Hepatic Extraction and Renal Production of 3,3'-Diiodothyronine and 3',5'-Diiodothyronine in Man

J. FABER, O. K. FABER, B. LUND, C. KIRKEGAARD, and J. WAHREN, Department of Clinical Chemistry, Frederiksberg Hospital and Hvidøre Hospital, Klampenborg, and Medical Department E, Frederiksberg Hospital, DK-2000 Copenhagen F, Denmark; Department of Clinical Physiology, Huddinge Hospital, Stockholm, Sweden

ABSTRACT The sequential deiodination of thyroxine (T₄) gives rise to several iodothyronine analogs including 3,3'-diiodothyronine (3,3'-T₂) and 3',5'-diiodothyronine (3',5'-T₂). In vitro animal studies suggest that the liver and the kidneys are the main sites of both formation and degradation of 3,3'-T₂ and 3',5'-T₂. To determine the metabolism of 3,3'-T₂ and 3',5'-T₂ in human liver and kidneys plasma samples were obtained from (a) a brachial artery and a hepatic vein in 20 normal subjects, and from (b) a femoral artery and a renal vein in 11 normal subjects. Further, the hepatic plasma flow (a) and the renal plasma flow (b) were determined.

Both plasma 3,3'-T₂ and 3',5'-T₂ levels were reduced in the hepatic venous blood as compared to arterial values (1.09±0.40 ng/dl (P < 0.01) and 2.02±0.55 ng/dl (P < 0.01)) (mean±1 SD). This resulted in a hepatic extraction of both, 3,3'-T₂ and 3',5'-T₂, which averaged 8.2 and 5.2 μg/d, respectively.

Plasma 3,3'-T₂ as well as 3',5'-T₂ levels were higher in the renal vein as compared to arterial values, 1.49±0.42 vs. 1.39±0.45 ng/dl (P < 0.05) and 2.35±0.83 vs. 2.09±0.81 ng/dl (P < 0.05), respectively. This positive venoarterial difference implies a net production of 3,3'-T₂ and 3',5'-T₂ in the kidneys of 1.2 and 3.0 μg/d, respectively.

It is concluded that the liver is an important site of 3,3'-T₂ and 3',5'-T₂ extraction in normal man. In contrast, the renal production of 3,3'-T₂ as well as 3',5'-T₂ exceeds the degradation and urinary excretion.

INTRODUCTION

Recent studies have demonstrated that 3,3'-diiodothyronine (3,3'-T₂) and 3',5'-diiodothyronine (3',5'-T₂) are normal components of human serum (1-6). They are produced predominantly by extrathyroidal degradation of thyroxine (T₄) (5), which proceeds by serial monodeiodination until all the iodine atoms have been removed (7). Oral administration of 3,5,3'-triiodothyronine (T₃) to normal humans gives rise to 3,3'-T₂, while both 3,3'-T₂ and 3',5'-T₂ are produced when 3,3',5'-triiodothyronine (rT₃) is given (5, 8). In vitro studies on rat organ homogenates have suggested that 3,3'-T₂ generation from T₃ and rT₃ is most active in liver and kidneys (9, 10).

Studies of the perfused rat liver have shown that this organ has the capacity to deiodinate 3,3'-T₂ and to a lesser extent to secrete conjugated products in the bile (11). These products seem mainly to be sulfated 3,3'-T₂ and 3'-monoiiodothyronine (3'-T₁) (12, 13). In addition, deiodination of 3',5'-T₂ has been observed in rat liver homogenate, resulting in 3'-T₁ production (14). Recently, Smallridge et al. have shown that intravenous administration of 3',5'-T₂ to humans results in 3'-T₁ production (15). At least 3,3'-T₂ also seems to be excreted in the urine in the free, unconjugated state (16). Available in vitro data thus implicate the liver as a site of production as well as catabolism of the diiodothyronines. Consequently, the present study was undertaken to examine in man the net exchange of the diiodothyronines across the splanchnic area and the kidney in healthy subjects using intravascular catheter technique.

METHODS

Subjects and procedure. Four different groups of clinically euthyroid subjects were studied after an overnight fast. In group A, which comprised 20 healthy subjects (18 men, 2 women, average age 24 yr, range 18-39 yr) catheters were inserted percutaneously into a brachial artery and a right-sided hepatic vein. The hepatic venous catheter (Coumard No. 7 or 8) was introduced through the femoral vein and posi-
tioned 3–4 cm from the wedge position in the hepatic vein during fluoroscopic control. In group B, which included 11 healthy subjects (6 men, 5 women, average age 26 yr, range 21–35 yr) catheters were introduced percutaneously into a femoral artery and a renal vein. The renal venous catheter (Cournand No. 7 or 8) was introduced through the femoral vein and positioned under fluoroscopic control. Group C was made up of 10 healthy subjects (8 men, 2 women, average age 25 yr, range 21–32 yr) in whom catheters were inserted into a femoral artery and vein. The tip of the femoral venous catheter was placed at the level of the inguinal ligament.

