Evidence that Increased Circulating 1α,25-Dihydroxyvitamin D is the Probable Cause for Abnormal Calcium Metabolism in Sarcoidosis

NORMAN H. BELL, PAULA H. STERN, ELIZABETH PANTZER, TUSHAR K. SINHA, and HECTOR F. DELUCA, Departments of Medicine and Pharmacology, Indiana University Medical School and Veterans Administration Medical Center, Indianapolis, Indiana 46202; Department of Pharmacology, Northwestern University Medical School, Chicago, Illinois 60611; and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706

ABSTRACT Mean plasma 1α,25-dihydroxyvitamin D [1α,25(OH)2D] was significantly increased and serum parathyroid hormone was suppressed in three patients with sarcoidosis and hypercalcemia. Prednisone lowered the mean plasma 1α,25(OH)2D to normal range and corrected the hypercalcemia. To elucidate the mechanism for the increased sensitivity to vitamin D in this disorder, the effects of orally-administered vitamin D2 were determined in seven normal subjects, four patients with sarcoidosis and normal calcium metabolism and three patients with sarcoidosis and a history of hypercalcemia who were normocalcemic when studied. Serum and urinary calcium, serum 25-hydroxyvitamin D (25-OHD), plasma 1α,25(OH)2D and, in some studies, calcium balance were measured. Vitamin D2, 250 μg a day for 12 d, produced little, if any, change in mean plasma 1α,25(OH)2D and in urinary calcium in the normals and in the patients with normal calcium metabolism. In contrast, vitamin D2 produced increases in plasma 1α,25(OH)2D from concentrations which were within the normal range (20–55 pg/ml) to abnormal values and increased urinary calcium in two patients with abnormal calcium metabolism. In an abbreviated study in the third patient, vitamin D2, 250 μg a day for 4 d, also increased plasma 1α,25(OH)2D abnormally from a normal value. There was a highly significant correlation between plasma 1α,25(OH)2D and urinary calcium. Serum 25-OHD and serum calcium remained within the normal range in all subjects and patients. These findings provide evidence that the defect in calcium metabolism in sarcoidosis probably results from impaired regulation of the production and(or) degrada-

INTRODUCTION

Abnormal calcium metabolism in sarcoidosis is characterized by enhanced intestinal absorption of the ion and hypercalciuria with or without hypercalcemia, which may be associated with renal stones, nephrocalcinosis, and impaired renal function (1–8). Patients with sarcoidosis exhibit increased sensitivity to small doses of vitamin D, which are ineffective in normal subjects (1, 4–6). The observation that serum antirachitic activity has been shown to be within the normal range (3, 5) has led to the conclusion that the abnormal calcium metabolism in sarcoidosis results not from hypervitaminosis D but from increased sensitivity to vitamin D (3, 5).

It is known that vitamin D is converted by the liver to 25-hydroxyvitamin D (25-OHD)1 (9), which in turn undergoes 1α-hydroxylation by the kidney to form 1α,25-dihydroxyvitamin D (1α,25(OH)2D) (10, 11), the most potent metabolite of the vitamin that augments the intestinal absorption of calcium (11) and stimulates bone resorption (12).

The mechanism for the abnormal sensitivity to vitamin D in sarcoidosis has not been determined. In the present work evidence is presented that the defect in calcium metabolism results from increases in circulating 1α,25(OH)2D.

1Abbreviations used in this paper: PTH, parathyroid hormone; 25-OHD, 25-hydroxyvitamin D, 1α,25(OH)2D, 1α,25-dihydroxyvitamin D.
METHODS

Eight normal adult men ranging in age from 20 to 70 yr and eight patients with sarcoidosis, four men and four women ranging in age from 24 to 63 yr, were studied. They were hospitalized on the Clinical Research Center of the Indiana University Medical School and were given a constant daily diet and fluid intake. Fasting serum samples were collected at intervals of 4 d and were analyzed for calcium (13), 25-OHD and parathyroid hormone (PTH). Plasma was also obtained for \(1_a,25(OH)_2D\). 24-h urine collections and, in some studies, 4-d fecal pools were obtained. Diet, urine, and stools were analyzed for calcium (13). Vitamin \(D_2\) (Winthrop Laboratories, New York) in propylene glycol was given daily as a single oral dose. \(1_a,25(OH)_2D_2\) synthesized by methods previously reported (14), was made up as a sterile solution in propylene glycol. It was given as a single intravenous or oral morning dose. Three patients were studied both while hospitalized at the Indiana University Hospital and as outpatients. In these individuals, fasting samples were obtained for creatinine as well as for calcium, PTH, 25-OHD, and \(1_a,25(OH)_2D\). Serum creatinine was measured by AutoAnalyzer (Technicon Instruments Corp., Tarrytown, N. Y.).

