The Influence of Fasting, Diabetes, and Several Pharmacological Agents on the Pathways of Thyroxine Metabolism in Rat Liver

ALAN BALSAM and SIDNEY H. INGBAR with the technical assistance of FRANKLIN SEXTON, Thorndike Laboratory, Harvard Medical School, and the Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215

ABSTRACT As judged from both paper and column chromatography, slices or homogenates of liver from rats fasted for 48 h displayed a lesser rate of generation of 125I-labeled 3,5,3'-triiodothyronine (T$_3$) from 125I-labeled thyroxine (T$_4$) than did preparations from normal chow-fed animals. A similar defect in the conversion of T$_4$ to T$_3$ in the livers of fasted animals was observed when preparations were incubated with substrate concentrations of T$_4$ so that T$_3$ generation could be assessed by radioimmunoassay. The effect of fasting could be prevented, wholly or in part, by administration of glucose in the drinking water to otherwise fasted animals, and the degree of prevention appeared to be proportional to the concentration of glucose employed. Diminished generation of T$_3$ from T$_4$ was similarly evident in the livers of animals with streptozotocin-induced diabetes mellitus, and this defect was overcome by the provision of insulin in vivo, but not in vitro. Decreased formation of T$_3$ from T$_4$ was also observed in preparations of liver from animals given dexamethasone, amiodarone, and propylthiouracil. In no case could these effects on the net formation of T$_3$ from T$_4$ be explained by effects of the experimental conditions on the degradation of the T$_3$ generated, as judged from the rate of degradation of exogenous 125I-T$_3$ measured in parallel incubates.

An analysis of the rate of disappearance of 125I-T$_4$ from reaction mixtures in relation to the rate of appearance of 125I-T$_3$ and 125I-iodide was employed to estimate the activity of the 5-monodeiodinating pathway of T$_4$ metabolism that leads to the formation of 3,3',5'-triiodothyronine (reverse T$_3$). Such estimates indicated that reverse T$_3$ formation was actively proceeding in the preparations studied, was slightly enhanced by fasting, was unaffected by dexamethasone and amiodarone, and was markedly inhibited by propylthiouracil.

In view of the similarities between the effect of these experimental manipulations on the generation of T$_3$ from T$_4$ by rat liver in vitro to their effects on the production rates and serum concentrations of T$_3$ in man, it is concluded that the rat liver system provides a suitable model for the study of factors that influence the conversion of T$_4$ to T$_3$ in man. In addition, the findings strongly indicate that this process, at least in the liver, is closely linked to the utilization of carbohydrate.

INTRODUCTION

Recent studies have provided convincing evidence that 3,5,3'-triiodothyronine (T$_3$)\(^1\) contributes a major portion to the overall metabolic action of the thyroid hormones within the peripheral tissues. It is evident, moreover, that much of the T$_3$ found in the blood of normal man arises, not by direct secretion from the thyroid gland, but rather from the peripheral monodeiodination of thyroxine (T$_4$) in its outer ring at the 5'-position. It is generally agreed that this reaction results in activation of the hormone molecule, as T$_3$ is several times more potent than T$_4$ in most all metabolic respects. An alternate pathway of peripheral T$_4$ metabolism involves monodeiodination of T$_4$ in its inner ring to yield 3,3',5'-triiodothyronine (reverse T$_3$, rT$_3$), a product that appears to be hormonally inactive, or nearly so. This pathway is, therefore, considered to be one leading to hormonal inactivation. Evidence in support of these conclusions has been extensively discussed in recent reviews (1, 2).

If the foregoing formulation is correct, then any situa-

\(^1\) Abbreviations used in this paper: PTU, propylthiouracil; T$_9$,3,5,3'-triiodothyronine; T$_4$, thyroxine; rT$_3$, reverse T$_3$.

Received for publication 9 November 1977 and in revised form 14 March 1978.

tion associated with an alteration in the relative activity of these two pathways should result in altered availability to the tissues of active thyroid hormone. As judged from concentrations of T3 and rT3 in serum, such shifts do indeed occur. A diversity of conditions has been shown to be associated with decreases in serum T3 concentration, among them starvation (3–6), acute or severe chronic illness (7, 8), operative stress (9, 10), anorexia nervosa (11–13), and the administration of glucocorticoids (14–16), the adrenergic blocking agents amiodarone (17), or propranolol (18), or propylthiouracil (PTU) (19, 20). In many of these situations there occurs an accompanying increase in serum rT3 concentration (4, 6, 8, 15, 17). In the case of patients with hepatic cirrhosis (21–23) or those undergoing starvation (24), decreased peripheral generation of T3 from T4 has been directly demonstrated. It would appear, therefore, that the pathway leading peripherally to the generation of T3 from T4 may be an important metabolic control point with respect to thyroid hormone action, one whose activity is subject to modification by factors as yet unknown.