In groups A, B, and C patency of the catheters was maintained by saline flushing. Blood samples for analyses of 3,3'-T₂, 3',5'-T₂, T₃, T₄, and thyroxine-binding globulin (TBG) were collected after a basal period of 30 min.

Group D included 10 patients (1 man, 9 women, average age 57 yr, range 31–74 yr) who had undergone elective cholecystectomy 8 d before the study. At the time of the surgical procedure the umbilical vein was dilated and a catheter (baby feeding tube) was inserted into the portal vein. The catheter was maintained patent by constant rate infusion of heparinized saline. At the time of the study all patients were ambulatory and had normal intestinal, hepatic and renal function. Function of the main bile duct was ensured by direct cholecystography performed postoperatively through a catheter, which was subsequently withdrawn. Blood samples were collected simultaneously from the portal vein and an antecubital vein and analyzed for 3,3'-T₂ and 3',5'-T₂ concentrations.

All healthy subjects and patients were informed of the nature, purpose, and possible risks involved in the study before giving their voluntary consent to participate.

Hepatic plasma flow was estimated in group A with the continuous infusion technique (17) using indocyanine green dye (18). Indocyanine green concentration was determined spectrophotometrically in plasma. Renal plasma flow was determined in group B with the use of paraaminohippuric acid. Paraaminohippuric acid was infused at a constant rate and plasma concentrations were determined as described by Brun (19).

The hepatic net production of the diiodothyronines was calculated as the product of the difference between the arterial and hepatic venous plasma concentrations and the hepatic plasma flow. Similarly the renal net production was calculated using the difference between arterial and renal venous plasma concentrations and the renal plasma flow.

Analyses. Plasma levels of the iodothyronines were measured using a gel separation (Sephadex G-25, fine)antibody extraction method as earlier described (6, 20). The intra-assay coefficient of variation of the 3,3'-T₂ radioimmunoassay in a plasma sample with normal (1.7 ng/dl, n = 15) concentration of 3,3'-T₂ was 7.1%, the lower detection limit was 0.2 ng/dl. Cross-reactivity of different analogs with the L-3,3'-T₂ antibody (relative potency of the compounds tested was calculated on the basis of the amount that caused 50% inhibition of the 100% 3,3'-T₂ binding to the antibody) was: L-T₄; 0.074%; 3,5,3'-triiodothyroacetic acid: 0.045%; L-T₃, L-3',5'-T₂, and L-3-monoiodothyronine: 0.018%; L-T₄, L-3',5'-T₂, L-3,5,3'-triiodothyronine, L-monoiodothyronine, and tetraiodothyroacetic acid: <0.001%. The 3',5'-T₂ determination had an intraassay coefficient of variation in a plasma sample with normal (3.9 ng/dl, n = 10) contents of 3',5'-T₂ of 5.0%. The lower detection limit was 0.3 ng/dl and the cross-reactivity of the L-3',5'-T₂ antibody was: L-3,3'-T₂: 4.558%; L-3'-T₂: 0.208%; L-rT₃: 0.030%; L-T₄, L-T₃, L-3,5'-T₂, L-3-monoiodothyronine, tetraiodothyroacetic acid, 3,5,3'-triiodothyroacetic acid, L-diiodothyronine, and L-monoiodothyronine: <0.001%. Studies on human urine before and after enzymatic deconjugation show that cross-reaction of the 3,3'-T₂ antibody with glucuronated and sulfated 3,3'-T₂ is <35 and 36%, respectively, whereas the cross-reaction of the 3',5'-T₂ antibody with conjugated 3',5'-T₂ compounds is <4 and 3%, respectively.² The intraassay coefficient of variation of the rT₃, T₄ and TBG radioimmunoassays was 7–8%. Serum TBG was measured using an immunoelectroforetic method (21). All samples from each subject were run in the same assay.

Statistical analyses were performed using the Wilcoxon test for paired data with Pratts modification (22) and all results are given as mean±1 SD.

RESULTS

The plasma levels of 3,3'-T₂ and 3',5'-T₂ in arterial and hepatic venous samples in group A are shown in Table I. The hepatic venous concentration of 3,3'-T₂ was 40% lower than the arterial (P < 0.01). Likewise the average 3',5'-T₂ concentration was 20% lower in hepatic venous samples compared to arterial (P < 0.01). The estimated hepatic plasma flow was 854±171 ml/min. The hepatic clearance calculated as the product of the arterial-hepatic venous concentration difference and the hepatic plasma flow was 8.2±6.4 μg/24 h for 3,3'-T₂ and 5.2±5.5 μg/24 h for 3',5'-T₂. The plasma concentrations for T₃, rT₃, T₄, and TBG were all similar in arterial and hepatic venous samples (Table I).

