Insulin Binding to Monocytes and Insulin Action in Human Obesity, Starvation, and Refeeding

RALPH A. DEFRONZO, VIJAY SOMAN, ROBERT S. SHERWIN, ROSA HENDLER, and PHILIP FELIG, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Abstract Insulin binding to monocytes and insulin action in vivo was examined in 14 obese subjects during the postabsorptive state and after starvation and refeeding. Tissue sensitivity to insulin was evaluated with the euglycemic clamp technique. The plasma insulin concentration is acutely raised and maintained 100 μU/ml above the fasting level, and plasma glucose is held constant by a variable glucose infusion. The amount of glucose infused is a measure of tissue sensitivity to insulin and averaged 285±15 mg/m² per min in controls compared to 136±13 mg/m² per min in obese subjects (P < 0.001). 125I-Insulin binding to monocytes averaged 8.3±0.4% in controls vs. 4.6±0.5% in obese subjects (P < 0.001). Insulin binding and insulin action were highly correlated in both control (r = 0.86, P < 0.001) and obese (r = 0.94, P < 0.001) groups. Studies employing tritiated glucose to measure glucose production indicated hepatic as well as extrahepatic resistance to insulin in obesity.

After 3 and 14 days of starvation, insulin sensitivity in obese subjects decreased to 69±4 and 71±7 mg/m² per min, respectively, whereas 125I-insulin binding increased to 8.8±0.7 and 9.0±0.4%. In contrast to the basal state, there was no correlation between insulin binding and insulin action. After refeeding, tissue sensitivity increased to 168±14 mg/m² per min (P < 0.001) whereas insulin binding fell to 5.0±0.3%.

We conclude that (a) in the postabsorptive state insulin binding to monocytes provides an index of in vivo insulin action in nonobese and obese subjects and, (b) during starvation and refeeding, insulin binding and insulin action changes in opposite directions suggesting that postreceptor events determine in vivo insulin sensitivity.

Introduction Obesity is the most frequent state of insulin resistance encountered in man. It is characterized by fasting hyperinsulinemia (1), an excessive insulin response to glucose (1-3), and resistance to the effects of both endogenous and exogenous insulin (2-4). The first step in the action of insulin is the binding of the hormone to a specific receptor on the cell surface (5). Recent studies have demonstrated that insulin resistance in obesity is associated with a decreased concentration of insulin receptors in the plasma membranes of adipocytes (6, 7), hepatocytes (8-10), cardiac and skeletal muscle (11, 12), and thymic lymphocytes (13) from obese animals. A similar decrease in the concentration of insulin receptors from adipocytes (14-16) and circulating monocytes (15, 17-19) from obese man has been described.

On the basis of these studies it has been suggested that decreased insulin binding to peripheral tissues and the liver is a major factor in the insulin resistance observed in obesity (17). Recently, Olefsky (15) reported that insulin binding to mononuclear cells from obese man accurately reflects altered insulin binding in adipose tissue. Less information is, however, available regarding the relationship between insulin binding and insulin action in intact man. With an insulin tolerance test, Harrison et al. observed a direct correlation between the in vivo glucose lowering effect of exogenous insulin and insulin binding by adipocytes obtained at surgery from obese subjects (14). Insulin-induced hypoglycemia, however, provokes the secretion of a variety of counterregulatory hormones (epinephrine, glucagon, cortisol, growth hormone) which may of themselves alter the effectiveness of insulin (20). The present investigation was consequently undertaken to correlate insulin binding to monocytes with the in vivo action of insulin in intact humans as de-
METHODS

Subjects and experimental protocol. Two groups of subjects were studied. The obese group consisted of 14 subjects (12 females and 2 males), 18–46 yr of age (mean age = 28.0 ± 1.7 yr), ranging from 138 to 265% of ideal body weight (mean = 193 ± 7%) (based on Metropolitan Life Insurance Co. tables, 1959). The normal group consisted of 14 subjects (5 females, 9 males), 21–44 yr of age (mean age = 29.0 ± 1.6 yr), ranging from 90 to 112% of ideal body weight. All subjects were consuming a weight maintaining diet containing at least 200 g of carbohydrate per day for 3 days before the initial study. Subjects consumed no medications for at least 4 wk before study. There was no family history of diabetes, and all the obese subjects had a normal oral glucose tolerance test.