Serum 25-OHD was measured by a competitive serum protein-binding method (15); in most instances, values were obtained after chromatography on Sephadex LH-20 (Pharmacia Fine Chemicals, Inc., Piscataway, N. J.) (16). In our laboratory, the normal range without prior chromatography is from 10 to 80 ng/ml and with chromatography is from 8 to 61 ng/ml. Results obtained without chromatography are so noted in the text.

Plasma \(1_a,25(OH)_2D\) was measured by bioassay as previously described (17, 18). Samples were either extracted with dichloromethane and chromatographed on Sephadex LH-20 in the solvent system Skellysolve B (Skelly Oil Co., Tulsa, Okla.): chloroform:methanol (9:1:1) or with benzene, which was then washed with 0.1 M phosphate buffer, pH 10.5 (17). Most of the samples were processed by the latter method. The extracts were then further fractionated by high pressure liquid chromatography on \(\mu\)Porsil (Waters Associates, Inc., Milford, Mass.) with the solvent system 13% isopropanol in n-hexane. In this system \(1_a,25(OH)_2D\) elutes with \(1_a,25(OH)_2D_2\) (17-19). The fractions that contained both metabolites were collected. Recovery was determined by addition to the serum of \([26,27-^3H]1_a,25(OH)_2D\). \(1_a,25(OH)_2D\) was then measured by release of \(^{45}Ca\) from fetal rat bones in organ culture (17, 18). Each serum sample was assayed at two dilutions and the value for each sample and standard was the mean of four or six replicate samples (18). Because in this system \(1_a,25(OH)_2D_2\) and \(1_a,25(OH)_2D_3\) are equipotent in causing release of \(^{45}Ca\) (20), and because fractions that contained both metabolites were collected, the assay measures the total amount of \(1_a,25(OH)_2D\). The mean value in normal subjects is 33±2 pg/ml and range is 20 to 55 pg/ml (n = 16). The 95% confidence values (mean±2 SD) are 18 to 48 pg/ml. The interassay variation is 9.1% (n = 17).

In several studies plasma was assayed for \(1_a,25(OH)_2D\) in patients during treatment with prednison. Samples were obtained 8 or more h after the last dose of the steroid. In view of the known effects of steroids to inhibit bone resorption in this assay system (21) and the demonstration that prednison is rapidly converted to prednisolone in man (22, 23), additional studies were carried out. Both steroids were clearly separated from \(1_a,25(OH)_2D\) during high pressure liquid chromatography in the system described above. It was also demonstrated that an extract of plasma from one of the patients given prednison did not inhibit the release of \(^{45}Ca\) produced by added \(1_a,25(OH)_2D\) in cultured rat bones.

Serum \(1_a,25(OH)_2D\) was measured by radioimmunoassay as previously described (24, 25) with two antisera, which predominantly measure the carboxy-terminal portion of the molecule. In the first assay, antiserum from chicken No. 9 (kindly supplied by Dr. E. Slatopolsky, Washington University School of Medicine, St. Louis, Mo.) was used at a final concentration of 1:20,000 and highly purified bovine PTH (Inolex Corp., Biomedical Div., Glenwood, Ill.; lot 155258, 971 U/mg) was the standard. PTH was detectable in 85% of normal subjects and the normal range is from undetectable (<150 pg/ml) to 550 pg/ml (24, 25). In the second assay, antiserum from chicken 77125 developed in this laboratory was employed at a final concentration of 1:10,000 and highly purified bovine PTH (Inolex Corp.; lot 1508 D003, 867 U/mg) was the standard. PTH was detectable in over 98% of normal subjects and the normal range is from undetectable (<100 pg/ml) to 540 pg/ml (n = 66).2 The intraassay and interassay variations are 12 and 16.7%, respectively.

