Platelets Have More Than One Binding Site for von Willebrand Factor

ZAVERIO M. RUGGERI, LUIGI DE MARCO, LOREDANA GATTI, ROSELLA BADER, and ROBERT R. MONTGOMERY, Hemophilia and Thrombosis Centre Angelo Bianchi Bonomi, Policlinico Hospital of the University of Milano, Italy: Departments of Immunology and of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California 92037; Centro Trasfusionale Ospedale Civile, Pordenone, Italy; Department of Pediatrics, Medical College of Wisconsin, and The Blood Center of S. E. Wisconsin, Milwaukee, Wisconsin 53233

ABSTRACT The binding of ^{125}I-von Willebrand factor (^{125}I-vWF) to platelets stimulated by thrombin, ADP, and a combination of ADP + epinephrine (EPI) is specific, saturable, and reversible. Active platelet metabolism and divalent cations are required for binding induced by these stimuli, but not by ristocetin, suggesting the existence of different mechanisms involved in the vWF-platelet interaction. A monoclonal antibody directed against an epitope of membrane glycoprotein (GP) Ib had no effect on the binding of ^{125}I-vWF to normal platelets stimulated by thrombin or a combination of ADP + EPI, but completely blocked ristocetin-induced binding. Binding induced by thrombin to GPIb-blocked platelets was specific. Moreover, thrombin-induced binding of ^{125}I-vWF was increased, rather than decreased, in two patients with the Bernard-Soulier syndrome whose platelets lacked GPIb. Conversely, monoclonal antibodies directed against the GPIb/IIIa complex had no effect on ristocetin-induced binding of ^{125}I-vWF to normal platelets, but blocked thrombin- and ADP + EPI-induced binding. To exclude effects mediated by the platelet Fc receptor, a monoclonal IgG directed against an epitope present on human B cells and monocytes, but not expressed on resting or stimulated platelets, was used. It did not affect ^{125}I-vWF binding induced by any of the stimuli. These studies show that platelets have more than one binding site for vWF, and that they may be exposed by different stimuli.

INTRODUCTION

von Willebrand factor (vWF) is a large multimeric glycoprotein that circulates in blood complexed with the Factor VIII procoagulant activity protein (1). It plays an essential role in platelet function as shown by the prolonged bleeding time in von Willebrand disease (1). Specific binding sites for vWF are induced on the platelet membrane by the antibiotic ristocetin (2), a nonphysiologic agent, as well as by thrombin (3, 4) and ADP (5). Platelet membrane glycoprotein (GP) Ib is considered to function as the surface receptor for vWF (6). In the Bernard-Soulier syndrome, a congenital bleeding disorder, platelets lack GPIb (7) and the ristocetin-induced binding of vWF is decreased (8). On the other hand, in Glanzmann thrombasthenia, another congenital platelet abnormality, there is a marked decrease of the membrane GP complex IIb/IIIa but normal content of GPIb (9). The ristocetin-induced binding of vWF to thrombasthenic platelets has been reported to be normal (8). In contrast, we have recently shown that binding of vWF to thrombasthenic platelets stimulated by thrombin is severely deficient (4). Therefore, we postulated that different sites are involved in

1 Abbreviations used in this paper: ADG, albumin density-gradient; VIII:C, Factor VIII procoagulant activity; EPI, epinephrine; GP, platelet membrane glycoprotein; PMSF, phenylmethylsulfonyl fluoride; PRP, platelet-rich plasma; vWF, von Willebrand factor.
the binding of vWF induced by different stimuli (4). In this report we provide evidence to confirm that hypothesis.

METHODS

Patients and controls. Two patients fulfilled all the accepted criteria for the diagnosis of the Bernard-Soulier syndrome. They have been extensively characterized in a previous report (10). Blood from the two patients was drawn by Dr. Margaret Johnson at Wilmington Medical Center, Delaware, and shipped overnight to Milwaukee, where experiments with Bernard-Soulier platelets were performed. Blood from a normal control was drawn at the same time and shipped similarly. All other experiments were performed in Milan, using fresh blood from normal volunteers. All subjects were aware of the experimental nature of these studies and gave their informed consent, according to the Declaration of Helsinki. They reported no intake of any drug for the week preceding their blood donation.