Control and obese subjects were studied in the postabsorptive state at 8 a.m. after a 12-h overnight fast. Obese subjects were subsequently studied after 3 days (n = 9) and 14 days (n = 8) of total starvation (during which intake was limited to water, multivitamins, and potassium gluconate supplements as necessary to maintain the serum potassium within normal limits), and again after 10 days of refeeding with a diet containing 700 Cal (45% carbohydrate) per day (n = 8). The purpose and potential risks of the study were carefully explained to all subjects and written voluntary consent was obtained before their participation.

Insulin clamp study. Sensitivity to the in vivo action of insulin was determined by the euglycemic “insulin clamp” technique (21). Before each study a polyethylene catheter was inserted into an antecubital vein under local xilocaine anesthesia for administration of insulin and glucose. A second catheter was inserted into a hand vein for blood sampling. The hand was then inserted into a heated chamber in which the air temperature was maintained at 70 ± 2°C. This was done to insure arterIALIZATION OF venous blood (22). After a control period of at least 30 min, a prime plus continuous infusion of crystalline porcine insulin (Eli Lilly Co., Indianapolis, Ind.) was administered to obtain constant hyperinsulinemia (21). The priming dose was administered in a logarithmically falling manner over 10 min at which time the continuous insulin infusion was begun. The total amount of insulin infused during the priming period was twice that infused during subsequent 10-min intervals. The continuous infusion (42.6 mU/m² surface area per min) was maintained for 110 min. To prevent insulin adsorption to glassware and to the plastic infusion apparatus, infusates were prepared with the addition of 2 ml of the subject’s whole blood per 50 ml of infusate. The plasma glucose level was maintained at basal preinfusion levels by determination of the plasma glucose concentration every 5 min and the periodic adjustment of a variable infusion of a 20% glucose solution. The adjustment of the glucose infusion rate is based on a servo-control negative feedback principle (21). Under these steady-state conditions of constant euglycemia, all of the glucose infused (M) is taken up by cells and thus serves as a measure of the body’s sensitivity to the infused insulin.

Endogenous glucose production. During the insulin clamp, the effect of hyperinsulinemia on hepatic glucose production was examined in 5 subjects before and after 3 days of starvation by infusing [3-H]glucose (23). For 3 h before initiating the insulin infusion, each subject’s glucose pool was labeled by a primed continuous insulin infusion of [3-H]glucose (New England Nuclear, Boston, Mass.). The labeled glucose was administered as an initial intravenous priming dose (25 μCi) followed immediately by a continuous intravenous infusion at a rate of 0.25 μCi/min. Plasma samples for determination of glucose specific activity were taken at 30-min intervals for the first 2 h and at 10–15-min intervals for the subsequent hour. A steady-state plateau of glucose specific activity was achieved in all subjects during the 3rd h of [3-H]glucose infusion, and this plateau value was used to calculate basal hepatic glucose production. After 3 h of continuous [3-H]glucose infusion, the insulin infusion was begun as described above and the continuous infusion of [3-H]glucose was continued at the same rate. During the insulin infusion plasma samples for glucose specific activity were drawn every 15 min for the first 90 min and every 5–10 min thereafter.

131-I-Insulin binding study. Blood samples were obtained from obese (n = 10) and nonobese (n = 10) subjects for the study of insulin binding before initiation of the insulin infusion in the postabsorptive state, and in the obese subjects before the insulin infusion after 3 days (n = 9) and 14 days (n = 7) of fasting and after refeeding (n = 8). 90 ml of whole blood was drawn into heparinized syringes and immediately spun to obtain buffy coat as described by Gavin et al. (24). After removal of the plasma, theuffy coat was diluted 1:1 with phosphate-buffered saline, pH 7.4, layered onto Ficoll-Hypaque gradi- ents (Pharmacia Fine Chemicals, Piscataway, N. J.), and centrifuged as described by Boyum (25). The mononuclear cell layer was removed and diluted in 100 mM Hepes buffer, pH 8.0, to yield a final concentration of 5 × 10⁶ mononuclear cells per ml. Viability was assessed by trypan blue exclusion and was greater than 97%. The percentage of monocytes in this final preparation was determined by the nonspecific esterase method of Li et al. (26). This method gave results which were ~10% higher than with latex bead ingestion (27). The mono-ocyte content of mononuclear cell preparations averaged 14.1 ± 2.8% in control subjects and 13.6 ± 3.0% in obese subjects.