Student's \(t\) test was used to determine the significance of differences of paired or unpaired samples. Correlation coefficient and Student's \(t\) test were carried out with a Hewlett-Packard calculator (model 9810A, Hewlett-Packard Co., Palo Alto, Calif.).

RESULTS

Eight of the nine patients had the diagnosis of sarcoidosis confirmed histologically (Table I). Patient B, who had never had a biopsy, had a history of hypercalcemia, granulomatous disease on chest x-ray, and a negative skin test for tuberculosis. Five of the other patients also had a history of hypercalcemia and one of these had kidney stones.

Three patients had hypercalcemia, one of them on two separate occasions (Table II). Serum PTH was either undetectable (patients G and H) or in the low normal range (patient I). Plasma \(1_a,25(OH)_2D\), determined in two samples in each patient, was either elevated or in the upper range of normal. Mean plasma \(1_a,25(OH)_2D\) was 62±6 pg/ml in these patients, a value significantly higher (\(P < 0.001\)) than that of 33±2 pg/ml obtained in normal adult subjects (n = 16) and was reduced significantly by prednison to 26±4 pg/ml (\(P\)

2 Bell, N. H. Unpublished observations.

TABLE I

Clinical Findings in Patients with Sarcoidosis

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Biopsy</th>
<th>Hypercalcemia*</th>
<th>Renal stones*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>26</td>
<td>M</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>64</td>
<td>F</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>63</td>
<td>M</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>57</td>
<td>F</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>49</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>48</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>24</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H</td>
<td>59</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>I</td>
<td>22</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* By history.

1a,25-Dihydroxyvitamin D and Sarcoidosis 219
<0.02). Prednisone lowered the mean serum calcium from 13.3±0.5 to 9.7±0.1 mg/dl (P < 0.01). Serum 25-OHD was abnormally increased in patient G who had had exposure to sunlight while playing golf during the summer (he denied having taken vitamin D) and it remained elevated after treatment with prednisone.

Serum creatinine was increased with hypercalcemia in each of the patients and was lowered after correction of the hypercalcemia by prednisone (Table II). In patient H, renal function was severely impaired and improved substantially with treatment.

In view of the known abnormal sensitivity to vitamin D of patients with sarcoidosis (1, 4–6), the effects of vitamin D$_2$, 250 μg(10,000 IU)/d for 12 d, were compared in seven normal subjects and in seven patients with sarcoid and a normal serum calcium.

In the normal subjects and patients with normal calcium metabolism, vitamin D$_2$ produced very little change in mean plasma 1$_2$25(OH)$_2$D, which remained within the normal range (Table III), or mean serum and urinary calcium (Table IV). Mean serum 25-OHD remained within the normal range in both the normals and patients (Table III). Whereas the increases in mean plasma 1$_2$25(OH)$_2$D and mean urinary calcium were statistically significant (P < 0.05) in the four patients, the actual differences were quite modest, averaging 14 and 21%, respectively.

Three patients (including patient G) previously had had hypercalcemia and had been treated with prednisone so that at the time of study their serum calcium was normal. The interval after the last dose of steroid ranged from 3 d in patient F (who had received a 4-d course) to over 1 yr in patient E. Patient G had received prednisone, 5 mg every other day for 6 mo, at the time of evaluation. The drug was not given during the study.

In patient E (Fig. 1), vitamin D$_2$ increased serum 25-

Table II

<table>
<thead>
<tr>
<th>Patient</th>
<th>Serum calcium</th>
<th>Serum PTH</th>
<th>Serum 25-OHD</th>
<th>Plasma 1$_2$25(OH)$_2$D</th>
<th>Serum creatinine</th>
<th>Prednisone</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>13.6</td>
<td>—</td>
<td>129*</td>
<td>66</td>
<td>1.5</td>
<td>60</td>
<td>17</td>
</tr>
<tr>
<td>H</td>
<td>12.7</td>
<td><150†</td>
<td>9</td>
<td>73</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>13.8</td>
<td>156†</td>
<td>8</td>
<td>43</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>169</td>
<td>5</td>
<td>61</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>334</td>
<td>—</td>
<td>21</td>
<td>1.5</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

* Determined without preparative chromatography (14).
† Normal range, <100–542 pg/ml (n = 66).
‡ Normal range, <150–550 pg/ml (23).