Preparation of washed platelets. Blood was drawn through 19-gauge needles into polypropylene syringes as one part of acid/citrate/dextrose to five parts of blood and immediately transferred into polypropylene tubes. Platelet-rich plasma (PRP) of the Bernard-Soulier patients and the normal control studied at the same time was separated from whole blood by layering on top of a solution made of two parts of dextran (4%, average M, ~ 500,000; Sigma Chemical Co., St. Louis, MO) and one part of sodium metrizoate (32.8% wt/vol aqueous solution, Sigma Chemical Co.). Erythrocytes settled out in ~60–90 min, and the PRP remaining at the top of the dextran-sodium metrizoate solution was carefully removed. Only the upper two-thirds were used to minimize leukocyte contamination. PRP for all other experiments was obtained by three successive differential centrifugation steps at 1,200 g for 60 s. Each time PRP was removed and the blood retransfused without mixing. Platelets were washed free of plasma constituents by one or both of two methods, the albumin density-gradient (ADG) technique of Walsh et al. (11), or the gel-filtration technique described by Magerl et al. (12). The final platelet suspensions were all in modified calcium-free Tyrode buffer, containing 137 mM NaCl, 2 mM MgCl₂, 0.42 mM NaH₂PO₄, 11.9 mM NaHCO₃, 2.9 mM KCl, 5.5 mM glucose, 10 mM Hepes pH 7.35, and 20 mg/ml bovine serum albumin (Fraction V, Calbiochem-Behring Corp., American Hoechst Corp., San Diego, CA). When experiments of serotonin release were performed, PRP was labeled before washing by incubating 20 ml with 0.5 µCi of [¹⁴C]serotonin (5-hydroxy[2-¹⁴C]tryptamine creatinine sulfate; Radiochemical Centre, Amersham, UK) for 40 min at 37°C. At the end of the washing procedure all platelet preparations responded with aggregation when stirred in the aggregometer in the presence of 8 µM ADP and fibrinogen (3.3 µM). However, ADG-washed platelets usually gave reversible aggregation to ADP and were unresponsive to epinephrine (EPI). On the contrary, gel-filtrated platelets always gave irreversible aggregation to ADP, and responded to 20 µM EPI in the presence of fibrinogen (3.5 µM) with a typical two-wave aggregation. Contamination of plasma vWF in all washed platelet preparations was below 5 × 10⁻⁹ U/ml (1 U of normal plasma pool contains 1 × 10⁵ U) as measured by immunoradiometric assay (13). No agglutination of washed platelets occurred in response to the addition of ristocetin (1.5 mg/ml) unless vWF was added to the suspension.

Preparation of apyrase. Apyrase was prepared by the method of Molnar and Lorand (14). It was finally dissolved in 0.15 M NaCl, and stored at ~20°C until used. At a concentration of 9 µM ADP was used. A concentration of 9 µM ADP to AMP and adenosine in 2 min at 37°C. Creatine phosphate and creatine phosphokinase were obtained from Sigma Chemical Co.

Purification of vWF. For a typical preparation, 20–30 bags of human plasma cryoprecipitate prepared by the method of Foul et al. (15) were resuspended at 37°C in 200 ml of a buffer consisting of 20 mM Tris, 20 mM sodium citrate (pH 7.5), 0.1 mM CaCl₂, 0.5 mM phenylmethylsulfonyl fluoride (PMSF). The redissolved cryoprecipitate was then adsorbed with Al(OH)₃ (16). The further purification steps were performed according to Newman et al. (17), as modified by Switzer and McKee (18). Gel filtration was performed on a 5 × 80-cm column of Sepharose CL-4B (Pharmacia Fine Chemicals, Uppsala, Sweden) equilibrated with a buffer consisting of 20 mM imidazole, 100 mM NaCl, 10 mM sodium citrate (tribasic), 20 mM EACA, pH 6.5, and containing PMSF as indicated. vWF was present in the void volume protein peak along with Factor VIII procoagulant activity (VIII:C). The fractions corresponding to the ascending part of the peak were pooled and concentrated by dialysis against polyethylene glycol (average M, = 40,000). The vWF preparations used in these experiments had a protein concentration of between 0.56 and 0.78 mg/ml and a specific activity of 116–128 U of ristocetin cofactor activity, 117–135 U of Factor VIII-related antigen, and 47–52 U of VIII:C/mg of protein. The purity of the final product was assessed by electrophoresis in 3% acrylamide-0.25% bis-acrylamide disc gels, containing sodium dodecyl sulfate (SDS), after reduction of the protein by dithiothreitol. Some preparations of purified vWF were also treated with rabbit anti-human fibrinogen IgG coupled to Sepharose 4B-CL beads to remove trace contamination of fibrinogen. The procedure used was that recently described by Fujimoto et al. (3). The antiserum used was obtained from Behringwerke (Scopito, Italy). Fibrinogen contamination was evaluated by specific radioimmunoassay (kindly performed by Dr. Edward F. Flow, Scripps Clinic and Research Foundation).

Radioidination of purified vWF. This was accomplished with 125I by the method of Fraker and Speck (20) to a specific activity of between 0.48 and 0.88 mCi/mg. The preparations of 125I-vWF were characterized by electrophoretic analysis in SDS agarose gels as described (21).

Preparation of monoclonal antibodies. BALB/c female mice were given a primary intraperitoneal immunization with 1 × 10⁶ washed platelets (albumin was omitted from the platelet suspension in this case) in 0.5 ml of Freund’s complete adjuvant. Three subsequent intraperitoneal immunizations with 1 × 10⁶ washed platelets suspended in 0.9% saline were given at 2-wk intervals. 1 wk after the last injection, the mice were given 2 × 10⁸ platelets intravenously. 4 d later the mice were killed and their spleen cells used for fusion. Hybridization was carried out using 2.5 × 10⁶ spleen cells mixed at a 1:1 ratio with P3-x-63Ag8-653 (nonsecretor) myeloma cells, according to the method of Oi and Herzenburg (22), using 50% polyethylene glycol 1500. Positive hybridomas were selected using partially purified platelet membrane glycoproteins (GPIIb/IIIa complex and GPⅠb), as well as a microtiter screening assay for the inhibition of ristocetin-induced platelet aggregation (23). Selected hybrids were cloned by limiting dilution. Clones were grown to sufficient density and 5 × 10⁵ cells injected intraperitoneally into “Pris-tane primed” BALB/c × DBA/2 Fl mice. Mice were targeted for ascites fluid usually after 2–3 wk. Monoclonal IgG were prepared from the ascites fluid by three sequential 50% ammonium sulfate precipitations, followed by dialysis against 0.15 M NaCl.
potassium phosphate buffer (0.01 M, pH 7.4) and affinity purification using Protein A Sepharose (Pharmacia Fine Chemicals). Elution from Protein A was achieved using a Tris-glucose buffer, pH 2.6. Purified IgG were finally dialyzed against 0.05 M Tris-HCl buffer, 0.1 M NaCl, pH 7.4.