Moniodinated 131-I-insulin was prepared at sp act 150–200 μCi/μg by the modification of Freychet et al. (28) of the method of Hunter and Greenwood (29). 131-I-Insulin (0.2 mg/ml) was incubated with 4 × 10⁷ mononuclear cells per ml with one of two unlabeled insulin standards of the range of 0.2–100,000 ng/ml. The range of specific activities varied from 0.2 to 100,000 ng/ml with a final incuba- tion vol of 0.5 ml per assay tube. The incubation was carried out in Hepes buffer (100 mM Hepes, 10 mM dextrose, 120 mM NaCl, 1.2 mM MgSO₄, 15 mM Na acetate, 1 mM EDTA, 0.1% bovine serum albumin, pH 8.0) for 180 min at 22°C. After the 180-min incubation, duplicate 0.25-ml aliquots of the incubation mixture were transferred to microfuge tube and centrifuged at 10,000 rpm for 5 min in a Beckman Microfuge (Beckman Instruments, Inc., Fullerton, Calif.). The supernate was aspirated and the radioactivity in the cell pellet was counted. Nonspecific binding, as defined by the amount of 131-I-insulin bound to the cell pellet in the presence of 10⁴ ng/ml of insulin, was 0.3–0.5% of the total radioactivity for both normal and obese patients. The nonspecific binding was subtracted from total binding to give the specific binding. 131-I-Insulin specifically bound is expressed per 1 × 10⁷ mono- cytes.

Calculations. During the insulin clamp studies, the glucose infusion rate (M) was determined by calculating the mean value observed from 20–120 min. To calculate the steady-state plasma glucose and insulin concentrations during the insulin infusion, the mean of the values from 40–120 min

Insulin Binding and Sensitivity in Obesity 205
was employed. The metabolic clearance rate (MCR) of insulin was calculated by dividing the continuous insulin infusion rate (42.6 mU/m^2 per min) by the mean increment above basal in plasma insulin concentration during the 40–120-min time period.

Glucose production in the basal state was determined by dividing the [3-3H]glucose infusion rate (counts/min) by the steady-state plateau of [3-3H]glucose specific activity achieved during the last hour of the preinsulin infusion control period. Because renal glucose production is negligible in the postabsorptive state, the rate of glucose appearance was assumed to be equivalent to the rate of hepatic glucose production. After the insulin-glucose administration (euglycemic insulin clamp), a nonsteady-state condition in glucose specific activity exists and hepatic glucose production was calculated by Steele's equations in their derivative form (30) which permits the evaluation of continuous changes in the rates of glucose turnover. The value of 0.65 was used as the pool fraction in the present calculations (31). The determination of glucose turnover by the primed constant-infusion and pool-fraction technique has recently been validated for both steady and nonsteady states (32). The rate of endogenous glucose production was calculated by subtracting the glucose infusion rate (M) from the rate of glucose appearance (R) as determined by the isotopic tracer technique. All calculations were performed with a program written in BASIC on a Hewlett-Packard desk computer (Hewlett-Packard Co., Palo Alto, Calif.).

131I-Insulin binding data was calculated in three ways to emphasize different quantitative aspects of the binding interaction: (a) the percent of 131I-insulin specifically bound is plotted against the log of the insulin concentration. This analysis most closely represents the actual experimental conditions. (b) The insulin binding data was analyzed by Scatchard analysis (not shown) (33). This plot was found to be curvilinear and the binding capacity, or total concentration of receptor sites (Ro), is calculated from the point where the linear extrapolation of the curve intersects the horizontal axis. (c) Because insulin receptor sites are not independent of each other (34), the Scatchard plot for deriving receptor affinity may not be valid (34) and the data are, therefore, also analyzed by the "average affinity profile" plot (35). This plot displays the relationship between the average affinity for insulin (K) vs. the receptor occupancy (Y).

All data are presented as the mean±SEM. All statistical comparisons between the obese and control group were calculated by unpaired t test analysis (36). Coefficients of correlation were determined by standard procedures (36).