In an effort to clarify the mechanisms that influence, and perhaps control, the processes by which T3 is generated from T4 in man, we have sought an in vitro model using animal tissue that would closely reflect the influence of factors known to or believed to affect the production of T3 from T4 in man. Preparations of rat liver have been shown in the present studies to fulfill this criterion, in that they displayed decreased generation of T3 from T4 when obtained from animals subjected to starvation, the diabetic state, or treatment with dexamethasone, amiodarone, or PTU. These and other influences on hepatic T3-neogenesis form the subject of this report. A portion of these findings has been presented in abstract form (25).

METHODS

Isotopes, chemicals, and diet. All hormones, whether isotopically labeled or unlabeled, as well as chemicals, drugs, and laboratory chow, were obtained from commercial sources.

Animals. Experiments were performed with the use of

1.51 I-T4 (sp act = 50–75 μCi/μg) and 131 I-T3 (sp act = 50–75 μCi/μg) were purchased from Abbott Diagnostics, Diagnostic Products (North Chicago, Ill.). 131 I-T4 (sp act = 85 μCi/μg) was purchased from Industrial Nuclear Corporation (St. Louis, Mo.). Stable T4, T3, and PTU were purchased from Sigma Chemical Co. (St. Louis, Mo.). NPH Iletin and regular insulin from Eli Lilly and Company (Indianapolis, Ind.). Streptozotocin was obtained from The Upjohn Company (Kalamazoo, Mich.), dexamethasone sodium phosphate (Decadron phosphate) from Merck, Sharp & Dohme (West Point, Pa.), and amiodarone [2-buty1-3,4’-diethynaminothoxy-3,5’-diodobenzoyl] benzofuranone] from La Bax, Brussels, Belgium. Pelleted laboratory chow, RMH 1000, was purchased from Agway-Country Foods, Agway Inc. (Syracuse, N. Y.).

The results obtained from Sprague-Dawley rats of the CD strain (Charles River Breeding Laboratories, Wilmington, Mass.). Although the weights of the animals used in the various experiments varied between 150 and 250 g, the rats were closely matched for weight within a single experiment. Unless otherwise stated, animals were maintained on an ad lib. regimen of tap water and a standard pelleted laboratory chow, comprising 14% protein, 6% fat, and 54% carbohydrate for 1 wk before and during experiments.

Fasting and glucose replacement. In these experiments, a group of the animals was totally deprived of laboratory chow (fasted animals) for 48 h before sacrifice whereas fed controls were allowed continued access to food. In some experiments, some of the fasted animals were given solutions of glucose in place of drinking water, starting at the time that food was withdrawn.

Experimental diabetes. Diabetes mellitus was induced by the administration of a single intravenous dose of streptozotocin, 6.5 mg/100 g body wt. 1 day later, all animals so treated developed hyperglycemia and glycosuria without ketonuria, which persisted, in the absence of treatment, until the end of the experiment. Some of the diabetic animals were given a subcutaneous dose of protamine zinc insulin (3 U/100 g body wt) daily on the 2nd, 3rd, and 4th days of the experiment. This dose resulted in correction or amelioration of glycosuria and polyuria. Both untreated and treated diabetic animals, as well as controls, were allowed free access to laboratory chow until they were killed on the 5th day of the experiment.

Laparotomy. Under light ether anesthesia, wide vertical and horizontal incisions were made extending into the peritoneal cavity of the rat; muscle layers were then apposed with sutures and skin flaps were stapled together. After the procedure, which lasted approximately 20 min, animals were provided chow, fasted, or supplied glucose water only for the following 48 h.

Drug treatments. In some experiments, animals were treated with dexamethasone, amiodarone, or PTU according to treatment schedules described in the appropriate portion of the results section.

Preparation and incubation of slices. At the termination of each treatment regimen, animals were killed by cervical sublaxation and the liver was quickly excised. With the aid of a Stadie-Riggs microtome, liver slices of uniform thickness, weighing ~200 mg, were prepared. After an initial weighing, slices from control and experimental animals were closely matched in weight by trimming. They were then suspended in vials containing 2 ml of Krebs-Ringer phosphate buffer, pH 7.4, enriched with either 131 I-T4 (1 μCi/ml; 0.020 μCi/ml or 131 I-T3 (1.3 μCi/ml; 0.025 μCi/ml). In experiments in which T3 generation was to be assessed by radioimmunoassay, media were enriched with stable T3 (5 μg/ml). Vials were either incubated under room air or were closed by rubber stoppers and gassed continuously with purified N2. Incubations were carried out at 37°C for 4 h. In most experiments, some vessels were incubated at 37°C, but without tissues, and others containing tissue slices were incubated at 0°C. No generation of 131 I-T3 from 131 I-T4 was observed in these controls, indicating the absence of artifactual conversion of T4 to T3 either during incubation or during chromatography.

