Antireceptor Antibodies as Probes of Insulinlike Growth Factor Receptor Structure

MASATO KASUGA, NORIO SASAKI, C. RONALD KAHN, S. PETER NISSLEY, and MATTHEW M. RECHLER, Elliott P. Joslin Research Laboratory, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Section on Biochemistry of Cell Regulation, Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, and Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205

ABSTRACT Insulin receptors and Type I insulinlike growth factor (IGF) receptors have a similar structure with a major binding subunit of Mr, ~130,000 linked by disulfide bonds to other membrane proteins to form a Mr, >300,000 complex. Both insulin and Type I IGF receptors also interact with both insulin and IGF, although with different binding affinities. We used a panel of human and rabbit sera containing antibodies to insulin receptors to determine whether these sera also interact with Type I IGF receptors. Immunoglobulins from five of five human sera inhibited binding of I251-insulin and I251-IGF-I to insulin receptors and Type I IGF receptors in human placenta and human lymphocytes. The rank order of reactivity with both receptors was the same; two sera, however, appeared to be selectively less reactive with the Type I IGF receptor, especially in placenta.

Sera from five of seven patients and from a rabbit immunized with purified insulin receptor effectively immunoprecipitated both placental insulin receptors and Type I IGF receptors. Of the remaining sera, one had only a low titer against the insulin receptor and did not immunoprecipitate the IGF receptor, whereas the second serum effectively immunoprecipitated cross-linked and surface-iodinated insulin receptors, but had negligible reactivity against the Type I IGF receptor. These results suggest that most antisera to the insulin receptor also contain antibodies to Type I IGF receptors. Whether both specificities are inherent in the same or different antibody molecules remains to be determined. These data support the hypothesis that the insulin and IGF-I receptors are separate but related molecules, although there remains a small possibility that both receptors are domains on the same protein.

INTRODUCTION

Insulinlike growth factor (IGF)1-I and IGF-II are closely related polypeptides purified from human plasma that have major amino acid sequence homologies to human proinsulin (1, 2). Like insulin and other polypeptide hormones, IGF-I and IGF-II initiate their biological actions by being recognized by specific receptors on the surface of responsive target tissues. At least two subtypes of IGF receptors can be distinguished by their relative reactivity with IGF-I and IGF-II and by their ability to interact with insulin (3, 4). In addition, the IGFs exhibit weak cross-reactivity with insulin receptors, as reflected by inhibition of I251-insulin binding in competitive binding experiments (5, 6).

Recently, we and others have reported that two types of IGF receptor structures can be demonstrated by affinity labeling techniques (7, 8) and that the differences in receptor subunit organization correlated perfectly with the previously observed differences in the specificity of binding (9, 10). Type I IGF receptors

1 Abbreviations used in this paper: BBS, borate-buffered saline; DSS, disuccinimidyl suberate; DTT, dithiothreitol; IGF, insulinlike growth factor; MSA, multiplication-stimulating activity; PMSF, phenylmethylsulfonyl fluoride.
react preferentially with IGF-I compared with IGF-II, but they also interact with high concentrations of insulin. Type I IGF receptor complexes have an apparent Mr of ~130,000 under reducing conditions and >300,000 without reduction, suggesting that a Mr ~ 130,000 receptor subunit is disulfide-linked to itself or other membrane proteins in the native state. The Type II IGF receptor reacts preferentially with IGF-II compared with IGF-I, but does not appear to bind insulin, even at high concentrations. Type II IGF receptor complexes have an apparent Mr of ~220,000 before reduction and Mr of ~260,000 after reduction, suggesting that they contain internal disulfide bonds, but that they are not linked by disulfide bridges to other membrane proteins. The structure of Type I, but not Type II, IGF receptors is quite similar to that determined for insulin receptors by similar affinity labeling techniques, although the two receptors can be distinguished by the relative abilities of insulin and IGF to inhibit the binding of the labeled ligands (9, 10, 12-16).

The marked similarity of the Type I IGF receptor and the insulin receptor raised the question whether the IGF-I and insulin binding sites might represent different domains on the same Mr ~ 130,000 protein, or whether they are present on separate but highly homologous structures. To address this question, we used sera from a group of patients with the Type B syndrome of extreme insulin resistance and acanthosis nigricans that are known to possess circulating autoantibodies to insulin receptors (17). These polyclonal immunoglobulins inhibit insulin binding and immunoprecipitate insulin receptors from a variety of tissues and species (11). We examined the ability of these autoantibodies, as well as a rabbit antiserum to the insulin receptor, to inhibit binding to and immunoprecipitate Type I IGF receptors.