Analytical procedures. Plasma glucose was determined by the glucose oxidase method (Glucostat, Beckman Instruments, Inc.). Methods for the determination of plasma immunoreactive glucagon (with Unger antibody 30K) and insulin (37) and the specific activity of plasma glucose (23) have previously been described.

RESULTS

Euglycemic insulin clamp (Table I)

Nonobese control subjects. Plasma insulin concentration that was 13±1 μU/ml in the postabsorptive state rose during the insulin infusion to a steady-state concentration (40–120 min) of 105±6 μU/ml. The stability of the plasma insulin concentration is indicated by the coefficient of variation which averaged 10±1%. The calculated metabolic clearance rate of insulin was 497±38 ml/M^2 per min.

The fasting plasma glucose concentration was 91±1

TABLE I

Insulin, Glucose, and Glucagon Levels in the Basal State and during Euglycemic Hyperinsulinemia (Insulin Clamp) in Nonobese and Obese Subjects*

<table>
<thead>
<tr>
<th>Insulin</th>
<th>Glucose</th>
<th>Glucagon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal plasma insulin</td>
<td>Steady state plasma insulin</td>
<td>Coefficient of variation of plasma insulin</td>
</tr>
<tr>
<td>μU/ml</td>
<td>μU/ml</td>
<td>%</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Normal-weight, postabsorptive controls (14)</td>
<td>13±1</td>
<td>105±6</td>
</tr>
<tr>
<td>Obese, postabsorptive (14)</td>
<td>25±2</td>
<td>128±6</td>
</tr>
<tr>
<td>Obese, 3-day fast (9)</td>
<td>14±1**</td>
<td>121±7</td>
</tr>
<tr>
<td>Obese, 14-day fast (8)</td>
<td>18±3**</td>
<td>141±8</td>
</tr>
<tr>
<td>Obese, refed (8)</td>
<td>25±2</td>
<td>134±14</td>
</tr>
</tbody>
</table>

* Mean values±SEM are shown.
† Metabolic clearance rate of insulin.
‡ Mean of values at 40–120 min after initiation of insulin-glucose infusion.
§ Numbers within parentheses refer to number of subjects studied in each group.
$ Significantly different from normal-weight controls, P < 0.01.
** Significantly different from postabsorptive obese subjects, P < 0.01.
11 Significantly different from 3-day- and 14-day-fasted obese, P < 0.01.
mg/dl. During the period of hyperinsulinemia the plasma glucose concentration was maintained at 89±1 mg/dl with a coefficient of variation of 4.4±0.2%. The amount of glucose infused (M) was 285±15 mg/M² per min. Plasma glucagon fell by 10–20 pg/ml during the insulin infusion (Table I).

Obese subjects. As expected, the fasting plasma insulin concentration, 25±2 μU/ml, was significantly greater than in controls (P < 0.01). The prime-continuous insulin infusion resulted in a steady-state plasma insulin level of 128±6 μU/ml with a coefficient of variation of 11±1%. The increment in plasma insulin (103 ±5) was not significantly different from that observed in nonobese controls (92±6). The metabolic clearance rate of insulin was calculated as 425±20 ml/M² per min.

The fasting plasma glucose concentration was 92±1 mg/dl. During the period of hyperinsulinemia the plasma glucose was maintained at 91±2 mg/dl with a coefficient of variation of 3.8±0.3%. The amount of glucose infused (M) was 136±13 mg/M² per min, a reduction of 52% as compared to nonobese controls (P < 0.001).

As expected, after 3 days of total starvation the plasma insulin concentration decreased to 14±1 μU/ml and remained suppressed (18±3 μU/ml) at 14 days. The steady-state plasma insulin concentrations achieved during the insulin infusion were similar to those observed in the postabsorptive state (Table I). The metabolic clearance rate of insulin was 419±26 ml/M² per min at 3 days of fasting and 351±20 at 14 days of fasting. The latter value was significantly below that observed in postabsorptive normal subjects (P < 0.01) and postabsorptive obese subjects (P < 0.001).

The plasma glucose concentration decreased by 20–25 mg/dl during the fast. The amount of glucose infused (M) decreased by 49% to 69±4 mg/M² per min after 3 days of starvation (P < 0.001) and remained suppressed at 71±7 mg/M² per min after 14 days of starvation (P < 0.001 as compared to the postabsorptive state).