Table III

<table>
<thead>
<tr>
<th>Days*</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>13</th>
<th>1</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum 25-OHD</td>
<td>ng/ml</td>
<td>pg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normals A</td>
<td>24</td>
<td>32</td>
<td>41</td>
<td>51</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>24</td>
<td>19</td>
<td>12</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>D</td>
<td>61</td>
<td>47</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>E</td>
<td>15</td>
<td>21</td>
<td>29</td>
<td>11</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>F</td>
<td>14</td>
<td>12</td>
<td>41</td>
<td>28</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>G</td>
<td>351</td>
<td>50‡</td>
<td>60‡</td>
<td>43‡</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Patients</td>
<td>27±6</td>
<td>31±5</td>
<td>37±6</td>
<td>29±6</td>
<td>30±3</td>
<td>31±2</td>
</tr>
</tbody>
</table>

* Vitamin D$_2$, 250 μg/d, was given orally from days 1 through 12.
† Determined without preparative chromatography (13).
‡ P < 0.05 day 1 vs. day 13.
TABLE IV
Effects of Vitamin D$_2$ on Serum and Urinary Calcium in Normal Subjects and Patients with Normal Calcium Metabolism

<table>
<thead>
<tr>
<th></th>
<th>Serum calcium</th>
<th>Urinary calcium*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/dl</td>
<td>mg/d</td>
</tr>
<tr>
<td>Days 1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Normals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>B</td>
<td>10.1</td>
<td>9.3</td>
</tr>
<tr>
<td>C</td>
<td>9.1</td>
<td>9.6</td>
</tr>
<tr>
<td>D</td>
<td>9.5</td>
<td>9.2</td>
</tr>
<tr>
<td>E</td>
<td>8.7</td>
<td>10.0</td>
</tr>
<tr>
<td>F</td>
<td>10.0</td>
<td>10.1</td>
</tr>
<tr>
<td>G</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>9.5±0.2</td>
<td>9.6±0.1</td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>B</td>
<td>9.7</td>
<td>10.2</td>
</tr>
<tr>
<td>C</td>
<td>9.4</td>
<td>10.1</td>
</tr>
<tr>
<td>D</td>
<td>9.0</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>9.3±0.2</td>
<td>9.6±0.4</td>
</tr>
</tbody>
</table>

* Represents the mean of 4 d.
† Vitamin D$_2$, 250 µg/d, was given orally from days 1–12.
§ P < 0.05.

OHD from 11 ng/ml (day 5) to as high as 24 ng/ml (day 17) and plasma 1$_{25}$,25(OH)$_2$D from 29 pg/ml (day 5) to 58 pg/ml (day 9) and 74 pg/ml (day 17). Mean urinary calcium increased from 190±22 (SE) mg/d (days 5 through 8) to 379±23 g/d (days 13 through 16) (P < 0.02). Fecal calcium decreased during vitamin D$_2$ and serum calcium remained within the normal range. In patient F (Fig. 2), vitamin D$_2$ increased plasma 1$_{25}$,25(OH)$_2$D from 23 pg/ml (day 1) to as high as 132 pg/ml (day 9). Serum 25-OHD remained within the normal range. Mean urinary calcium increased from 287±9 mg/d (days 1–4) to 406±31 mg/d (days 9 through 13, P < 0.05). Serum calcium remained normal and fecal calcium did not change. In patient G (Fig. 3), vitamin D$_2$ given for only 4 d increased plasma 1$_{25}$,25(OH)$_2$D from 33 pg/ml (day 1) to 86 pg/ml (day 5). Serum 25-OHD was 26 ng/ml (day 1) and 21 ng/ml (day 5). Serum and urinary calcium stayed within the normal range. Thus, in three of the patients who had had hypercalcemia, vitamin D$_2$ increased plasma 1$_{25}$,25(OH)$_2$D from values that were within the normal range to values that were clearly abnormally elevated. Serum 25-OHD and serum calcium remained within the normal range. When given for a sufficient period of time in two patients, vitamin D increased urinary calcium significantly. The increases in plasma 1$_{25}$,25(OH)$_2$D had occurred after 4 d of treatment with vitamin D$_2$ in each

![Figure 1](image1.png)

Figure 1 Effects of vitamin D$_2$ on serum calcium, serum 25-OHD, plasma 1$_{25}$,25(OH)$_2$D, and calcium balance in patient E with sarcoidosis. 25-OHD was determined without prior chromatography.