METHODS

Cell culture

IM-9 cells, an established line of human lymphoblasts (18), were obtained from S. Taylor (Diabetes Branch, National Institutes of Health) and R. G. Rosenfeld (Stanford University, Stanford, CA) and propagated in continuous suspension culture at 37°C in RPMI 1640 medium (Gibco Laboratories, Grand Island, NY) supplemented with 10% (vol/vol) fetal bovine serum (Reheis Chemical Co., Phoenix, AZ).

BRL 3A2 cells, a cloned line of rat liver cells, were grown in monolayer culture in a humidified incubator (37°C, 5% CO₂) in modified Ham’s F12 medium containing 5% (vol/vol) fetal bovine serum as previously described (19). Fao rat hepatoma cells, a clonal line of well-differentiated rat hepatoma cells derived from the Beuber H-35 hepatoma (19), were maintained in monolayer culture in modified Ham’s F12 medium supplemented with 5% fetal bovine serum.

Human placental membranes

A crude membrane fraction containing microsomal and plasma membranes (100,000-g pellet) was prepared from normal human fresh-frozen full-term placentae, as described previously (20).

Summary of receptor preparations used in this study

The distribution of insulin receptors and Type I and Type II IGF receptors on human placental membranes, IM-9 lymphoblasts, Fao hepatoma cells, and BRL 3A2 cells is summarized in Table I.

Peptides

Porcine insulin (lot 11M85A5) was purchased from Elanco Products Co., (Indianapolis, IN). IGF-I (16SPII) purified from human plasma (1) was a generous gift of René E. Hummel (Biochemisches Institut der Universität Zurich, Switzerland). A partially purified preparation (No. 1932) of IGF having a specific insulinlike activity of 36 mU/mg in the fat pad bioassay was used for some experiments where indicated. Multiplication-stimulating activity (MSA) II-1 (M, 8,700) from serum-free culture medium conditioned by the BRL 3A cell line was purified by Dowex chromatography, Sephadex G-75 gel filtration, and preparative electrophoresis as previously described (22). I25I-Insulin, I25I-IGF-I, and I25I-MSA were prepared by the stoichiometric chloramine T procedure as previously described (4, 13).

Table I

<p>| Table I Distribution of Insulin Receptors and IGF Receptors in Placenta, Lymphoblasts, and Hepatocytes |
|---|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Cell or membrane preparation</th>
<th>Insulin receptors</th>
<th>Type I IGF receptors</th>
<th>Type II IGF receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human placental membranes</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Human lymphoblast cell line (IM-9)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rat hepatoma cell line (Fao)</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Rat liver cell line (BRL 3A2)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Identified with I25I-IGF-I. Inhibition by IGF-I > IGF-II > insulin. After DSS cross-linking, M, > 300,000 (nonreduced), ~130,000 (reduced).

† Identified with I25I-MSA or I25I-IGF-II. Inhibition by IGF-II > IGF-I; no inhibition by insulin. After DSS cross-linking, M, ~ 220,000 (nonreduced), ~260,000 (reduced).

‡ The Fao cell line is a subclone of the Reuber H35 cell line and exhibits the same receptor distribution (reference 21 and Kasuga, M., unpublished results).

4 By experimental techniques other than affinity cross-linking, a second subunit of M, 90,000 has also been identified in insulin receptors (11).
Antibodies to the insulin receptor

Sera containing autoantibodies to the insulin receptor were obtained from Type B patients with extreme insulin resistance and acanthosis nigricans (17) after an overnight fast, heated to 56°C for 30 min, and stored at −20°C. Patients were designated B-2 (J.P.), B-3 (O.G.), B-4 (O.B.), B-5 (J.R.), B-6 (D.H.), B-8 (H.H.), and B-9 (M.C.) as previously described (23, 24). Rabbit [125I]-insulin or [2.5 mCi/ml 125I]-IGF-I in the absence and the presence of 10 ng/ml BSA at a membrane protein concentration of 1 mg/ml. The membranes (0.4 mg) were then incubated for 18 h at 4°C with 0.5-1.5 nM [125I]-insulin or 2.5 nM [125I]-IGF-I in the presence of the indicated concentrations of unlabeled hormones or IgG. The incubation mixture was cooled to 4°C, diluted threefold with assay buffer without BSA (pH 7.4), and centrifuged at 4°C (5 min, 10,000 g). The membrane pellet was resuspended in ice-cold assay buffer without BSA to a membrane protein concentration of 1 mg/ml.