Characterization of monoclonal antibodies. The specificity of monoclonal antibodies to platelet membrane glycoproteins was assessed after radiolabeling with 125I by the chloramine-T method (24). The radiolabeled antibodies were then used in the second dimension of crossed immunoelectrophoresis mixed with unlabeled rabbit antiplatelet antisera (25). Triton X-100-solubilized platelets were electrophoresed in the first dimension. The immunologic reactivity of the monoclonal antibodies was substantiated by identification of the platelet membrane glycoprotein immunoprecipitate patterns (26). Alternatively, platelet membranes were radiolabeled with 125I by the lactoperoxidase method (9), solubilized with Nonidet-P40, and incubated with the monoclonal antibodies. Antibody-bound membrane proteins were precipitated with Protein A Sepharose, electrophoresed in SDS polyacrylamide gels and identified by autoradiography. Monoclonal antibody API reacted with GPIb and was an IgG1. AP2 and B59.2 reacted with GPIIb/IIIa and were IgG1 and IgG2a respectively. The control monoclonal antibody (B33.1) was an IgG2a anti-HLA-DR common determinant and did not react with platelets (27). AP1 and AP2 were prepared by one of us (D.B.) in cooperation with T. Kunicki, Blood Center of S. E. Wisconsin (Milwaukee), whereas B59.2 and B33.1 were obtained through the courtesy of Dr. Bice Perussia and Dr. Giorgio Trinchieri, the Wistar Institute, Philadelphia, PA.

Binding experiments. In all binding experiments platelets were at a final concentration of 10^6/ml. Incubation with varying concentrations of 125I-vWF and the appropriate stimulus was performed at room temperature (20°-25°C) and under nonstirring conditions, for the indicated period of time, in 1 ml of Tyrode buffer. Each stimulus was added from a 10x stock solution freshly prepared and kept in ice until used. In parallel mixtures, nonspecific binding was determined in the presence of a 50-fold excess of unlabeled vWF. At the end of the incubation period, 50 μl of the platelet suspension (in duplicate for each experimental point) was layered onto 400 μl of 20% sucrose in modified Tyrode buffer, using 1-ml conical polypropylene tubes. The samples were centrifuged for 4 min at 13,000 g at room temperature in an Eppendorf microcentrifuge (Eppendorf, Hamburg, FRC), the tips of the tubes containing the sedimented platelets were cut with a scalpel, and the platelet-associated radioactivity was measured. In experiments where the effect of monoclonal antibodies on 125I-vWF binding was evaluated, monoclonal IgG was added to the experimental mixtures at the indicated final concentrations immediately before addition of radioligand and stimulus. In some experiments, platelets were preincubated with the monoclonal IgG for 10-60 min at room temperature before addition of the other reagents. Analysis of bound ligand was performed after counting the platelet pellets by lysing the platelets with 30 μl of a buffer consisting of 10 mM Tris-HCl and 1 mM EDTA, pH 8, containing 5% SDS. The samples were incubated for 20 min at 60°C and extracted 125I-vWF was analyzed by SDS agarose electrophoresis (21). More than 80% of bound radioactivity could be accounted for in the supernatant of lysed platelets. The line best fitted to the experimental points of each binding curve was obtained by means of a nonlinear fit program utilizing a Hewlett-Packard model 85 desk-top computer (Hewlett-Packard Co., Palo Alto, CA).

Platelet release studies. For serotonin release studies, 5 μM imipramine (Geigy S.p.A., Milan, Italy) was added to washed platelets labeled with 14C-serotonin (see above). Release of 14C-serotonin was assessed after any indicated incubation time period by determining in a liquid scintillation spectrometer (Packard Instrument S.p.A., Milan, Italy) the radioactivity of 5 μl of the supernatant obtained after spinning out the platelets at 13,000 g for 1 min in the microcentrifuge. Release was expressed as percentage of the total content measured in the same volume of platelet suspension after lysis with 1% Triton X-100.

Results

Characterization of purified vWF. The purified vWF used in these experiments appeared homogeneous on SDS polyacrylamide gel electrophoresis under reducing conditions (Fig. 1). Possible fibrinogen contamination was evaluated by radioimmunoassay and was below the detection limit of the assay. Fibrinogen contamination was, therefore, <5 μg/mg of protein in the purified vWF preparations (<0.5% on a wt/wt basis).

Characterization of the binding assay. To evaluate the efficacy of the method used to separate platelet-bound from free ligand, 125I-vWF (8 x 10^8 cpm) was layered onto 20% sucrose in modified Tyrode buffer and centrifuged as described. In the absence of platelets, <0.5% of the counts added was recovered in the tube tip. Under the same conditions, platelet recovery in the tube tip was >90% as measured by quantitation of 14C-labeled platelets. No release of 14C-serotonin occurred during the centrifugation step.