![Figure 2](image2.png)

Figure 2 Effects of vitamin D$_2$ on serum calcium, serum 25-OHD, plasma 1$_{25}$,25(OH)$_2$D, and calcium balance in patient F with sarcoidosis.
patent and always preceded the increases in urinary calcium.

There was no correlation between serum calcium and plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) in the patients either in the presence or absence of hypercalcemia. However, there was a highly significant correlation between plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) and urinary calcium in the normals and patients given vitamin D (Fig. 4). The correlation was also significant for the patients with or without abnormal calcium metabolism \((r = 0.713, P < 0.01) \) as well as for the patients with abnormal calcium metabolism alone \((r = 0.772, P < 0.01) \).

Studies were carried out to compare the effects of \(\text{I}_1,25(\text{OH})_2\text{D}_3 \) on serum and urinary calcium in normal subjects and patients to those produced in the patients by endogenous \(\text{I}_1,25(\text{OH})_2\text{D}_3 \) (Table V). \(\text{I}_1,25(\text{OH})_2\text{D}_3 \), given at doses of 1, 2, and 4 \(\mu \text{g/d} \) for 4 d at each dose, produced marked increases in urinary calcium in both the normal subjects and patients but did not increase the serum calcium abnormally. The changes were comparable whether the \(\text{I}_1,25(\text{OH})_2\text{D}_3 \) was given orally or intravenously. Thus, exogenously administered \(\text{I}_1,25(\text{OH})_2\text{D}_3 \) produced increases in urinary calcium that were comparable to those produced by endogenous \(\text{I}_1,25(\text{OH})_2\text{D} \) in the patients from endogenous sources and in the doses used did not produce hypercalcemia.

DISCUSSION

Three patients were studied when hypercalcemic and showed suppression of serum PTH and significant increases in mean plasma \(\text{I}_1,25(\text{OH})_2\text{D} \). Prednisone lowered the mean plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) significantly and corrected the hypercalcemia and serum PTH returned to the normal range. Cushard et al. (26) also observed suppression of serum PTH in six patients with sarcoidosis and hypercalcemia and the return of serum PTH to normal after correction of the hypercalcemia with prednisone.

PTH appears to be a major regulator of the renal production of \(\text{I}_1,25(\text{OH})_2\text{D} \) in man; plasma values for the metabolite are increased in primary hyperparathyroidism and decreased in hypoparathyroidism (27–29). The findings of increased plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) despite functional hypoparathyroidism in the patients with hypercalcemia are all the more striking in view of these considerations. They suggest that plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) in patients with sarcoidosis and abnormal calcium metabolism is regulated by factors other than PTH.

Whereas vitamin D in modest doses did not alter the calcium metabolism or plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) in the normals or patients with normal calcium metabolism, it increased plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) and urinary calcium abnormally in the patients with a history of hypercalcemia without increasing their serum calcium. This lack of hypercalcemia is attributed to the low calcium

FIGURE 3 Effects of vitamin D\(_3\) on serum calcium, serum 25-OHD, plasma \(\text{I}_1,25(\text{OH})_2\text{D} \), and urinary calcium in patient G with sarcoidosis.

FIGURE 4 Relationship between plasma \(\text{I}_1,25(\text{OH})_2\text{D} \) and urinary calcium in normal subjects and patients given vitamin D.
intake (see below) in view of reports that show that serum calcium may vary with dietary intake of the ion in sarcoidosis (1, 4, 5). In similar studies, exogenously administered 1α,25(OH)2D3 produced comparable increases in urinary calcium without causing hypercalcemia. In fact, our studies were carried out with a low calcium diet to prevent possible hypercalcemia and its consequences on renal function.

