylceramide is reported to be 1:0.6 (24). By using borate-impregnated thin-layer chromatography plates (27), it was found in cases 4 and 6 that the ratio of glucosylceramide to galactosylceramide was ≈1:0.7. The results suggest that the monohexosylceramide is renal in origin; however, the source of the other three major glycosphingolipids is not known.

The results presented above demonstrate that abnormal neutral glycosphingolipid excretion occurs in all cases of proteinuria examined as well as in the lipid storage disorders. Furthermore, the 24 h excretion in some cases of proteinuria is equal to that seen in lipodases.

ACKNOWLEDGMENTS

We are grateful to Dr. Glynn Dawson, Department of Pediatrics, University of Chicago, Chicago, Illinois, for his comments in preparing this paper, and to Dr. David Wenger, Department of Pediatrics, University of Colorado for verifying the exoglycosidase activities of leukocytes.

This work was supported in part by a grant (1-356) from the National Foundation March of Dimes and a grant (NS 09626) from the National Institutes of Health.

REFERENCES