Time course experiments. The time course of the association of 125I-vWF to platelets stimulated with thrombin (0.25 U/ml), ADP (20 μM), and a combination of ADP + EPI (20 μM each) is shown in Fig. 2. In the presence of thrombin, platelets bound approximately two and four times more 125I-vWF than with ADP + EPI or ADP alone, respectively. No binding was observed with EPI alone, at concentrations up to 100 μM. The binding to unstimulated platelets was <10, 17, and 35% of the total binding to thrombin-, ADP + EPI-, and ADP-stimulated platelets, respectively. The binding to unstimulated platelets was not time dependent, whereas the binding induced by the different stimuli reached a plateau at between 30 and 40 min (Fig. 2). The binding to unstimulated platelets corresponded to that observed with each one of the stimuli when a 50-fold excess (wt/wt) of unlabeled vWF was added to the platelet suspension before 125I-vWF. Therefore, nonspecific binding was the same with all stimuli, and accounted for only a minor fraction of the total 125I-vWF bound to stimulated platelets.

When ristocetin (1.5 mg/ml final concentration) was used as a stimulus, the results obtained were comparable to those previously reported by others (2).

Specific binding induced by thrombin, ADP, or ADP + EPI was blocked by 5 mM EDTA, and did not occur
FIGURE 1 Electrophoretic analysis of purified vWF. The sample from a purified vWF preparation was analyzed after reduction with 50 mM dithiothreitol at 56°C for 4 h in the presence of 1% SDS. Approximately 40 μg of protein was applied to a 5% acrylamide-0.25% bis-acrylamide disc gel (see reference 19 for details on electrophoretic conditions). The gel was stained with Coomassie Blue R250. Cathode at the top.

with formalin-fixed platelets. However, binding induced by ristocetin was observed using formalin-fixed platelets and in the presence of EDTA.

Affinity of labeled and unlabeled vWF. The affinities of unlabeled and radiolabeled vWF for thrombin-stimulated platelets were comparable (Fig. 3). This was determined by measuring the binding of 125I-vWF in mixtures in which the final concentration of the ligand was kept constant but the proportion of labeled and unlabeled ligand was varied. A linear relationship was found between the percentage of 125I-vWF in the mixtures and the amount bound (Fig. 3).

FIGURE 2 Time course of the association of 125I-vWF with platelets. Washed platelets at a final concentration of 10⁶/ml were mixed with 5.6 μg/ml 125I-vWF at room temperature (20°–25°C) and stimulated with 0.25 U/ml thrombin, 20 μM ADP, or 20 μM ADP + 20 μM EPI for the indicated period of time. In unstimulated platelets, Tyrode buffer was used instead of the stimulus. Phase separation of bound from free ligand was achieved by centrifugation at 13,000 g for 4 min through 20% sucrose in modified Tyrode buffer. Total binding values are reported without subtraction of nonspecific binding. Note that binding to unstimulated platelets was not time dependent.

FIGURE 3 Relative binding of 125I-vWF and unlabeled vWF to thrombin-stimulated platelets. The total vWF concentration in the mixtures was kept constant (12 μg/ml), but the proportion of labeled and unlabeled vWF was varied as indicated. Platelets were stimulated with 0.25 U/ml of thrombin and binding was measured after incubation for 30 min at room temperature.
Effect of agonist concentration on 125I-vWF binding and platelet release reaction. The relationship between the dose of each stimulus required to support 125I-vWF binding and induce platelet release of [14C]-serotonin was investigated using thrombin-, ADP-, or ADP + EPI-stimulated platelets (Fig. 4). When thrombin was used, specific binding occurred in parallel with the release reaction. Thrombin concentrations as low as 0.0125 U/ml were effective in this regard. A plateau in the thrombin dose-response curve was observed at 0.5 U/ml, with no further increase in binding at concentrations as high as 2 U/ml (Fig. 4). Thrombin stimulation of platelets followed by thrombin neutralization with a fourfold (U/U) excess of hirudin (obtained from Pentapharma, Basel, Switzerland) was 50-fold less effective than 1 U/ml thrombin (Fig. 4). This stimulation was not related to any action of thrombin on the ligand, but rather to thrombin stimulation of platelets. Addition of an ADP scavenger (aparase at a concentration of 9 μl/ml; see Methods) to the mixture before thrombin caused a decrease of specific binding to ~30–40% of the binding observed in the absence of the ADP scavenger (Fig. 4). Similar results were obtained with the addition of creatine phosphate (7.5 mM) and creatine phosphokinase (12 U/ml) instead of aparase. At variance with thrombin, ADP- or ADP + EPI-induced binding was independent of the platelet release reaction. The latter was not observed with these two stimuli under the experimental conditions used (Fig. 4). The dose-dependency of ristocetin-induced binding was comparable to that previously reported by others (2).

Specificity of binding. Competition experiments were performed to demonstrate the specificity of the association of 125I-vWF to thrombin-stimulated platelets. As shown in Table I, human fibronectin, transferrin, and IgM at >100-fold excess (wt/wt) were not effective in displacing the binding of 125I-vWF significantly. In addition, the serum from three patients with severe von Willebrand disease (Factor VIII-related antigen in plasma <1 10^{-4} U/ml) had a minimal effect on binding of 125I-vWF, whereas serum from three normal individuals had an inhibitory effect (Table I).