Isolation of IgG

IgG fractions from control and patients’ sera were isolated with protein A-Sepharose by a modification of the method of Ey et al. (26). 1 ml of each serum was applied to a column containing 1 g protein A-Sepharose CL-4B (gel vol of 2 ml) equilibrated with borate-buffered saline (BBS), pH 8.5 (50 mM boric acid, 120 mM NaCl, 0.02% sodium azide). The flow-through was reapplied to the column. Then, the column was washed with 20 ml of BBS. The IgG was eluted with 4 ml 0.1 M sodium citrate/citric acid buffer, pH 3.0. The eluate was dialyzed overnight against BBS and stored at 4°C. Protein concentrations of isolated IgG were calculated from the absorbance at 280 nm, assuming an extinction coefficient (1% wt/vol, 1 cm) of 14. Yields of IgG ranged from 3.4 to 18.6 mg/ml.

Reagents

Reagents were purchased from the following sources: protein A-Sepharose, Pharmacia Fine Chemicals (Piscataway, NJ); Staphylococcus aureus protein A (Pansorbin), Calbiochem-Behring Corp., American Hoechst Corp. (Somerville, NJ); Na [125I], New England Nuclear (Boston, MA); disuccinimidyl suberate (DSS), Pierce Chemical Co. (Rockford, IL); reagents for sodium iodide sulfate (SDS)-gel electrophoresis, Bio-Rad Laboratories (Rockville Center, NY); glucose oxidase, Boehringer Mannheim Biochemicals (Indianapolis, IN); lactoperoxidase, Sigma Chemical Co. (St. Louis, MO).

Binding assay conditions

Human placental membranes

Competition-inhibition. Membranes were suspended in incubation buffer (50 mM Tris-HCl, 10 mM MgCl₂, 1 mg/ml bovine serum albumin (BSA), pH 7.4). Membranes (50 μg in 0.1 ml) were preincubated with control or patients’ IgG (aliquots brought to 0.1 ml with BBS) for 5 h at 37°C, washed three times with 2 ml of incubation buffer (4°C), and resuspended in buffer. [125I]Insulin (40 pg) or [125I]-IGF-I (250 pg) was added to give a final reaction volume of 0.5 ml, and the incubation continued for 16 h at 4°C. To terminate the reaction, 2 ml of ice-cold buffer was added, and bound and free labeled peptides were separated by centrifugation (1,000 g, 20 min, 4°C). The supernatant was aspirated, and membrane-associated radioactivity quantitated in a gamma counter (27, 28). Specific binding was calculated by subtracting the nonspecifically bound peptide from the total bound labeled peptide. Nonspecific binding was determined in the presence of an excess of unlabeled peptide ([IGF, No. 1932, 36 mU/mg, 10 μg/ml; insulin, 20 μg/ml].

Binding, cross-linking, gel electrophoresis, and autoradiography. The crude membrane pellet was suspended in assay buffer (100 mM Hepes, 120 mM NaCl, 1.2 mM MgSO₄, 2.5 mM KCl, 1 mM EDTA, 10 mM glucose, 1.5 mM sodium acetate, pH 7.8) containing 10 mg/ml BSA at a membrane protein concentration of 1 mg/ml. The membranes (0.4 mg) were then incubated for 18 h at 4°C with 0.5-1.5 nM [125I]-insulin or 2.5 nM [125I]-IGF-I in the absence and the presence of the indicated concentrations of unlabeled hormones or IgG. The incubation mixture was cooled to 4°C, diluted threefold with assay buffer without BSA (pH 7.4), and centrifuged at 4°C (5 min, 10,000 g). The membrane pellet was resuspended in ice-cold assay buffer without BSA to a membrane protein concentration of 1 mg/ml.