After refeeding, the fasting plasma insulin and glucose concentrations increased to 25±2 μU/ml and 93±1 mg/dl, respectively (P < 0.01 compared to 3 and 14 days of starvation). The rate of glucose metabolism (M), also increased to 168±14 mg/M² per min (P < 0.001 as compared to 3 and 14 days of starvation), but remained 41% below that observed in postabsorptive normal weight control subjects (P < 0.001).

As expected (38), basal plasma glucagon levels rose by 50–60 pg/ml in the obese subjects after a 3-day fast (P < 0.01) and declined to postabsorptive levels as fasting was continued for 14 days. During all four euglycemic insulin clamp studies (postabsorptive state, at 3 and 14 days of fasting, and after refeeding) the plasma glucagon concentration fell by 20–40 pg/ml (Table I).

Body weight in the obese group which was 113.2±6.5 kg before fasting, fell by 3.1±0.8 kg at 3 days and by 11.6±1.7 kg at 14 days of starvation. Body weight was unchanged after 7 days of hypocaloric refeeding.

Endogenous glucose production (Table II)

Basal glucose production was measured in seven control subjects in the postabsorptive state and in five obese subjects in the postabsorptive state and after 3 days of total starvation. Basal glucose production in the normal weight control subjects was 108±5 mg/M² per min and declined to 16±2 mg/M² per min during the euglycemic insulin clamp. The maximum decline was observed within 30 min after starting the insulin infusion and persisted throughout the duration of the study. In postabsorptive obese subjects, the basal glucose production, 107±2 mg/M² per min, was similar to controls and declined to 33±4 mg/M² per min after hyperinsulinemia. This was significantly less (69±2% vs. 85±3%, P < 0.01) than in nonobese controls. Furthermore, the time to reach maximum suppression did not occur until 60 min. After 3 days of starvation basal glucose production in obese subjects was significantly reduced to 69±4 mg/M² per min (P < 0.001). During the insulin infusion the percent fall in glucose production was comparable to that observed in postabsorptive obese subjects (70±4%) but was significantly below that observed in normal weight controls (85±3%, P < 0.02). On the other hand, the absolute fall in glucose production during the insulin clamp in 3-day-fasted obese subjects (44±3 mg/M² per min) was less than in postabsorptive obese subjects (74±6, P < 0.01).

125I-Insulin binding

Nonobese control subjects and obese subjects in the basal (postabsorptive) state. Insulin binding was

<table>
<thead>
<tr>
<th>Glucose production</th>
<th>Basal</th>
<th>Insulin clamp</th>
<th>Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/M²/min</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Normal-weight controls (7) §</td>
<td>108±5</td>
<td>16±2</td>
<td>85±3</td>
</tr>
<tr>
<td>Obese, postabsorptive (5) §</td>
<td>107±2</td>
<td>33±4</td>
<td>69±2</td>
</tr>
<tr>
<td>Obese, 3-day fast (5) §</td>
<td>69±4</td>
<td>25±3</td>
<td>70±4</td>
</tr>
</tbody>
</table>

* Mean values±SEM are shown.

§ Numbers within parentheses refer to number of subjects studied in each group.

§ P < 0.01 vs. normal-weight controls.

1 P < 0.001 vs. normal-weight control and vs. postabsorptive obese.

‡ P < 0.02 vs. normal-weight controls.

Insulin Binding and Sensitivity in Obesity 207

FIGURE 1 125I-Insulin binding to monocytes in nonobese and obese subjects. Mononuclear cells (4×10^7/ml) were incubated with 125I-insulin (0.2 ng/ml) at 22°C for 180 min in the absence of (initial point on the curve) and presence of increasing concentration of unlabeled insulin. Data are expressed per 1×10^7 monocytes/ml and are corrected for nonspecific binding. Shaded area represents data (mean±SEM) from 10 nonobese control subjects. In the obese group, each point represents mean of 10 (basal), 9 (3-day fast), 7 (14-day fast), and 8 (refeeding) subjects.

measured in 10 of the normal-weight control subjects who received euglycemic insulin clamp studies. At every insulin concentration 125I-insulin binding to circulating monocytes fell within a narrow range (Fig. 1). Scatchard analysis yielded curvilinear plots with insulin receptor concentrations that ranged from 13,000 to 16,000 sites per cell (Table III). The relationship between receptor affinity (K_e) for insulin and percent receptor occupancy (Y) is shown in Fig. 2 (average affinity profile plot). The highest, or "empty sites," affinity (K_e) ranged from 3.3 to 4.3/nM. With increasing receptor occupancy by insulin, K_e progressively decreases until the limiting low affinity state (K_I), 0.5–0.8/nM, is reached.