Dissociation of bound 125I-vWF from platelets. The capacity of unlabeled vWF to displace 125I-vWF bound to thrombin-stimulated platelets was analyzed. Displacement of bound 125I-vWF was dependent upon the time of addition of unlabeled vWF (Fig. 5). When a 50-fold excess (wt/wt) of the latter was added before

![Figure 4](attachment:image.png)

Figure 4 125I-vWF binding and serotonin release as a function of stimulus concentration. Platelets were labeled with [14C]-serotonin as indicated in the Method section, and then washed. vWF was added at a concentration of 5.6 μg/ml to 108 platelets/ml, followed by the appropriate concentration of stimulus (lower panel: thrombin; upper panel: ADP) taken from a 10X stock solution. In the case of ADP + EPI combination, ADP concentration was varied as indicated, and EPI was 20 μM in all mixtures. Unlabeled vWF was added to mixtures where serotonin release was measured, and 125I-vWF to mixtures where binding was measured. Binding and release were measured after a 30-min incubation at room temperature. Release was expressed as percentage of total [14C]-serotonin content. Binding values shown represent specific binding, obtained after subtracting from total measured the nonspecific binding observed in the presence of a 50-fold excess of unlabeled vWF. In the experiments performed to evaluate the effect of aparase on thrombin-induced binding (lower panel), aparyase was added at a concentration of 9 μl/ml (Methods) 5 min before the addition of thrombin.

The final concentrations of the other components in the mixtures were: 125I-vWF, 2.6 μg/ml; platelets, 1 10^8/ml; thrombin, 0.25 U/ml. In the experiments with serum, samples from three different normals or patients with severe von Willebrand disease were used, and the results indicate the range of values observed. The percent inhibition was calculated relative to total binding of 125I-vWF. Note that in the case of normal serum, if one assumes an average vWF concentration of 10 μg/ml, then unlabeled vWF is at an approximate threefold excess over 125I-vWF.
the binding of 125I-vWF had reached maximal levels, no further increase in binding of the radiolabeled ligand occurred during continued incubation. On the contrary, a progressive dissociation of the bound radioligand was observed, but was incomplete. Apparently irreversible binding corresponded to 30–50% of maximal binding (Fig. 5). When excess unlabeled vWF was added to the mixtures after maximal binding had been reached, a more rapid dissociation of the bound radioligand was observed, but was again incomplete (Fig. 5). Appropriate controls were included to take into account the dilution effect of the addition of unlabeled vWF (Fig. 5). In control mixtures incubated in the absence of excess unlabeled vWF, a slow, spontaneous dissociation of bound 125I-vWF followed the plateau of binding. Even in this case, apparently irreversible binding corresponded to 30–50% of maximal binding (Fig. 5). This apparently irreversible binding was not related to internalization of vWF molecules, since washing of platelets in the presence of EDTA after maximal binding had been reached resulted in removal of 99% of the radioactivity previously associated to platelets.

Saturation of binding. The binding of 125I-vWF to thrombin-stimulated platelets (Fig. 6), as well as ADP- or ADP + EPI-stimulated platelets (data not shown), was saturable. This was evident after subtraction of nonspecific from total measured binding in mixtures that had been incubated with increasing concentrations of 125I-vWF and constant platelet number for 30 min. This incubation time was selected on the basis of the results shown in Figs. 2 and 5. Although binding of 125I-vWF was not strictly at equilibrium, a relatively stable plateau of binding was always observed between 20 and 40 min of incubation. Nonspecific binding increased linearly with increasing concentrations of 125I-vWF and was therefore nonsaturable (Fig. 6). Nonspecific binding was the same at any concentration of any of the stimuli used, when measured in the presence of a 50-fold excess of unlabeled vWF, and corresponded to the binding to unstimulated platelets.

Effect of monoclonal antibodies on the binding of 125I-vWF. Different monoclonal antibodies directed against specific platelet membrane glycoproteins were evaluated for their effect on the platelet binding of 125I-

Figure 5 Displacement of platelet-bound 125I-vWF by dilution or addition of a 50-fold excess of unlabeled vWF. Platelets (10^8/ml) were resuspended in modified Tyrode buffer, and mixed with 5.6 μg/ml 125I-vWF and 0.25 U/ml thrombin. Samples were taken at various times to measure bound 125I-vWF. After incubation for 10 min (lower panel) or 30 min (upper panel) at room temperature, unlabeled vWF was added at a 50-fold excess (○). At the same time, parallel incubation mixtures were diluted with the same amount of modified Tyrode buffer (Δ). A third series of mixture was left undiluted as a control (○). Samples were taken from each mixture at various times after these additions and bound 125I-vWF was determined. Nonspecific binding was measured in the presence of a 50-fold excess of unlabeled vWF added before the addition of thrombin (shown in the lower panel) (□). Note that nonspecific binding was not time dependent.