At the end of incubation, vessels were plunged into cracked ice, and, when cold, the slices were homogenized in their own medium. Homogenates were then mixed with outdated blood bank plasma to inhibit any further metabolism of T4 and the mixture was frozen and kept for 1 wk at most until paper chromatographic analysis was performed.

Preparation and incubation of homogenates. Pieces of liver were homogenized in Krebs-Ringer phosphate (1:3,
wt/vol). Homogenates were enriched with 125I-T$_3$ (1 μCi/ml) or 125I-T$_4$ (1.3 μCi/ml) and incubated under room air or N$_2$ for 4 h, as described above for tissue slices, previous experiments having shown that generation of T$_3$ from T$_4$ increased in a linear manner during the first 6 h of incubation. In most experiments, control vessels containing homogenates were comparably incubated at 0°C. At the end of incubation, homogenates were mixed with outdated blood bank plasma (1:2) and the mixtures were frozen until chromatographic analysis was performed.

Paper chromatography. Homogenates were thawed and mixed vigorously, and 10-ml aliquots were applied to Whatman 3 MM filter paper strips together with carrier iodide, T$_3$, T$_4$, and, in some instances, rT$_3$, or tetraiodothyroacetic acid. Chromatograms were developed in a descending hexane, tertiary amyl alcohol, 2 N ammonium (1:10:11) solvent system. After development and drying of the chromatographic strips, iodothyronines were localized by fluorescent light, and iodide by staining with 0.1% palladium chloride. Zones corresponding to carriers, as well as to the origin, were excised and counted in a well-type scintillation counter. Preliminary experiments revealed that >98% of the 125I in the entire strip was present in these zones. Radioactivity in a given zone was calculated as a percent of the total 125I in these areas. Values for the percentage generation of the several products of T$_4$ metabolism were always corrected for the percentage contamination by each in the substrates employed as assessed by paper chromatography. In the case of substrate 125I-T$_3$, 95% of the total radioactivity was T$_4$, between 0.5 and 0.5% was T$_3$, and ~2% was 125I-iodide. Substrate 125I-T$_4$ was at least 95% pure and contained from 0.5 to 0.8% 125I-iodide.

Sephadex chromatography. In a number of instances, the generation of 125I-T$_3$ from 125I-T$_4$, in liver slices incubated in air was assessed by chromatography on columns of Sephadex G-25 superfine in a modification (26) of the method described by Green (27). Incubation mixtures comprising slices homogenized in their media were diluted with human plasma (1:9, vol/vol) containing 8-anilino-1-naphthalene sulfonic acid (9 mg/ml) and marker 125I-T$_3$. The resulting mixture was applied to a 25 X 2-cm column containing preswollen Sephadex. The 125I-T$_3$ peak was clearly separated from substrate 125I-T$_4$. The T$_3$ generated was measured as the fractional contribution of the counts in the T$_3$ peak to the total counts eluted.

Stable T$_3$ and T$_4$ assays. The concentrations of T$_3$ and T$_4$ in rat plasma were measured directly by radioimmunooassay and competitive binding techniques, respectively. In some experiments, the generation of stable T$_3$ from T$_4$ in liver slices was measured using a radioimmunoassay technique to assess the quantity of T$_3$ formed. After incubation in air, slices were homogenized in their media and then extracted with 5 vol of 95% ethanol. In separate studies with 125I-T$_3$, this was shown to extract >95% of the T$_3$ present. 10 or 20 μL of extract was rapidly evaporated under nitrogen, the T$_3$ was solubilized in rat serum freed of T$_4$ by charcoal adsorption, and the T$_3$ content was assayed. Preliminary studies indicated that 10-20 μL of tissue extract incubated without substrate T$_4$ could be introduced into the radioimmunoassay without influencing the configuration of the standard curve. Negligible generation of T$_3$ from T$_4$ was detected in simultaneously incubated tissue-free blanks.

Statistical evaluation of data. In experiments with two groups of animals, statistical analysis was performed using the Student's t test. When three or more treatment groups were studied simultaneously, a two-way analysis of variance was performed. Duncan's Multiple Range Test was then applied to identify significant differences among specific groups (28).