Insulin binding was measured in 10 obese subjects in the postabsorptive state (Fig. 1). The specific binding of 125I-insulin was 44% lower in obese subjects as compared to controls. Furthermore, at all insulin concentrations the amount of insulin bound was significantly less in obese subjects than in normal-weight control subjects ($P < 0.001$). On Scatchard analysis the plot was curvilinear and parallel to that from normal subjects, whereas the calculated binding capacity (sites/cell) was 55% lower than normal-weight controls ($P < 0.001$) (Table III). The average affinity profile plot (Fig. 2) indicated that receptor affinity was unaltered in the postabsorptive state in obese subjects. Both K_e (Table III) and K_I as well as the entire affinity profile fell within the range of the normal-weight control subjects. These data, in agreement with earlier work (15–17), suggest that in obesity the decrease in 125I-

TABLE III

<table>
<thead>
<tr>
<th>Influence of Obesity, Starvation, and Refeeding on Insulin Binding to Monocytes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Specific</td>
</tr>
<tr>
<td>binding</td>
</tr>
<tr>
<td>of 125I-insulin*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Normal-weight controls (10)$^</td>
</tr>
<tr>
<td>Obese</td>
</tr>
<tr>
<td>Basal (10)</td>
</tr>
<tr>
<td>3-Day fast (9)</td>
</tr>
<tr>
<td>14-Day fast (7)</td>
</tr>
<tr>
<td>Refeeding (8)</td>
</tr>
</tbody>
</table>

* Data are expressed as mean±SEM.
† Expressed per 10^7 monocytes/ml.
§ Represents total insulin binding capacity. Calculated by Scatchard analysis (33) as discussed in text.
¶ Represents "empty sites," or highest affinity. Calculated from average affinity profile method of De Meyts and Roth (35).
† Numbers in parentheses refer to number of subjects studied in each group.
insulin binding is due primarily to a reduction in binding capacity.

Obese subjects, fasting. After total starvation, insulin binding in obese subjects increased to the range found in normal controls (Table III, Fig. 1). However, the mechanism of the improvement in insulin binding differed at 3 and 14 days of fasting. After 3 days of starvation the specific binding of 125I-insulin in the obese group increased by 90% over the basal state and this was mainly because of a 134% increase in binding affinity (K_e, Table III) as shown by the average affinity profile plot (Fig. 2). In contrast, binding capacity remained virtually unchanged (Table III). The decrease in binding affinity was observed only at insulin concentrations less than 5 ng/ml.

In contrast to 3 days of starvation, after 14 days of starvation insulin binding was increased at all insulin concentrations to levels slightly greater than normal-weight control subjects (Fig. 1). When these binding data were subjected to Scatchard analysis (not shown) a curvilinear plot was obtained which was parallel to the data obtained in obese and normal subjects studied in the postabsorptive state. The calculated number of binding sites (Table III) was more than twofold greater than observed in postabsorptive obese or 3-day-fasted obese subjects ($P < 0.001$) and comparable to nonobese subjects (Table III). The average affinity profile plot (Fig. 2) indicated that receptor affinity (K_e), which had significantly increased after 3 days of fasting, had returned to values observed in normal-weight control subjects and in postabsorptive obese subjects (Table III). These data suggest that in obese subjects after a 14-day fast, receptor affinity is unaltered as compared to the postabsorptive state and that the increase in 125I-insulin binding is because of an increase in binding capacity.

Obese subjects, refeeding. After refeeding, insulin binding was decreased at all insulin concentrations as compared to normal-weight controls, and the binding curve resembled that of obese subjects studied in the postabsorptive state (Fig. 1). Scatchard analysis indicated that the decrease in binding was primarily because of a decrease in binding capacity (Table III). This was substantiated by the average affinity profile plot (Fig. 2) which fell within the range of the normal-weight control subjects. The calculated binding affinity (K_e) was similar to postabsorptive nonobese and obese subjects (Table III).