Figure 6 Binding of 125I-vWF to thrombin-stimulated platelets as a function of 125I-vWF concentration. Washed platelets (10^8/ml) were mixed with increasing concentrations of 125I-vWF and stimulated with 0.5 U/ml of thrombin. After incubation for 30 min at room temperature, the amount of 125I-vWF bound to platelets was measured. Nonspecific binding was measured in parallel mixtures where a 50-fold excess of unlabeled vWF was added before the addition of thrombin. The nonspecific binding measured in this way was identical to that observed when platelets were incubated with 125I-vWF alone in the absence of thrombin stimulation. Specific binding was calculated by subtracting nonspecific from total measured binding.
vWF induced by different stimuli. To exclude possible nonspecific effects, a monoclonal antibody (B33.1) directed against an epitope expressed on B cells and monocytes, but not on unstimulated or stimulated platelets, was first tested. The 125I-vWF binding to thrombin-stimulated platelets in the presence of 435 μg/ml of this antibody was identical to that observed when monoclonal IgG was substituted for by Tyrode buffer. In preliminary experiments it was also demonstrated that 125I-labeled monoclonal IgG prepared from antibody AP1 (anti-GPIb) bound to thrombin-stimulated platelets in a manner identical to that observed with unstimulated platelets. This demonstrated that possible membrane changes induced by thrombin did not affect the reactivity of membrane glycoproteins with their specific monoclonal antibodies. The addition of 2 or 5 mM CaCl2 to the experimental mixtures did not change the binding of 125I-vWF to thrombin- or ADP + EPI-stimulated platelets, nor did it affect the results observed in the presence of the monoclonal antibodies. Preincubation of platelets with the monoclonal IgG for up to 60 min gave results similar to those observed when the antibody was added to the experimental mixture just before 125I-vWF and the appropriate stimulus.

In three separate experiments performed with different platelet and 125I-vWF preparations, the specific binding induced by thrombin and ADP + EPI was not significantly affected by the anti-GPIb antibody (AP1) at a concentration that completely blocked ristocetin-induced binding. In contrast, one of the anti-GPIIb/IIa antibodies (B59.2) inhibited thrombin- and ADP + EPI-induced binding by 48–62 and 58–63%, respectively. This inhibitory effect on thrombin-induced binding was present at all thrombin concentrations tested, from 0.05 to 0.5 U/ml. The other anti-GPIIb/IIa antibody (AP2) was tested only for its effect on thrombin-induced binding, and it was found to cause >80% inhibition. When binding studies were performed with purified vWF that had been passed through an antifibrinogen column, the same results were obtained. Both antibodies to GPIIb/IIa had no significant effect on ristocetin-induced binding of 125I-vWF (experiments with AP2 were performed by D. Pidard, R. R. Montgomery, and T. J. Kunicki, personal communication). The results of one such experiment are shown in Fig. 7. The monoclonal IgG concentration that gave maximal inhibition was determined in dose-response studies. Higher concentrations than those here reported (Fig. 7) did not increase the extent of inhibition. Control binding isotherms were obtained in the presence of the control monoclonal IgG (B33.1) at a concentration well in excess of that used with any specific monoclonal IgG (Fig. 7). In some experiments, control and specific IgG, or anti-GPlb and anti-GPIIb/IIa IgG, were added together in the same mixtures.

![Figure 7](image_url)
Ristocetin-induced binding of 125I-vWF to platelets was inhibited only when anti-GPIIb antibody was present, and thrombin-induced binding when anti-GPIIb/IIa antibody was present, irrespective of the other monoclonal IgG added.

Binding to Bernard-Soulier platelets. In the two related patients with the Bernard-Soulier syndrome studied, specific thrombin-induced binding of 125I-vWF to ADG-washed platelets was increased, rather than decreased, when compared with normal platelets prepared under identical conditions (Fig. 8). Preliminary studies had shown that these platelets isolated in a similar manner failed to agglutinate to and bind vWF in response to ristocetin.

Characterization of bound 125I-vWF. Analysis by SDS agarose electrophoresis of the bound ligand extracted from the platelet pellets after phase separation showed that all multimers of 125I-vWF bound to platelets stimulated with the three different agonists (Fig. 9). Moreover, decreased thrombin- and ADP + EPI-induced binding in the presence of anti-GPIIb/IIa antibody was represented by a parallel decrease of all multimers bound and not a specific subset of them (Fig. 9).

DISCUSSION

Specific binding sites for vWF exist on human platelets and are expressed by different platelet agonists (2–5). In this study we demonstrate that the ristocetin-induced binding of vWF (2) involves different sites than the thrombin- (3, 4), ADP- (5), or ADP + EPI-induced binding.

The concept that ristocetin induces specific binding sites for vWF on platelets is generally accepted. Therefore, our purpose for these studies was to verify that our binding assay with ristocetin could reproduce the results already reported in the literature (2), as indeed it did. The demonstration that thrombin (3, 4) and ADP (5) also induce binding of vWF to platelets is more recent. Therefore, we thought it appropriate to characterize extensively the binding assay performed with these agonists in order to demonstrate that the site induced fulfills the criteria for a specific binding site. The conclusion that this is the case is supported by the demonstration that the binding of vWF induced by thrombin, ADP, and ADP + EPI is time dependent, specific, and saturable. Specificity of binding is indicated by (a) the capacity of unlabeled vWF to inhibit competitively the binding of 125I-vWF with the same apparent affinity; (b) the failure of other proteins, and notable all the proteins in severe von Willebrand disease serum, to compete for binding; and (c) the identification of bound material as a multimeric protein with the typical structure of plasma vWF (21).