RESULTS

The major purpose of these studies was to examine the effects of a variety of experimental manipulations on the generation of T$_3$ from T$_4$ in rat liver. In each experiment with 125I-T$_4$, however, the disappearance of labeled T$_4$, and generation of labeled iodide, origin material, tetraiodothyroacetic acid, rT$_3$, and conjugates of the iodothyronines was also examined. Detectable quantities of tetraiodothyroacetic acid, rT$_3$, and conjugates were not evident, only labeled T$_3$, iodide, and origin material being seen. The generation of labeled origin material ranged from 1 to 6% of added 125I-T$_4$, was not materially altered by any experimental manipulation, and will not be described further. For purposes of brevity, results with respect to the generation of iodide will not be discussed, except when significant changes in the generation of this product were seen.

Effects of fasting and glucose feeding. Generation of 125I-T$_3$ from 125I-T$_4$ was markedly reduced in slices of liver from fasted animals, whether incubated in air or in nitrogen (Fig. 1). This effect was completely prevented by providing 25% glucose in place of drinking water to animals whose food had been withdrawn. Indeed, in some experiments, the rate of T$_3$-neogenesis was greater in livers from glucose-fed than from chow-fed animals, but this difference was not statistically significant. In liver slices, generation of 125I-T$_3$ was slightly, but not significantly, greater when incubations were conducted under nitrogen than when room air was employed.

Studies in slices from the same animals revealed that the changes in apparent 125I-T$_3$ generation induced by fasting and by glucose replacement could not be explained by differences in the rate of deiodination of T$_3$, as judged from the disappearance of added 125I-T$_3$, since T$_3$ disappearance was either the same or less rapid in slices from fasted animals than in those from fed controls (Fig. 1).

Entirely comparable results with respect to the effects of fasting and glucose replacement were observed in homogenates of rat liver, regardless of whether incubations were conducted in air or under nitrogen (Fig. 2). Here, however, as previous workers have found in rat kidney (29), a much greater generation of 125I-T$_3$ under anaerobic rather than under aerobic conditions was observed. Again, differences

4 For the experiments shown in Table I, the percentage generation of 125I-labeled origin material can be calculated from the formula [A-(B + C)].
among the three experimental groups in respect to the rate of degradation of added 125I-T_3 could not explain the differences that were observed in the generation of 125I-T_3 from 125I-T_4.

In the case of homogenates incubated under nitrogen, fasting was associated with significant decreases of about 50% both in the disappearance of 125I-T_3 from the reaction mixture and in the generation of 125I-labeled iodide.

The ability of glucose replacement to prevent the reduction in T_3 generation seen in livers from fasted animals was related to the concentration of glucose provided in the drinking water. In studies of liver slices incubated in air, in vivo administration of 1% glucose had no effect, whereas both 5 and 25% glucose significantly increased T_3 generation to values higher than those seen in slices from fasted animals. Moreover, generation of T_3 from T_4 was greater when 25%, rather than 5%, glucose was administered (Fig. 3).

In contrast to the effects of glucose administration in vivo, enrichment of suspending media with glucose (5 mM), with or without insulin (0.001–1 μM), had no effect on the generation of T_3 from T_4 by liver slices from fasting animals (data not shown).

To validate the data obtained by paper chromatography of specimens incubated with 125I-T_4, two groups of experiments were performed. In the first, 125I-T_3 generation by rat liver slices was assessed by chromatography of reaction mixtures on Sephadex columns, and the values obtained were compared to those obtained by paper chromatography. Close agreement between the two methods of analysis was noted, and fasting was again associated with decreased generation of T_3 (Fig. 4).

In the second group of experiments, radioimmunoassay was employed in place of isotopic assay to assess the effects of fasting and glucose replacement on T_3 generation by rat liver slices incubated in
air (Fig. 5). The results obtained were completely confirmatory of those obtained by the isotopic technique.

Effect of thyroid hormone replacement on the response to fasting. Since it is known that thyroid function decreases in the fasted rat, studies were undertaken to determine what role, if any, hypothyroidism might play in the decreased generation of T3 from T4 seen in the livers of animals fasted for 48 h. In confirmation of previous findings, a 48-h fast was associated with a highly significant decrease ($P < 0.001$), both in serum T4 concentration (control, 4.3 ± 0.2 µg/dl; fasted, 1.4 ± 0.2 µg/dl) (mean±SE) and in serum T3 concentration (control, 39.6 ± 1.4; fasted, 10.8 ± 1.4 ng/dl).