Cross-linking was performed as previously described (13). DSS, freshly dissolved in dimethyl sulfoxide, was added to a final concentration of 0.03 mM. After 15 min, the reaction was quenched by addition of 5 vol ice-cold 10 mM Tris-HCl, 1 mM EDTA, pH 7.4, and the mixture was centrifuged (5 min, 10,000 g). The membrane pellet then was boiled for 2 min in 10 mM sodium phosphate buffer, pH 7.0, containing 2% SDS and 100 mM dithiothreitol (DTT), and the samples analyzed in 0.1% SDS-7.5% polyacrylamide gels using a discontinuous buffer system (29). The gels were stained with 0.25% Coomassie Blue in 50% trichloroacetic acid, destained in 7% acetic acid, dried, and autoradiographed with Kodak X-Omat film (Eastman Kodak Co., Rochester, NY) using a DuPont Cronex Lightening Plus enhancing screen (DuPont Instruments, Wilmington, DE). The molecular weights of the standards are as follows: filamin, 250,000; myosin, 200,000; β-galactosidase, 116,000; phosphorylase b, 94,000; BSA, 68,000; and ovalbumin, 43,000.

Human IM-9 lymphoblasts

IM-9 cells in late log phase were sedimented and resuspended at a concentration of 5 × 10⁶/ml in buffer (100 mM Hepes, 118 mM NaCl, 1.2 mM MgSO₄, 5 mM KCl, 8.8 mM dextrose, and 10 mg/ml BSA, pH 8.0). Cells (2.5-5 × 10⁸ in 0.1 ml) were preincubated with control or patients’ IgG (0.1 ml in BBS) for 2 h at 37°C (for IGF-I binding studies) or 22°C (for insulin binding studies). After preincubation, cells were sedimented and washed three times with 2 ml phosphate-buffered saline (PBS) at 22°C. Washed, resuspended cells (2.5 × 10⁶) were incubated with [125I]-insulin (40 pg) or [125I]-IGF-I (250 pg) in 0.5 ml assay buffer for 2 h at 15°C. At the end of the incubation, duplicate 200-μl aliquots were layered onto 150 μl ice-cold buffer in plastic microtubes and centrifuged at 10,000 g for 1 min in a Beckman microfuge (Beckman Instruments, Inc., Palo Alto, CA). Cell-associated radioactivity was determined by gamma counting. Nonspecific binding was determined as described for placental membranes.

BRL 3A2 cells

Binding of [125I]-IGF-I and [125I]-MSA to confluent BRL 3A2 cell monolayers was performed as previously described (7). Incubations were at pH 7.0 in the Hepes binding buffer used with IM-9 lymphoblasts. Cross-linking and electrophoresis were performed as described above.

Immunoprecipitation of cross-linked ligand-receptor complexes

[125I]-IGF-I, [125I]-insulin, or [125I]-MSA were bound and cross-linked to human placental membranes or BRL 3A2 cells as
described above. The membranes or cells were then solubilized in 25 mM Hepes buffer containing 1% Triton X-100, aprotinin (1 trypsin inhibitor unit/ml), and phenylmethylsulfonyl fluoride (PMSF) (2 mM) for 30 min at room temperature. The preparation was centrifuged at 200,000 g for 60 min at 4°C and the insoluble pellet discarded. Solubilized 125I-labeled hormone-receptor complexes were incubated in 25 mM Hepes buffer, pH 7.4, overnight at 4°C with the indicated concentrations of serum containing antiinsulin receptor antibody or control serum. Protein A (Pansorbin 10% (vol/vol) solution) (100-200 µl) was added and, after a further incubation for 1 h at 4°C, the mixture was centrifuged and washed three times with 25 mM Hepes buffer containing 0.1% Triton. The radioactivity in the pellets was counted in a gamma counter. Alternatively, the pellets were dissolved in 10 mM sodium phosphate buffer containing 2% SDS and 100 mM DTT and subjected to electrophoresis and autoradiography as described above.

Surface labeling of hepatoma cell line (Fao)

Confluent Fao cells (five 100-mm dishes, 2-4 × 10^7 cells/dish) were washed three times with Dulbecco's PBS and surface iodinated as previously described (30). The reaction was carried out in 3 ml PBS/dish, which contained 20 mM glucose, 1 mCi of Na 125I, 2 mg lactoperoxidase, and was initiated by adding glucose oxidase (200 mU/ml). After 30 min at room temperature, the cells were washed three times with cold PBS and solubilized for 30 min at room temperature in 25 mM Hepes buffer containing 1% Triton X-100, PMSF (2 mM), and aprotinin (1 trypsin inhibitor unit/ml). Insoluble material was removed by centrifugation at 100,000 g for 60 min at 4°C. The supernatant was immunoprecipitated as described above.