Fractional intestinal absorption of calcium has been demonstrated to be increased in patients with sarcoid who have hypercalcitria and not hypercalcemia, and to correlate with urinary calcium (8). In our studies, plasma 1α,25(OH)2D did not correlate with serum calcium either in the absence or presence of hypercalcemia but correlated strongly with urinary calcium. There are a number of possible reasons for this lack of correlation. In primary hyperparathyroidism, another disorder characterized by increases in plasma 1α,25(OH)2D, intestinal absorption of calcium and urinary calcium, plasma 1α,25(OH)2D also has been shown to correlate significantly with the fractional intestinal absorption of calcium and with urinary calcium but not with serum calcium even when the patients are given the same calcium intake and a substantial number of individuals are evaluated (28). It is possible that variation in the ability of the kidneys of different patients to excrete an excess calcium load produced by increased circulating 1α,25(OH)2D in these two disorders may obscure any net effect on serum calcium. In sarcoid, it is likely that hypercalcemia occurs when the compensatory ability of the kidneys to excrete the calcium load has been exceeded. As noted already, alteration of serum calcium in sarcoid by changes in dietary intake has been shown in a number of studies (1, 4, 5). The lack of control of calcium intake in our patients when they were hypercalcemic may be responsible in part for the lack of correlation between plasma 1α,25(OH)2D and serum calcium. Also, two of the patients had diminished renal function, one severely, which would impair the compensatory ability of the kidneys to excrete calcium. Thus, in these studies there was no correlation between the dose of 1α,25(OH)2D3 and the serum calcium.

Increases in circulating 25-OHD and not 1α,25(OH)2D are apparently responsible for hypercalcemia in vitamin D intoxication (30). Serum 25-OHD was modestly increased in only one individual (patient G) with sarcoid and hypercalcemia. However, it was far below the range (500 ng/ml or above) reported in patients (30) and rats (31) with vitamin D intoxication. Serum 25-OHD was not increased abnormally in any of the other patients even after they were given vitamin D. Thus, the abnormal calcium metabolism in sarcoid cannot be attributed to this metabolite.

Other investigators have found that prednisone lowers plasma 1α,25(OH)2D. Chesney et al. (32) observed a significant reduction in mean plasma 1α,25(OH)2D in children with glomerulonephritis who were treated with prednisone as compared to the mean value in children who were not given the steroid. Carre et al. (33) demonstrated that prednisone, the biologically active metabolite of prednisone (22, 23), does not alter

TABLE V

Effects of 1α,25(OH)2D3 on Serum and Urinary Calcium in Normal Subjects and Patients with Sarcoidosis

<table>
<thead>
<tr>
<th>Days</th>
<th>Serum calcium</th>
<th>Urinary calcium*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>mg/dl</td>
<td>mg/dl</td>
</tr>
<tr>
<td>Normals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>9.2</td>
<td>9.4</td>
</tr>
<tr>
<td>G</td>
<td>10.5</td>
<td>9.6</td>
</tr>
<tr>
<td>I‡</td>
<td>10.4</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>9.9</td>
<td>9.6</td>
</tr>
<tr>
<td>E‡</td>
<td>9.2</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>9.6</td>
</tr>
</tbody>
</table>

* There was a highly significant correlation between the dose of 1α,25(OH)2D3 and mean 4-d urinary calcium (r = 0.821, P < 0.01).
† 1α,25(OH)2D3 was given daily as follows: 1 μg (days 5–8), 2 μg (days 9–12), and 4 μg (days 13–16).
‡ 1α,25(OH)2D3 was given intravenously in these subjects and orally to the others.
the rate of conversion of [3H]25-hydroxyvitamin D3 to
[3H]1α,25(OH)2D3 but increases the rate of conversion
of [3H]1α,25(OH)2D3 to a more polar, biologically in-
active metabolite. We interpret our results to mean
that prednisone acts in sarcoid by reducing the amount
of 1α,25(OH)2D3 in the circulation. They do not exclude
the possibility that prednisone may also inhibit the
peripheral action of 1α,25(OH)2D3 (21).
Production of 1α,25(OH)2D3 is diminished in renal
failure (27, 28). We reported studies in a patient with
sarcoid, hypercalcemia, hypercalciuria, and an
increased sensitivity to vitamin D who developed tran-
sient nephritis (34). Diminished intestinal absorption
of calcium, hypocalcemia, and a lack of response to
small doses of vitamin D occurred with the onset of
renal disease. After recovery, there was recurrence of
the changes in calcium metabolism characteristic of
sarcoid. In this patient, the defect in vitamin D met-
abolism characteristic of renal failure was superim-
posed on the defect produced by sarcoid. The resulting
changes in calcium metabolism may have resulted from
changes in circulating 1α,25(OH)2D3. The findings in
this patient support the concept that renal production
of 1α,25(OH)2D3 may be important in the pathogenesis
of the abnormal calcium metabolism in sarcoid.
In summary, the data presented provide a strong
argument that increases in circulating 1α,25(OH)2D3 ac-
count for the abnormal calcium metabolism in sarcoid.
The evidence is as follows: (a) mean plasma 1α,25(OH)2D3
is significantly increased in patients with hypercal-
cemia who have suppression of serum PTH, (b) mean
plasma 1α,25(OH)2D3 is brought into the normal range
and hypercalcemia is corrected by prednisone, (c) vita-
m D, in modest doses, markedly increases plasma
1α,25(OH)2D3 and urinary calcium (which correlate with
each other) in patients with abnormal calcium metab-
olism but has no effect in normal subjects or in patients
with normal calcium metabolism, and (d) comparable
dose-related increases in urinary calcium are produced
by 1α,25(OH)2D3.