Despite these changes, administration of two daily doses of either T4 (1.5 µg/100 g body wt) or T3 (0.5 µg/100 g body wt) during the 48-h period of fasting failed to influence the reduction in 125I-T3 generation from 125I-T4 seen in liver slices of matched animals not given exogenous hormone (data not shown).

Effect of experimental diabetes. Rats given streptozotocin and allowed free access to food became manifestly diabetic 2 days later and remained so during the ensuing 3 days. As compared to findings obtained in controls at that time, liver slices obtained from diabetic rats displayed greatly reduced generation of 125I-T3 from 125I-T4 (Fig. 6). This effect was almost completely reversed by the administration of protamine zinc insulin (3 U/100 g body wt) daily during the last 3 days of the experiment. However, no reversal of the impairment in T3 generation was observed when liver slices from diabetic rats were incubated in media containing glucose (5 mM) and insulin (1 µM).

The effects of diabetes and of insulin replacement on the apparent generation of 125I-T3 from 125I-T4 could not be explained by an alteration in the rate of T3 degradation, as judged from the disappearance of added 125I-T3 in vessels containing matched slices (Fig. 6). Untreated diabetes was associated with a small, but not statistically significant, decrease in the disappearance of 125I-T3 from the reaction mixture. Moreover, when T3 degradation by liver slices from diabetic animals treated with insulin in vivo was compared to that of liver slices from diabetic animals incubated with insulin in vitro, a significantly ($P < 0.05$) slower T3 disappearance was evident in the latter group.

Effect of laparotomy. Groups of five animals were fasted, provided laboratory chow, or supplied glucose in the drinking water for 48 h after laparotomy, whereas unoperated controls were maintained on parallel regimens. Mean values for the percent generation of T3 from T4 in liver slices from control and operated animals, respectively, were: chow-fed, 4.3±0.3 vs. 4.8±0.7; fasted, 2.3±0.3 vs 1.9±0.2; glucose-fed, 4.6±0.3 vs. 4.7±0.6. Analysis of variance confirmed to the characteristic effects of the dietary regimens, but demonstrated no effect of laparotomy.

Effects of various drugs on T3 generation from T4 (Table I). An approximate 50% inhibition of T3 generation from T4 was observed in liver slices from animals given 1.0 mg of dexamethasone subcutaneously daily for 3 days before sacrifice. However, no effect on 125I-T4 disappearance or generation of labeled iodide was observed.

Profoundly inhibited generation of 125I-T3 from 125I-T4 was seen in liver slices from chow-fed animals given amiodarone as a 0.1% solution in 25% glucose for 3 days in place of the drinking water. Amiodarone also produced a slight, but statistically insignificant, decrease in 125I-T4 disappearance and a slight, but significant, decrease in the generation of labeled iodide.

PTU, when given in the drinking water as a 0.05% solution in 25% glucose for 3 days, almost completely abolished the generation of 125I-T3 from 125I-T4 by liver slices. Concomitantly, disappearance of 125I-T4 and generation of 125I-labeled iodide were markedly inhibited.

Effect of various drugs on the metabolism of T3 (Table II). Animals treated with dexamethasone and PTU displayed slight, statistically insignificant reductions in the rate of disappearance of T3, whereas those given amiodarone showed no change. Significantly decreased generation of 125I-iodide from added 125I-T3 was observed after treatment with all three agents.

Figure 3 Generation of 125I-T3 from 125I-T4 by liver slices of fasted animals maintained on varying concentrations of glucose in the drinking water for 48 h. Incubations were performed in room air. Numbers below the bars indicate the concentration of glucose in the drinking water.
FIGURE 4 Assessment of ¹²⁵I-T₃ generation from ¹²⁵I-T₄ by column chromatography of reaction mixtures on Sephadex G-25 superfine. Liver slices from rats fasted for 48 h or from fed controls were incubated with ¹²⁵I-T₄ and then homogenized in their media and homogenates were subjected to chromatography either on columns of Sephadex or on filter paper using a hexane-tertiary amyl alcohol-ammonia solvent system (HTA). Shown in the figure are elution patterns obtained during column chromatography of specimens from fed or fasted animals. Values for the percent generation of T₃ from T₄ as judged from paper chromatography (HTA-T₃) are compared to those obtained from column chromatography (Sephadex-T₃).

DISCUSSION

In the present studies, we have sought to determine whether the rat liver constitutes a reasonable animal tissue model in which to study the factors that influence the peripheral conversion of T₄ to T₃ in man.

For this purpose we have determined the effect in this tissue of a variety of experimental manipulations that have been shown to inhibit the conversion of T₄ to T₃ in man, as judged from changes in serum T₃ concentration, T₃ production rate, or both. The data suggest that rat liver slices or homogenates are valid models, since excellent concordance was observed between changes in T₃ generation from T₄ by rat liver preparations and alterations in T₃ metabolism in man in response to starvation or to the administration of dexamethasone, amiodarone, and PTU.