RESULTS

Subunit structure of insulin receptors and IGF-I receptors in human placental membranes. Human placental membranes possess specific receptors for insulin and for IGF-I (Table 1). The two receptors can be distinguished in competitive binding studies by preferential inhibition of labeled ligand binding by the homologous unlabeled ligand (31). Both receptors also interact with the heterologous ligand at high concentrations.

The nature of the receptor proteins that bind 125I-insulin and 125I-IGF-I was examined by covalently coupling bound radioligand with the bifunctional reagent DSS and by examining the solubilized receptor complexes by SDS-polyacrylamide gel electrophoresis and autoradiography. When examined under reducing conditions, both 125I-insulin (Fig. 1) and 125I-IGF-I (Fig. 2) appeared in Mr, ~130,000 complexes. The Mr, ~130,000 125I-insulin complex was identified as a component of the insulin receptor, since its formation was preferentially inhibited by addition of unlabeled insulin to the binding incubations, and only weakly inhibited by unlabeled IGF-I (Fig. 1). The Mr, ~130,000 125I-IGF-I complex was identified as a component of the IGF-I receptor by virtue of inhibition of its formation by low concentrations of unlabeled IGF-I and considerably higher concentrations of unlabeled insulin (Fig. 2). In the absence of disulfide reduction, both the 125I-insulin and 125I-IGF-I labeled complexes had Mr, >300,000, suggesting that the Mr, ~130,000 binding subunits were disulfide linked to other membrane proteins (not shown). Similar results have been reported by other investigators using other IGF-I-like polypeptides (basic somatomedin [14] and somatomedin C [15]) as radioligands and either affinity cross-linking [15] or photoaffinity labeling [14].

Inhibition of 125I-insulin and 125I-IGF-I binding to human placental membrane and BRL 3A2 rat liver cell receptors by antinsulin receptor antibody from patient B-2. Patients with extreme insulin resistance and acanthosis nigricans (Type B) possess circulating autoantibodies directed against insulin receptors (17). Patient B-2 has one of the highest titers of these antibodies, and hence her serum and IgC have been used extensively in studies of the insulin receptor (11). In addition, we previously have shown that Fab fragments prepared from IgG B-2 inhibited 125I-IGF-I binding to cultured human fibroblasts (32).

The ability of IgG B-2 to inhibit 125I-insulin and 125I-IGF-I binding to placental membranes is compared in Fig. 3. Radioligand was incubated with membranes in the presence of 0, 10, and 100 µg/ml of IgG B-2. Bound radioactivity was cross-linked with DSS and examined by SDS-polyacrylamide gel electrophoresis under reducing conditions. IgG B-2 inhibited the for-
mation of both $M_r \sim 130,000$ insulin receptor and IGF-I receptor complexes in dose-dependent fashion. By contrast, the same concentrations of IgG B-2 failed to inhibit the formation of $M_r \sim 130,000$ IGF-I receptor complexes in the BRL 3A2 rat liver cell line (Fig. 3), despite the fact that BRL 3A2 and placental IGF-I receptors exhibit similar reactivity with IGF-I, IGF-II, and insulin (4, 31). This suggests that IgG B-2 may react specifically with human IGF-I receptors.

Inhibition of 125I-insulin and 125I-IGF-I binding to human placental membranes and human IM-9 lymphoblasts by IgG from patients B-5, B-6, B-8, and B-9. IgG from four other type B patients were examined for their ability to inhibit 125I-insulin and 125I-IGF-I binding to human placental membranes (Fig. 4). Membranes were preincubated with the indicated concentrations of IgG for 5 h at 37°C. IgG from patients B-5, B-8, B-9, and B-6 (in order of potency) gave dose-dependent inhibition of 125I-insulin binding, whereas control IgG was without effect (right panel). Under the assay conditions used, maximal inhibition was $\sim 60%$. Preincubation of placental membranes with two of these IgG preparations, B-5 and B-8, also resulted in an inhibition of 125I-IGF-I binding with a similar concentration dependence (left panel), although maximal inhibition of 125I-IGF-I binding was only $\sim 30\%$. By contrast, IgG from patients B-9 and B-6 were considerably less effective as inhibitors of 125I-IGF-I binding than 125I-insulin binding. Based on the relative concentrations of IgG required to inhibit 125I-insulin and 125I-IGF-I binding by 50%, we estimate that IgG B-9 and B-6 were eight- to 10-fold less effective as inhibitors of IGF-I binding than insulin binding (Table II).