Fibrinogen is a likely contaminant of purified vWF preparations. We obtained direct evidence that this was not the case for the purified vWF used in these studies by demonstrating the absence of any measurable fibrinogen using a sensitive radioimmunoassay. Moreover, several observations provide indirect evidence that possible fibrinogen or fibronectin contamination cannot explain the binding observed with our purified vWF preparations. (a) EPI-stimulated platelets bind fibrinogen (28), but not fibronectin (29) nor vWF. ADP-stimulated platelets bind fibrinogen (12) and vWF, but not fibronectin (29). Thrombin is the only effective stimulus to induce platelet binding of fibronectin (29). (b) A combination of ADP + EPI increases the binding of vWF over that observed with ADP alone. Thrombin-induced binding, however, is more than double that observed with the combination of ADP + EPI. Thrombin-induced binding of fibrinogen, on the contrary, occurs at levels similar to those observed with ADP or ADP + EPI stimulation (30). (c) The stoichiometries of vWF and fibronectin binding are clearly different. Half saturation of binding occurs at $\sim 5 \mu g/ml$ of added vWF, as opposed to $\sim 60 \mu g/ml$ of added fibrinogen (12, 28, 30). The fraction of added fibrinogen that binds to platelets corresponds to 2–3% at best (12, 28, 30), whereas it can be as high as 50% in the case of vWF binding. It is important to note that the parameters of vWF binding cannot be expressed in molar terms because of the heterogeneous nature of the molecule and the uncertainty about the molecular weight of the different multimers that interact with platelets (21).

When thrombin was used to induce vWF binding, the capacity to support specific binding and induce platelet secretion of serotonin were closely parallel.
FIGURE 9 SDS agarose gel electrophoresis of free and bound 125I-vWF. Lane 1, free 125I-vWF used as ligand in the experimental mixtures; lanes 2 to 4, 125I-vWF bound in the presence of thrombin (0.5 U/ml), ristocetin (1.5 mg/ml), and ADP + EPI (20 μM each), respectively, and extracted from the platelet pellets after phase separation; lane 5, 125I-vWF bound in the presence of thrombin and an anti-GPIIb/IIIa monoclonal antibody (B59.2). The same amount of 125I-vWF was added to all experimental mixtures. All bands detected in lane 1 correspond to multimers of vWF as they are observed in plasma after reaction with specific antibodies (see reference 21). The relative increase of the fastest moving band observed in bound ligand (lanes 2 and 3) was not a constant finding. It is possibly related to partial disaggregation of the larger multimers after platelet lysis.

Events. On the contrary, when ADP or ADP + EPI were used as agonists, binding of vWF was independent of the platelet release reaction. In the presence of an ADP scavenger, thrombin-induced binding of vWF was reduced by approximately two-thirds. This suggests that endogenous ADP released from platelets is necessary for maximal expression of vWF binding sites induced by thrombin. A specific thrombin action must be postulated, however, as binding induced by exogenous ADP or the combination of ADP + EPI was always significantly less than that observed with thrombin. This action of thrombin must occur on platelets and not on the ligand, as the same results are observed when thrombin is incubated with platelets and then neutralized by hirudin before addition of the ligand. The thrombin concentration necessary to induce significant vWF binding to platelets was as low as 20–50 mU/ml. Since experiments were performed at low platelet concentration, in the absence of stirring, and at room temperature, the concentrations of thrombin may be higher than those actually required in vivo to induce vWF binding sites.

The interaction of vWF with the thrombin-induced binding site is reversible. However, if unlabeled vWF was added after binding of 125I-vWF had occurred, displacement was incomplete. Thus, a certain proportion of the bound molecules had adopted a stable interaction with platelets. It is interesting to observe that
the binding of vWF to the ristocetin-induced binding
site is also only partially reversible (2). Similar results
have also been observed for fibrinogen interaction with
platelets (31). Another characteristic of vWF binding
to the thrombin-induced site is its partial spontaneous
reversibility upon prolonged incubation. Since the lev-
els of cyclic AMP have been shown to be important in
regulating vWF binding to thrombin-stimulated plate-
lets (3), but not to ristocetin-treated platelets (32), our
findings might be related to fluctuations of intraplatelet
cyclic AMP following platelet stimulation.

After extensive characterization of the platelet vWF
binding site induced by thrombin, ADP, and ADP + EPI, our purpose was to evaluate whether this bind-
ing site corresponded to that induced by ristocetin.
The suggestion that this might not be the case derived from
(a) the different metabolic and divalent cation re-
quirements for expression and/or function of these binding
sites, as observed during the course of these studies and
by others (3); (b) our recent observation that thrombin-
duced binding of vWF is deficient in Glanzmann
thrombasthenia (4), whereas ristocetin-induced bind-
ing is normal (8).