The apparent inhibitory effect of these experimental manipulations on T₃ generation from T₄ cannot be explained by an effect on the degradation of the T₃ generated, at least as judged from the metabolism of exogenous T₃ within these systems. Degradation of exogenous T₃ was slow, and was retarded, rather than accelerated, by the factors that decreased T₃ generation.

In previous studies of the generation of T₃ from T₄ by animal tissues in vitro, either paper chromatog-
graphic analysis of preparations incubated with radioiodine-labeled T₄ or radioimmunoassay of preparations enriched with unlabeled T₄ has been used as a means of assessing T₃ generation (29–34). In the present studies, we have mainly employed the isotopic-paper chromatographic technique, and have validated the results obtained both by column chromatography of isotopically labeled preparations and by radioimmunoassay.

Few specific conclusions can be drawn as to the mechanisms by which the various experimental manipulations inhibit T₃ generation from T₄. The similar effects of starvation and streptozotocin diabetes are not surprising, perhaps, in view of the variety of metabolic alterations common to both, including insulinopenia, and diminished activity of a variety of enzymes associated with glucose metabolism (35, 36). Similarly, the ability of glucose administration to prevent the effect of fasting, and of insulin in vivo to reverse the effect of experimental diabetes, suggests that, in the liver at least, the metabolism of glucose is somehow related to the process of T₃ formation. A relationship between glucose metabolism and the generation of a cofactor necessary for T₃ formation is suggested by our finding that the T₃-generating activity of broken cell systems from the livers of fasted rats is restored to normal by enrichment with an NADPH-generating system (isocitrate; isocitrate dehydrogenase; NADP, 0.1 mM).²

The question arises as to whether T₃-neogenesis is specifically linked to carbohydrate utilization or whether it is more generally related to the caloric adequacy of the diet. Evidence that it is not solely a function of caloric intake is provided by studies conducted in our laboratory (data not reported) which

TABLE I

The Metabolism of ¹³¹I-T₄ in Slices of Rat Liver³

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of animals</th>
<th>Measured values</th>
<th>Derived values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(A) ¹³¹I-T₄ degradation (% added T₄)</td>
<td>(B) ¹³¹I-T₃ generation (% added T₃)</td>
</tr>
<tr>
<td>Fasting</td>
<td>18</td>
<td>18.4±1.3</td>
<td>3.0±0.3</td>
</tr>
<tr>
<td></td>
<td>Exp. 18</td>
<td>18.0±1.2</td>
<td>1.6±0.2</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4</td>
<td>30.8±2.0</td>
<td>6.5±0.5</td>
</tr>
<tr>
<td></td>
<td>Exp. 4</td>
<td>24.5±1.6</td>
<td>3.7±0.4</td>
</tr>
<tr>
<td>Dexameth-</td>
<td>6</td>
<td>36.5±3.4</td>
<td>5.1±0.5</td>
</tr>
<tr>
<td>asone</td>
<td>Exp. 6</td>
<td>36.4±3.4</td>
<td>2.7±0.4</td>
</tr>
<tr>
<td>Amiodar-</td>
<td>5</td>
<td>34.9±2.8</td>
<td>6.3±0.8</td>
</tr>
<tr>
<td>one</td>
<td>Exp. 5</td>
<td>26.1±1.6</td>
<td>0.5±0.02</td>
</tr>
<tr>
<td>PTU</td>
<td>5</td>
<td>29.7±1.4</td>
<td>7.0±0.08</td>
</tr>
<tr>
<td></td>
<td>Exp. 5</td>
<td>14.0±0.6</td>
<td>0.6±0.04</td>
</tr>
</tbody>
</table>

* Data shown represent mean±SE. See text for precise description of experimental manipulations.

¹ P < 0.05.

² P < 0.01.

³ P < 0.001.