Arterial and renal venous levels of 3,3'-T₂ and 3',5'-T₂ in group B are shown in Table II. The renal venous

² Manuscript in preparation.

Table I

<table>
<thead>
<tr>
<th></th>
<th>Plasma Levels of Iodothyronines and TBG in Samples From an Artery and the Hepatic Vein and Splanchnic Clearance of 3,3'-T₂ and 3',5'-T₂ in Group A (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasma 3,3'-T₂</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>ng/dl</td>
</tr>
<tr>
<td>Mean</td>
<td>1.75</td>
</tr>
<tr>
<td>SD</td>
<td>0.74</td>
</tr>
</tbody>
</table>

A. artery; HV, hepatic vein.

* Significantly different from the corresponding value, P < 0.01.

Faber, Faber, Lund, Kirkegaard, and Wahren

942
The possibility 3,3'-T2 as over, difference concentration significance renal plasma was 12% 3',5'-T2 tion The findings portal cholecystectomy was 836±119 ml/min and the calculated renal production of the two diiodothyronines was 1.2±1.9 and 3.0±4.3 μg/d, respectively.

The renal plasma levels of the two diiodothyronines in arterial and femoral venous samples (group C) are shown in Table III. For both compounds similar levels were observed in arterial and venous samples. In group D, which was studied postoperatively after elective cholecystectomy blood samples were collected from the portal vein and a cubital vein. No differences of statistical significance were observed.

DISCUSSION

The findings in the present study demonstrate that 3,3'-T2 as well as 3',5'-T2 are extracted from the circulation by the splanchnic tissues. The positive arterial hepatic venous concentration differences for both diiodothyronines observed in group A may reflect either hepatic metabolism or metabolism in other splanchnic tissues. However, the finding that portal and peripheral vein diiodothyronine concentrations (group D) as well as arterial and femoral venous concentrations (group C) were similar, indicates that portal venous and arterial concentrations are the same. Moreover, the finding that T4 and TBG concentrations were similar in arterial and hepatic venous samples excludes the possibility that the observed diiodothyronine concentration difference across the splanchnic area may be due to differences in diiodothyronine protein binding. It may thus be concluded that the splanchnic uptake of diiodothyronines reflects hepatic rather than extrahepatic hormone extraction. The current observations in intact man thus confirm previous in vitro studies of rat liver homogenate indicating that the liver has the capacity to metabolize the diiodothyronines (11–14).

3,3'-T2 and 3',5'-T2 may be metabolized along several different pathways in the liver. Deiodination of both 3,3'-T2 and 3',5'-T2 may take place as observed in studies on perfused rat liver and on rat liver homogenates (11–14). A second pathway for metabolism of the diiodothyronines appears to be conjugation and the conjugated products are excreted in the bile (12, 13). However, the similar concentrations in arterial and portal venous blood observed in this study suggest that a possible enterohepatic circulation of the diiodothyronines is of quantitatively minor importance, but direct measurements in bile may be required to further elucidate this question. Finally, it is likely that there is a simultaneous hepatic uptake and production of diiodothyronines, since rat liver homogenate has been shown capable of degrading T3 and rT3 to 3,3'-T2 (9, 10).

The average hepatic clearance of 3,3'-T2 and 3',5'-T2 was 7.3 and 4.9 μg/d × 70 kg body wt, respectively. The daily whole body degradation rate for 3,3'-T2 and 3',5'-T2 in normal man has been evaluated by single injection tracer technique. It was estimated to be 18 and 10 μg/d × 70 kg body wt, respectively (6). These data thus demonstrate that the liver plays an important role in the metabolism of 3,3'-T2 and 3',5'-T2 in man because

<table>
<thead>
<tr>
<th>Plasma 3,3'-T2</th>
<th>Renal production of 3,3'-T2</th>
<th>Plasma 3',5'-T2</th>
<th>Renal production of 3',5'-T2</th>
<th>Plasma T3</th>
<th>Plasma rT3</th>
<th>Plasma T4</th>
<th>Plasma TBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A RV</td>
</tr>
<tr>
<td>ng/dl</td>
<td>μg/24 h</td>
<td>ng/dl</td>
<td>μg/24 h</td>
<td>ng/dl</td>
<td>ng/dl</td>
<td>mg/dl</td>
<td>mg/dl</td>
</tr>
<tr>
<td>Mean</td>
<td>1.39</td>
<td>1.49</td>
<td>1.18</td>
<td>2.09</td>
<td>2.35*</td>
<td>3.03</td>
<td>93.3</td>
</tr>
<tr>
<td>SD</td>
<td>0.45</td>
<td>0.42</td>
<td>1.85</td>
<td>0.81</td>
<td>0.83</td>
<td>4.27</td>
<td>16.5</td>
</tr>
</tbody>
</table>

A, artery; RV, renal vein.
* Significantly different from the corresponding value, P < 0.05.