There is ample evidence that GPIb functions as the
platelet binding site for vWF in the presence of the
antibiotic ristocetin (2, 6–8). Indeed, this conclusion
is supported by the results here reported that dem-
strate complete suppression of ristocetin-induced bind-
ing of vWF by a specific monoclonal antibody
directed against GPIb. This monoclonal antibody (AP1)
is different from that reported by Ruan et al. (33) that
inhibited only 50% of ristocetin-induced vWF binding
to fixed platelets. AP1 inhibits >98% of vWF platelet
binding induced by ristocetin. Since both antibodies
are monoclonal, the epitopes recognized on the GPIb
molecule are probably different. AP1 appears to be
directed against or very close to the specific epitope
involved in vWF binding. Recently, Coller et al. (34)
have also reported studies with a different monoclonal
antibody to GPIb that completely blocks ristocetin-in-
duced binding of vWF to platelets. It is evident, how-
ever, that GPIb, or at least the epitope recognized by
the antibody used in these studies and essential for
ristocetin-induced binding, is not involved as part of
the vWF binding site exposed on platelets stimulated
by thrombin or ADP + EPI. This conclusion is further
substantiated by the finding that thrombin-induced bind-
ing was increased, rather than decreased, in two
Bernard-Soulier patients whose platelets had been
shown in previous studies to have extremely low levels
of GPIb (10). Bernard-Soulier platelets adhere poorly
to subendothelium (35) and are severely defective in
their capacity of binding vWF multimers in the pre-
ence of ristocetin (8). Hence, it has been postulated
that the vWF binding sites exposed by ristocetin are
involved in subendothelium-platelet interaction me-
diated by vWF. Following this hypothesis, the throm-
bin-induced binding sites for vWF are likely to be less
important in this interaction, as they are normally ex-
pressed on Bernard-Soulier platelets.

We have recently described the severely deficient
thrombin-induced binding of vWF to thrombasthenic
platelets and suggested that the GPIIb/IIIa complex
may be a component of the binding site for vWF ex-
posed on thrombin-stimulated platelets (4). Such an
hypothesis is further supported by the studies here re-
ported. In fact, blocking of GPIIb/IIIa by monoclonal
antibodies results in reduced thrombin-induced as well
as ADP + EPI-induced binding of vWF. These results
suggest the existence of common mechanisms leading
to the expression of vWF binding sites on platelets stim-
ulated by these three physiological agonists, but not by
ristocetin.

One of the anti-GPIIb/IIIa antibodies tested only
partially blocked the platelet binding of vWF induced
by thrombin, but the other was more effective in this
regard. The less effective antibody might recognize an
epitope of the GPIIb/IIIa complex not directly related
to the binding site, and therefore interfere with vWF
binding only by steric hindrance, whereas the other
might recognize an epitope more closely related or
correspondent to the vWF binding site.

Appropriate controls were performed to demonstrate
that the effect of the monoclonal antibodies was on
specific binding of vWF. This was shown by the fact
that the addition of excess monoclonal IgG directed
against an epitope not present on platelets had no effect
on the results, thus ruling out the possibility of non-
specific effects related to interaction with the Fc recep-
tor on platelets. Moreover, the vWF binding to
thrombin-stimulated platelets in the presence of the
anti-GPIb antibody corresponded to the binding that
could be completely suppressed by excess unlabeled
vWF. This, together with the demonstrated time-de-
pendence and saturaibility, shows that thrombin-in-
duced binding of vWF in the presence of blocked GPIb
is specific. The possibility that the blocking effect of
anti-GPIIb/IIIa antibodies was on the binding of con-
taminants present in the vWF preparations, rather than
on the binding of vWF itself, is unlikely as shown by
(a) the lack of any detectable contaminant, and notably
fibrinogen, in the vWF preparations used; and (b) the
direct demonstration that decreased binding of radio-
labeled ligand in the presence of anti-GPIIb/IIIa an-
tibodies was accompanied by a decrease in vWF mul-
timers bound to platelets, as detected by SDS agarose
electrophoresis and autoradiography after solubiliza-
tion of >80% of bound ligand.

In conclusion, these studies, as well as the results
previously obtained in Glanzmann thrombasthenia (4),

Z. M. Ruggeri, L. De Marco, L. Gatti, R. Bader, and R. R. Montgomery
demonstrate that the platelet membrane GP Ib/IIa complex, but not GPIb, is involved in the expression of vWF binding sites on thrombin- and ADP + EPI-stimulated platelets. Ristocetin-induced binding of vWF, on the contrary, is GPIb-dependent but GP Ib/IIa-independent. Therefore, distinct binding sites for vWF are exposed on the platelet surface by different stimuli. Although the physiological significance of thrombin-induced binding of vWF to platelets is still unclear, the recent demonstration that thrombin increases the membrane expression of platelet-released vWF (36, 37) suggests a possible role for the GPIb/IIa-related binding site in this mechanism.

ACKNOWLEDGMENTS

We would like to thank Dr. Margaret Johnson for helping us in the study of the Bernard-Soulier patients, Drs. Thomas J. Kunicki, Bice Perussia, and Giorgio Trinchieri for providing the monoclonal antibodies, Dr. J. W. Fenton II for making purified α-thrombin available to us, and Ms. Roberta Novak-Buhman for excellent secretarial assistance. The helpful criticisms and support of Dr. T. S. Zimmerman are gratefully acknowledged.

This work was supported by grants CT 81.00347.04 and CT 81.00184.01 from Consiglio Nazionale delle Ricerche, Rome, Italy, by North Atlantic Treaty Organization Research grants RG 225.80 and RG 231.81, by a grant from Fondazione Angelo Bianchi Bonomi, Milan, Italy, and by grant HL-30256 from the National Institutes of Health. Robert R. Montgomery is supported by Established Investigator Award No. 82-198, by grant No. 80-803 of the American Heart Association, and by the Midwest Athletes against Childhood Cancer Fund, Milwaukee, Wisconsin. This publication No. 2836 of the Immunology Department, Scripps Clinic and Research Foundation.

REFERENCES

25. Glore, L. M., R. R. Montgomery, C. G. Smith, and