Factors Affecting the Pathways of Thyroxine Metabolism in Rat Liver
The Metabolism of 125I-T3 in Slices of Rat Liver*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Treatment group</th>
<th>No. of animals</th>
<th>T_3 degradation (% added T_4)</th>
<th>T_4 iodide generation (% added T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting</td>
<td>Control</td>
<td>6</td>
<td>20.6±0.8</td>
<td>16.9±1.0</td>
</tr>
<tr>
<td></td>
<td>Exp.</td>
<td>6</td>
<td>19.4±1.8</td>
<td>13.5±1.5</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Control</td>
<td>7</td>
<td>27.3±1.0</td>
<td>20.1±0.6</td>
</tr>
<tr>
<td></td>
<td>Exp.</td>
<td>7</td>
<td>23.7±1.3</td>
<td>16.2±1.2§</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Control</td>
<td>4</td>
<td>19.8±1.7</td>
<td>17.2±1.8</td>
</tr>
<tr>
<td></td>
<td>Exp.</td>
<td>5</td>
<td>16.5±2.8</td>
<td>11.0±1.9†</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>Control</td>
<td>6</td>
<td>20.4±2.6</td>
<td>13.7±1.5</td>
</tr>
<tr>
<td></td>
<td>Exp.</td>
<td>6</td>
<td>19.5±1.9</td>
<td>7.2±0.9§</td>
</tr>
<tr>
<td>PTU</td>
<td>Control</td>
<td>6</td>
<td>20.4±2.6</td>
<td>13.7±1.5</td>
</tr>
<tr>
<td></td>
<td>Exp.</td>
<td>6</td>
<td>16.3±0.4</td>
<td>5.5±0.5§</td>
</tr>
</tbody>
</table>

* Data shown represent mean±SE. See text for precise description of experimental manipulations.
† $P < 0.05$.
§ $P < 0.01$.
‡ $P < 0.001$.

125I-rT3 was looked for, but never detected, in chromatographic analyses of the reaction mixtures containing labeled T_4. This is probably the result of the extreme rapidity with which rT3 is itself degraded in tissue systems (38). This being the case, we have attempted to utilize the ancillary data that we have obtained to assess the relative activities of the T_3- and rT3-generating mechanisms and the manner in which they were affected by the experimental manipulations that were studied. In so doing, we have made the limiting assumption that deiodination of labeled T_3 generated from labeled T_4 is negligible and hence does not influence significantly either apparent T_3 generation or the formation of labeled iodide. If that assumption is made, then estimates of the activity of 5-monodeiodinating pathway, both absolute and relative to that of the 5’-monodeiodinating pathway, can be made.

Since neither conjugates nor deaminated derivatives of T_4 were observed, then the fractional disappearance of 125I-T4 from the reaction mixtures must have represented the total proportion of added T_4 converted to T_3 and rT3. Under the assumption that T3 formed undergoes no deiodination, all 125I-iodide generated in excess of that which could be accounted for by the generation of T_3 must represent 125I-iodide that has passed from T_4 through the rT3 pathway. Hence, it was possible to obtain an estimate of the activity of this pathway. We have designated this as “excess iodide formation,” and have calculated this function as percent 125I-iodide formed minus percent 125I-T3 generated. This function always comprised a substantial fraction of the T_4 added and indeed always exceeded in magnitude by at least several-fold the measured fraction of T_3 generated (Table I). Activity of the T_3-generating pathway as a fraction of overall T_4 deiodination can be calculated as the ratio, percent T_3 generation/percent T_4 degradation; that of rT3 pathway as the ratio, percent excess iodide/percent T_4 degradation; the the activities of the two pathways relative to one another as ratio, percent excess 125I-iodide/percent 125I-T3 generation.

When the current data are examined in this way, several patterns of response to the various experimental manipulations employed emerge (Table I). Fasting decreased T_3 generation, but did not alter significantly either T_4 degradation or iodide generation. Hence, excess iodide generation increased. This indication of a significant, though small, increase in rT3

*It is theoretically possible that a portion of the excess iodide might have arisen from cleavage of the ether linkage of T_4, with deiodination of the outer-ring product of this reaction. Significant activity of any such pathway in rat liver has been excluded, however, by our failure to recover labeled diiodothyrosine when biosynthetically derived, randomly labeled T_4 was incubated with liver slices in the presence of an inhibitor of iodotyrosine deiodinase, diiodotyrosine (39), in concentrations sufficient to abolish deiodination of added 125I-diiodotyrosine.
production in vitro as a result of starvation, as well as the clear evidence of an increase in the ratio of 5-
monodeiodination/5'-monodeiodination, is in accord
with the findings of recent studies on the effects of
starvation on rT₃ production rates in man (24, 40).

The apparent effect of diabetes differed slightly
from that of starvation. T₄ disappearance and total
iodide generation were decreased slightly, though not
significantly, and no evidence of an absolute increase
in 5-monodeiodination was seen, as excess iodide for-
mation was unchanged. Monodeiodination at the 5'-
position (T₄ generation) as a function of total T₄
degradation was significantly decreased, whereas 5-
monodeiodination, either in relation to total T₄ degra-
dation or to T₃ generation, was increased, though not
significantly so.