Similar experiments were performed in human IM-9 lymphoblasts and yielded similar results (Fig. 5). 125I-Insulin binding was inhibited $>90\%$ by IgG B-2, B-5, and B-8, and less completely by IgG B-9 and B-6, in order of potency. IgG B-2, B-5, and B-8 also inhibited 125I-IGF-I most effectively, producing 70–90% inhibition at 300 μg/ml. As in placental membranes, IgG B-9 and B-6 were less effective inhibitors of 125I-IGF-I binding to lymphoblasts, producing 30 and 0% inhibition, respectively, at 300 μg/ml. These results indicate a striking parallelism of inhibitory potencies of IgG B-2, B-5, B-8, B-9, and B-6 toward insulin receptors and IGF-I receptors in both placenta and lymphoblasts. IgG B-9 and B-6 appear...
to be disproportionately less reactive with IGF-I receptors than insulin receptors, although the differences are quantitatively more impressive in placenta than in IM-9 lymphoblasts. These differences, like the differences in the maximum extent of inhibition by antibody in the two cell types, may reflect minor het-

Table II

Relative Potencies of IgG from Serum of Different Patients as Inhibitors of [125I]-Insulin and [125I]-IGF-I Binding to Human Placental Membranes and IM-9 Lymphoblasts

<table>
<thead>
<tr>
<th>Receptor preparation</th>
<th>Patient</th>
<th>[125I]-Insulin</th>
<th>[125I]-IGF-I</th>
<th>Potency relative to IgG B-5*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>µg/ml</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Placental membranes</td>
<td>B-5</td>
<td>4.8</td>
<td>6.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>B-8</td>
<td>12</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>B-9</td>
<td>25</td>
<td>350</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>B-6</td>
<td>100</td>
<td>1,000$</td>
<td>4.8</td>
</tr>
<tr>
<td>IM-9 Lymphoblasts</td>
<td>B-2</td>
<td>7.5</td>
<td>12</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>B-5</td>
<td>19</td>
<td>21</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>B-8</td>
<td>30</td>
<td>60</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>B-9</td>
<td>200</td>
<td>600</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>B-6</td>
<td>1,000$</td>
<td>>2,000$</td>
<td>1.9$</td>
</tr>
</tbody>
</table>

* Potency = ED₅₀ B-5/ED₅₀ experimental × 100.
† Results from Fig. 4.
§ Extrapolated.
‡ Results from Fig. 5.
¶ Estimated. No inhibition at 300 µg/ml.

Figure 4 Inhibition of [125I]-IGF-I and [125I]-insulin binding to human placental membranes by IgG prepared from the serum of different patients. Membranes were preincubated with the indicated concentrations of IgG (from patients B-5, B-6, B-8, B-9, or from a control subject) for 5 h at 37°C. After extensive washing, membranes were incubated with [125I]-IGF-I (left) or [125I]-insulin (right) for 16 h at 4°C, and membrane-bound radioactivity was determined as described in Methods. Results are expressed as percentage of specific binding to control membranes not preincubated with IgG. For [125I]-IGF-I, total binding and specific binding were 18 and 16% of input radioactivity, respectively. For [125I]-insulin, total binding and specific binding were 22 and 18% of input radioactivity, respectively. The reason for the incomplete inhibition of insulin binding (~60%) and IGF-I binding (~30%) is not known. In preliminary experiments examining different conditions of preincubation with 300 µg/ml of IgG B-8 (i.e., 0–12 h at 4°C, 22°C, and 37°C), maximal inhibition was observed with a 5-h preincubation at 37°C, the conditions used in these experiments.
solubilized and 125I-IGF-I receptor panel, serum precipitated to insulin gel patient B-2. Rat different heterogeneity in respect to binding one in binding preincubated or at binding) bound radioactivity as pressed.