Relationship between insulin binding, plasma insulin concentration, and insulin action

As expected (15, 17, 39), an inverse relationship was demonstrable between the fasting plasma insulin concentration and insulin binding to circulating monocytes when the various experimental groups were compared (Fig. 3, $r = 0.90$, $P < 0.001$). In Fig. 4 the relationship between insulin binding and insulin action (as indicated by the amount of glucose infused during the euglycemic insulin clamp) in normal-weight and obese subjects in the postabsorptive state is shown. When the normal-weight subjects are examined alone, a significant direct linear correlation between insulin binding and insulin-mediated glucose uptake (M) was observed ($r = 0.86$, $P < 0.001$). A similar direct correlation was observed among the obese subjects in basal state ($r = 0.94$, $P < 0.001$), and also when both groups were combined ($r = 0.90$, $P < 0.001$). Thus, the decrease in insulin binding in obesity in the postabsorptive state was accompanied by a parallel reduction in glucose metabolism.

In contrast to the direct correlation between insulin binding and action in the postabsorptive state, during 3 days and 14 days of starvation, insulin binding increased (Table III) whereas insulin-mediated glucose uptake (M) fell by 52% (Table I). As a consequence no significant correlation between insulin binding and M was observed (3-day fast, $r = 0.36$, $P > 0.1$; 14-day fast, $r = 0.135$, $P > 0.1$, Fig. 4). During refeeding, insulin

FIGURE 2 Average affinity profiles of 125I-insulin binding to monocytes from nonobese and obese subjects. The average affinity (K_e) is equal to B/F/Ro-B. The percentage of the total concentration of receptor sites (Ro) that are occupied is given by $Y \times 100$, where $Y = B/Ro$. The data have been calculated from Scatchard plots.
binding fell (Table III), whereas insulin-mediated glucose metabolism (M) rose (Table I). However, among the refed subjects insulin binding and insulin action (M) tended to show a direct correlation ($r = 0.56, 0.05 < P < 0.1$) (Fig. 4).

DISCUSSION

The current study confirms and extends previous observations regarding sensitivity to insulin and receptor binding of insulin in obesity while providing new observations on the relationship between insulin binding and insulin action in such circumstances as obesity, starvation, and refeeding. To evaluate in vivo insulin action in intact humans, the euglycemic insulin clamp procedure (21) was employed. The euglycemic insulin clamp offers several major advantages in the assessment of tissue sensitivity to insulin: (a) because the plasma insulin concentration is raised to the same extent in all subjects, the insulin delivery to all experimental groups is similar; (b) because the plasma glucose concentration is maintained constant at basal level, the amount of glucose infused to maintain euglycemia, plus that produced endogenously, must equal the amount of glucose metabolized by all the tissues of the body; (c) quantitation of tissue sensitivity to insulin thus may be achieved while avoiding the complex neuro-endocrine response to insulin-induced hypoglycemia; (d) by combining the euglycemic insulin clamp with infusion of [3-3H]glucose, endogenous glucose production can be determined, and changes in the contribution of endogenous hepatic glucose production vs. altered peripheral sensitivity to insulin can be evaluated. Previous studies have shown that there is no net uptake of glucose by the liver with hyperinsulinemia so long as the blood glucose concentration is not elevated above basal levels.1

As expected from observations with other techniques (1–4), sensitivity to physiologic hyperinsulinemia was markedly reduced (by 52%) in postabsorptive obese subjects (Table I). In agreement with earlier studies employing the hepatic venous catheter (40), the reduction in overall insulin action was accompanied by a

decrease in insulin-mediated inhibition of hepatic glucose production (Table II). Of note is the fact that even when one accounts for the higher rate of endogenous glucose production during hyperinsulinemia in the obese subjects (33±4 mg/M² per min) as compared to nonobese controls (16±2 mg/M² per min), the total rate of glucose metabolized (endogenous glucose production plus exogenous glucose infusion) in the obese group (169±16 mg/M² per min) is markedly below that of controls (301±17 mg/M² per min, P < 0.001). These findings thus provide evidence of extrahepatic (fat and muscle tissue), as well as hepatic resistance to insulin in obesity.