The effects of dexamethasone and amiodarone were
qualitatively similar to those of diabetes in that, al-
though T₃ generation was inhibited, no evidence was
obtained that rT₃ formation was increased.

The effects of PTU were strikingly different from
those of other experimental manipulations examined.
As others have found in studies of T₃ formation
in the whole rat (41), PTU given in vivo greatly in-
hibited T₃-neogenesis in liver slices. In addition, PTU
also appeared to inhibit 5-monodeiodination, as
judged from estimates of excess iodide formation. The
effect on 5-monodeiodination was less, marked than
the inhibition of T₃ generation, however, since the
ratio of excess iodide formation/T₃ generation was
greatly increased.

The finding that PTU inhibits the inner-ring pathway
of T₄ metabolism is in accord with data recently
reported, showing that PTU inhibits the conversion
of T₄ to 3,3',5'-T₂, a metabolite formed largely via the
rT₃ pathway in rat liver homogenate (42).

From the above, it emerges that all the manipula-
tions studied resulted in decreased T₃ generation,
but that starvation may have enhanced rT₃ formation;
diabetes, dexamethasone, and amiodarone did not af-
flect rT₃ formation appreciably, while PTU inhibited rT₃
formation, but less markedly than it inhibited the
formation of T₃.

The calculations from which these conclusions are
drawn are based upon the assumption that the ¹²³I-T₃
generated from ¹²³I-T₄ does not undergo significant
deiodination. It is very unlikely that this is the case,
however, since some deiodination of exogenous ¹²³I-T₃
was always observed. Deiodination of endogenously
generated T₃ would, by the present methods of cal-
culation, lead to overestimates of "excess iodide for-
mation," a function of the activity of the rT₃ pathway. How-
ever, as judged from the only source of information
available, i.e., the rate of deiodination of exogenous
¹²³I-T₃, this factor could not have accounted for more
than a small proportion of excess iodide formation,
since, in relation to the magnitude of these derived
values, the proportionate conversion of T₄ to T₃ and
the proportionate deiodination of added T₃ were quite
small.

For these reasons, the quantitative values of the
derived functions must be regarded as approximations
only. Nevertheless, we consider them to be, in the
main, qualitatively reliable and productive of the only
available evidence concerning the activity of the inner-
ing monodeiodinating pathway of T₄ metabolism in
vitro and the influence thereon of a variety of factors
that affect outer-ring monodeiodination.

The findings provide strong evidence that the inner-
and outer-ring monodeiodinating pathways for T₄ are
biochemically distinct from one another, a conclusion
consonant with studies which demonstrate divergent
effects of both starvation and chronic liver disease on
the production rates of T₃ and rT₃ in man (23, 24).

ACKNOWLEDGMENTS

Data analysis was performed, in part, on the PROPHET
System, a national computer resource sponsored by the
Chemical/Biological Information Handling Program, National
Institutes of Health.

This work was supported in part by research grant
AM-18416 from the National Institute of Arthritis, Metabolism
and Digestive Diseases, and by grant RR-01032 from the
General Clinical Research Centers Program of the Division
of Research Resources, National Institutes of Health.

REFERENCES

F. Azizi, R. A. Arky, S. H. Ingbar, and L. E. Braverman.
1974. The effect of starvation on the concentration and
binding of thyroxine and triiodothyronine in serum and
on the response to TRH. J. Clin. Endocrinol. Metab. 39:
191–194.
4. Vagenakis, A. G., A. Burger, G. J. Portnay, M. Rudolph,
J. T. O’Brien, F. Azizi, R. A. Arky, P. Nicoed, S. H.
Ingbar, and L. E. Braverman. 1975. Diversion of peripheral
thyroxine metabolism from activating to inactivating paths-
Metab. 41: 191–194.
hormones in adult patients with protein-calorie malnutri-
6. Spaulding, S. W., I. J. Chopra, R. S. Sherwin, and S. S.
Lyall. 1976. Effect of caloric restriction and dietary
composition on serum T₄ and reverse T₄ in man. J.
High incidence of decreased serum triiodothyronine
concentration in patients with nonthyroidal disease. J.
Solomon. 1975. Reciprocal changes in serum concentra-
tions of 3,3',5'-triiodothyronine (reverse T₃) and 3,3',5'-
triiodothyronine (T₂) in systemic illnesses. J. Clin. Endo-
crinol. Metab. 41: 1043–1049.
9. Burr, W. A., E. G. Glach, R. S. Griffiths, R. Hoffenberg,
H. Meinhold, and K. W. Wenzel. 1975. Serum triiodothy-

Factors Affecting the Pathways of Thyroxine Metabolism in Rat Liver 423