Human liver cells (5-10x10^6/ml) were incubated with 125I-IGF-I (left) or 125I-insulin (right) for 2 h at 15°C, and the cell-bound radioactivity determined. Bound 125I-ligand is expressed as percentage of specific binding to control cells (not preincubated with IgG). For 125I-insulin, total and specific binding were 11.0 and 10.1%. For 125I-IGF-I, results of two experiments are combined: B-2 (•) and B-5 (□) were assayed in one experiment, and B-5 (□), B-8, B-9, B-6, and control IgG in a second experiment. For 125I-IGF-I, total and specific binding were 7.1 and 6.7% of input radioactivity, respectively, in the experiment with B-2 and B-5, and 5.5 and 4.9%, respectively, in the experiment with B-5, B-8, B-9, and B-6.

Immunoprecipitation of 125I-insulin and 125I-IGF receptor complexes in human placenta and BRL 3A2 rat liver cells by antiinsulin receptor antibody from patient B-2. We next compared the ability of antiinsulin receptor antibody B-2 to immunoprecipitate solubilized placental insulin and IGF-I receptor complexes. 125I-Inulin and 125I-IGF-I were affinity cross-linked to placental membranes with DSS, the receptor solubilized and immunoprecipitated with serum from patient B-2 or control serum, and analyzed by SDS-polyacrylamide gel electrophoresis under reducing conditions. As seen in the autoradiogram in Fig. 6 (left panel), serum B-2, but not control serum, immunoprecipitated both the 125I-insulin receptor complexes and 125I-IGF-I receptor complexes.

Interestingly, serum B-2 also immunoprecipitated 125I-IGF-I receptor complexes from affinity cross-linked, solubilized BRL 3A2 rat liver cells (Fig. 6, right panel). Since serum B-2 did not inhibit 125I-IGF-I binding to this receptor (Fig. 3), this finding suggests that IgG B-2 interacts with a site on the IGF receptor different from the peptide binding site. By contrast, serum B-2 did not immunoprecipitate complexes of 125I-MSA cross-linked to the Type II IGF receptor of BRL 3A2 cells, suggesting that the reactive determinant was absent or masked in this receptor subtype. This is consistent with our previous studies, which showed that antireceptor antibody B-2 did not inhibit 125I-MSA binding to a variety of rat and human Type II IGF receptors (9).
Immunoprecipitation of 125I-insulin and 125I-IGF-I receptor complexes by serum from different patients with antiinsulin receptor antibodies and by rabbit antinsi

![Graph](image)

Figure 7 Immunoprecipitation of 125I-insulin (upper panel) and 125I-IGF-I (lower panel) human placental membrane receptor complexes by a panel of human and rabbit sera containing antibodies to the insulin receptor. 125I-Insulin and 125I-IGF-I were cross-linked to human placental membranes and solubilized in 25 mM Hepes buffer containing 1% Triton X-100 as described in Methods. Solubilized radiolabeled receptor complexes were incubated with several human sera containing autoantibodies to the insulin receptor (B-2, B-3, B-4, B-5, B-6, B-8, B-9), with rabbit immune serum prepared by injecting purified rat liver insulin receptors (A410), or with control human or rabbit serum (indicated by a dashed line), at 1:100 dilution. The reaction mixtures were immunoprecipitated by adding protein A, and the immunoprecipitates washed three times with 25 mM Hepes buffer containing 0.1% Triton X-100. Immunoprecipitated radioactivity was quantitated in a gamma counter. Results of two experiments (A and B) are presented. Serum B-8 was examined at 1:40 dilution in experiment B.

To evaluate further the differences in the ability of these sera to immunoprecipitate placental insulin receptors and IGF-I receptors, immunoprecipitation was examined at a range of serum concentrations (Fig. 8). At dilutions from 1:1,000 to 1:30, sera B-6, B-8, and B-9 exhibited dose-dependent immunoprecipitation of 125I-insulin receptor complexes; sera B-8 and B-9 were similar in potency, whereas serum B-6 was less effective (center panel). By contrast, the same concentrations of sera B-6 and B-9 did not immunoprecipitate 125I-IGF-I receptor complexes to a greater extent than control serum (left panel). To exclude any contribution of antiinsulin antibodies to the immunoprecipitation of 125I-insulin cross-linked to placental insulin receptors, we examined the ability of these sera to immunoprecipitate insulin receptors of Fao hepatoma cells which had been labeled by surface iodination. As seen in Fig. 8 (right panel), sera B-2, B-6, B-8, and B-9 immunoprecipitated the iodinated insulin receptors to similar extents as the affinity-labeled insulin receptor.