A, artery; RV, renal vein.
* Significantly different from the corresponding value, P < 0.05.
one-third and one-half, respectively, of the total daily degradation of the diiodothyronines is carried out in the liver.

Significant arterial-hepatic venous differences for \(rT_3 \), \(T_3 \), and \(T_4 \) were not observed in the present study. From the knowledge of the degradation rates of the iodothyronines and the hepatic plasma flow maximal arteriovenous plasma concentration differences can be calculated. With regard to \(rT_3 \), \(T_3 \), and \(T_4 \) the arteriovenous differences were too small in relation to the plasma concentrations to be estimated since they were considerable less than the intraassay variation of the respective assays. Thus, the present findings do not exclude the possibility that the human liver participates in the degradation of \(rT_3 \), \(T_3 \), and \(T_4 \) Recent in vitro studies involving rat liver homogenates have demonstrated that \(T_4 \) may be deiodinated to \(T_3 \) and \(rT_3 \) and that these compounds may be further deiodinated in the liver (9, 23–26).

The renal metabolism of the diiodothyronines resulting in a net production may also proceed along several different pathways. \(3,3',5'-T_2 \) has been shown to be produced from \(T_3 \) as well as \(rT_3 \) in rat kidney homogenate at rates two to five times greater than in liver homogenate (9, 10). The findings of 5-monodeiodinating enzyme activity in the rat kidney makes it reasonable to assume that also \(3',5'-T_2 \) is produced in the kidneys (from \(rT_3 \)), possibly in cells of the renal tubules (9, 27). The presence of these enzymes in the kidneys also makes a deiodination of the diiodothyronines a possibility. A third possibility for renal handling of diiodothyronines seems to be urinary excretion. We have recently demonstrated that the excretion of unconjugated \(3,3'-T_2 \) and \(3',5'-T_2 \) in urine from normal man averages 0.35 and \(<0.01\) \(\mu g/d \), respectively. Thus, the total production of \(3,3'-T_2 \) and \(3',5'-T_2 \) in the human kidneys can be calculated to 1.2 and 2.2 \(\mu g/day \times 70 \) kg body wt, respectively, which is one-tenth and one-fourth of the respective total daily production rates.

Although \(rT_3 \), \(T_3 \), and \(T_4 \) deiodinating enzyme activities have been demonstrated in rat kidney homogenate no difference in plasma levels of these iodothyronines in arterial and renal venous blood were observed in the present study. Again, methodological problems in determining a small arteriovenous concentration difference may be of importance but the findings are in accordance with a previous study (28).

The present findings suggest that the liver is an important site of \(3,3'-T_2 \) and \(3',5'-T_2 \) extraction in normal man. In contrast, the intact human kidney produces \(3,3'-T_2 \) as well as \(3',5'-T_2 \) in excess of the simultaneous degradation and urinary excretion. This difference between human liver and kidneys may partly be explained by different deiodination activities and capacities and/or the capacity of the liver to conjugate iodothyronines, a metabolic pathway which does not seem to exist in the kidneys (29). However, it shall be emphasized that the hepatic extraction and the renal net production of \(3,3'-T_2 \) and \(3',5'-T_2 \) probably are results of degradation as well as production in both organs. In addition it appears that other tissues i.e., muscles (9, 23) besides the liver and the kidneys are active in the extrathyroidal metabolism of iodothyronines, and although the deiodinating enzyme activities in these tissues are relatively low (9, 23), the metabolism of the iodothyronines may be quantitatively important due to their relatively large weight.

ACKNOWLEDGMENTS

The authors are grateful to Mrs. Lene Rolff for technical assistance.

This study was supported by the Danish Hospital Foundation for Medical Research, Region of Copenhagen, The Faroe Islands and Greenland, the Danish Medical Research Council, and the Swedish Research Council (19X-3108).

REFERENCES

14. Smallridge, R. C., K. B. Latham, K. E. Ward, R. C. Dimond, L. Wartofsky, and K. D. Burman. 1978. 3',5'-diiodothyronine (3',5'-T2) to 3'-moniodothyronine (3'-T3) conversion in rat liver and solubilization of multiple phenolic ring deiodinase activities. Program of the 54th Meeting of the American Thyroid Association. T-7. (Abstr.)

Metabolism of 3,3'-Diiodothyronine and 3',5'-Diiodothyronine