Of particular interest in the present study was the relation between insulin action as determined by the euglycemic insulin clamp and insulin binding to monocytes. In the postabsorptive state, in normal-weight control as well as obese subjects, a significant correlation was observed between insulin-mediated glucose uptake (M) and insulin binding to circulating monocytes (Fig. 4). This relationship was similar whether the nonobese and obese groups were considered separately or collectively. Although the monocyte is not considered a target site of the metabolic effects of insulin, previous studies have shown that changes in insulin binding to monocytes reflect alterations in insulin receptors at target tissues such as the liver and fat cell (13, 17, 41). The current data provide evidence that in the postabsorptive (overnight fasted) state insulin binding to circulating monocytes constitutes an index of total body sensitivity to physiologic increments in plasma insulin in obese as well as normal-weight humans.

After 3 and 14 days of starvation and after refeeding, the close relationship between insulin binding to monocytes and the in vivo action of insulin was no longer demonstrable. With respect to insulin binding, an increase in insulin binding to monocytes was observed in obese subjects after a 3-day fast. In keeping with previous observations (17, 18), this increment was because of an increase in receptor affinity with no change in binding capacity (Table III, Figs. 1 and 2). Whether such changes in receptor affinity persist with more prolonged starvation has not previously been determined. After a 14-day fast, insulin binding remains increased, but the increment in binding at that point is entirely because of a rise in binding capacity as receptor affinity falls to postabsorptive values (Table III, Figs. 1 and 2). These data thus indicate that the mechanism of the increase in insulin binding in obese subjects during starvation is determined, at least in part, by the duration of the fast. The increase in binding capacity observed with prolonged (14-day) fasting is comparable to that observed with prolonged (6–12-wk) dieting associated with 10–17% reductions in body weight (18).

In contrast to the increase in insulin binding, the in vivo effects of hyperinsulinemia declined further in obese subjects during starvation. As compared to the postabsorptive state, insulin-mediated glucose uptake (M) fell by 49% after a 3-day fast and remained suppressed at 14 days (Table I). Because the absolute rate of endogenous glucose production during the insulin infusion was comparable in 3-day-fasted and postabsorptive obese subjects (Table II), the fall in M observed during starvation may be considered an index of extrahepatic (fat and muscle tissue) resistance to insulin. Although glucose production during the insulin clamp fell to comparable levels on a percent basis in postabsorptive and 3-day-fasted obese subjects (Table II), the absolute decline in glucose production induced by the insulin infusion after a three-day fast (44±3 mg/M² per min) was 40% less than that observed in postabsorptive subjects (74±6, P < 0.01). These data coupled with the fall in M suggest the presence of starvation-induced hepatic as well as extrahepatic resistance to insulin. These findings thus provide evidence that in addition to the possible contribution of diminished insulin secretion (42), starvation-induced glucose intolerance is at least in part a consequence of diminished sensitivity to insulin. Of note with regard to hepatic insensitivity to insulin are the higher gluca-
markedly obese (103±1.6 kg). This probably accounts for the failure to observe an increase in tissue sensitivity to insulin above postabsorptive levels. Although the cellular mechanism(s) underlying the changes in insulin action remains to be established, the data indicate that in vivo sensitivity to physiologic hyperinsulinemia is improved in obese humans during refeeding despite a decrease in insulin binding to circulating monocytes. Thus as in the case of starvation, postreceptor events appear to determine in vivo insulin action during refeeding. Despite the lack of correlation between insulin binding and insulin action after starvation and refeeding, the inverse relationship between insulin binding and ambient insulin concentration persists (Fig. 3) and is in keeping with previous findings indicating that insulin regulates its own receptor (8, 15, 17, 39).

Lastly, the metabolic clearance rate of insulin was unchanged after a 3-day fast but fell by 20% after a 14-day fast (Table I). Plasma insulin levels have been shown to fall during the initial 3 days of a fast but thereafter reach a stable plateau (42). The decline in insulin turnover thus may serve to maintain minimal levels of circulating insulin and thereby limit the rate of ketogenesis during prolonged starvation despite diminished β-cell secretion.

ACKNOWLEDGMENTS
The authors would like to thank Hana Cohen, Lois Mishiwiec, Mary Walesky, Andrea Belous, Ralph Jacob, and Aida Grozman for expert technical assistance in performing the studies and for the laboratory analyses.

This work was supported by the National Institutes of Health research grants AM-13256, AM-21158, and RR-00125.

REFERENCES