The modest but significant increases in the plasma
1α,25(OH)2D3 and urinary calcium produced by vitamin D
in the patients with "normal" calcium metabolism
raises the possibility that these individuals might also
exhibit abnormalities if challenged with larger doses of
the vitamin. Additional studies are warranted to clarify
this issue and to determine the cause for the abnormal
metabolism of vitamin D in this disorder.

Finally, a number of adult patients are being reported
with (a) hypercalcemia, suppression of serum PTH, and
elevation of plasma 1α,25(OH)2D3, (b) no clinical evi-
dence for sarcoidosis, and (c) reduction of plasma
1α,25(OH)2D3 and correction of hypercalcemia by pred-
nisone (35).3 It is possible that the mechanism for
defective vitamin-D metabolism in these patients may
be similar to that in sarcoid. In our view, these individu-
als may eventually be shown to fall into the category
of an acquired form of idiopathic hypercalcemia, a
disease more commonly found in infants and children
and characterized by an abnormal sensitivity to vitamin
D (36, 37).

ACKNOWLEDGMENTS
We thank Marilyn Quine for capable secretarial assistance.
Supported in part by grants AM 11282, 14881, and M01 RR
750 (Clinical Research Center) and research Career Develop-
ment Award K 04 AM 70210 from the U. S. Public Health
Service.

REFERENCES
1954. Effect of cortisone on calcium metabolism in sar-
coidosis and hypercalcemia, possible antagonistic actions
of cortisone and vitamin D. Lancet. II: 720–724.
2. Henneman, P. H., E. F. Dempsey, E. L. Carroll, and F.
Allbright. 1956. The cause of hypercalcemia in sarcoid and
its treatment with cortisone and sodium phytate. J. Clin.
Inert. 35: 1229–1242.
3. Thomas, W. C., H. G. Morgan, T. B. Connor, L. Haddock,
C. E. Bills, and J. E. Howard. 1959. Studies of anti-rachitic
activity in sera from patients with disorders of calcium
metabolism and preliminary observations on the mode of
38: 1078–1085.
of the hypercalcemia in sarcoidosis, idiopathic hypercal-
curia, and that produced by vitamin D. A new sugges-
Metab. 19: 658–680.
abnormal calcium metabolism in sarcoidosis: evidence for
increased sensitivity to vitamin D. Am. J. Med. 36: 500–
513.
6. Hendrix, J. Z. 1966. Abnormal skeletal mineral metab-
7. Bell, N. H., and F. C. Barter. 1967. Studies of 47Ca met-
abolism in sarcoidosis: evidence for increased sensitivity
8. Reiner, M., G. Sigurddson, V. Nunziata, M. A. Malik, G. W.
Poole, and G. F. Joplin. 1976. Abnormal calcium metab-
olism in normocalcaemic sarcoidosis. Br. Med. J. 2:
1473–1476.
48: 2032–2037.
by kidney of a biologically active vitamin D metabolite.
11. Holick, M. F., H. K. Schnoes, H. F. DeLuca, T. Suda,
and R. J. Cousins. 1971. Isolation and identification of 1,25-
dihydroxycholecalciferol. A metabolite of vitamin D ac-
12. Raizl, L. G., C. L. Trummel, M. F. Holick, and H. F.
DeLuca. 1972. 1,25 dihydroxycholecalciferol: a potent
stimulator of bone resorption in tissue culture. Science
serum calcium by means of orthocresolphthaleim com-

3 B. Frame. Personal communication.