3 Bhaumick et al. (14) have reported that A410 did not immunoprecipitate placental IGF-I receptors. The reason for this discrepancy is not known.
DISCUSSION

We have examined the ability of a panel of seven human sera and one rabbit serum containing antibodies to insulin receptors to react with structurally related Type I IGF receptors. Each serum possessed antibodies that reacted significantly with Type I IGF receptors in human placenta and/or cultured lymphocytes. In some instances, however, quantitative differences in reactivity with insulin receptors and Type I IGF receptors were observed.

Serum and IgG from patient B-2, the serum with one of the highest titers of antibodies against insulin receptors, was studied most extensively. IgG B-2 inhibited binding of 125-insulin and 125I-IGF-I to their receptors in human placenta and IM-9 lymphoblast cultures. The concentration dependence for inhibition of binding of both radioligands by IgG B-2 in both systems was similar. Serum B-2 immunoprecipitated both insulin receptor and Type I IGF receptor complexes from human placental membranes as measured by affinity cross-linking techniques. IgG B-2 also immunoprecipitated 125I-IGF-I/Type I IGF receptor complexes in the BRL 3A2 rat liver cell line, although it did not inhibit 125I-IGF-I binding to this receptor. These results suggest that serum B-2 contains antibodies that recognize both rat and human Type I IGF receptors. This serum also contains antibodies (possibly

Receptors for Insulin and Insulin-like Growth Factor I 1467
the same molecules) that inhibit 125I-IGF-I binding to its receptor on human, but not rat, cells.

Immunoglobulins from the sera of four other type B patients inhibited the binding of 125I-insulin and 125I-IGF-I to the insulin receptors and Type I IGF receptors of human placental membranes and cultured IM-9 lymphoblasts with the same relative potencies: IgG B-5 $>$ B-8 $>$ B-9 $>$ B-6. The concentrations of IgG B-2, B-5, and B-8 producing half-maximal inhibition of 125I-insulin and 125I-IGF-I binding to placenta and lymphocytes were similar. Rosenfeld et al. (33) previously reported that serum from a similar insulin-resistant patient also inhibited the binding of insulin and IGF-I to IM-9 lymphoblasts at similar concentrations. Moreover, in their patient, antibody titers toward both receptors varied concordantly during the clinical course. By contrast, IgG B-9 and B-6 were much more effective inhibitors of insulin binding than of IGF-I binding, both in placenta (six- to eight-fold difference) and in lymphocytes (~threefold difference).

The preceding results suggested that these sera possess autoantibodies that recognize determinants at or near the insulin and IGF-I binding sites. Binding inhibition studies, however, cannot distinguish whether the binding sites for both ligands are present on the same or different proteins. To address this question, 125I-insulin and 125I-IGF-I placental membrane receptor complexes were cross-linked, solubilized, and immunoprecipitated with a panel of antiinsulin receptor sera. Of eight sera tested, five human sera (B-2, B-3, B-4, B-5, B-8) and one rabbit immune serum (A410) effectively immunoprecipitated the placental Type I IGF receptor in addition to the insulin receptor. The remaining two sera, B-9 and B-6, did not immunoprecipitate Type I IGF receptors to a significant extent. In the case of serum B-9, this appears to reflect a selective impairment in its ability to interact with Type I IGF receptors. Serum B-9 was equipotent with serum B-8 in immunoprecipitating cross-linked or surface iodinated insulin receptors, but was much less reactive than serum B-8 toward the IGF-I receptor. Since serum B-6 exhibited much weaker reactivity toward the insulin receptor, it is not clear whether its low reactivity with the IGF-I receptor also represents a selective difference in specificity.

Our results strongly suggest that serum B-9 recognizes determinants on placental insulin receptors that are not present or accessible on Type I IGF receptors. Since this difference in reactivity was observed in immunoprecipitation as well as inhibition assays, it makes it highly unlikely that insulin and IGF-I binding sites coexist in different domains of the same molecule. This possibility cannot be excluded completely, however, since it is possible that B-9 IgG interacts with a determinant near the IGF-I binding site that becomes inaccessible when 125I-IGF-I is cross-linked to the receptor.

We cannot distinguish from our experiments whether a single antibody molecule in each serum recognizes determinants on both insulin and Type I IGF receptors, or whether separate antibody molecules recognizing each of the two receptors coexist in these patients with very high frequency. In favor of the former possibility, two groups (34, 35) recently have described four monoclonal antibodies that interact with both human insulin receptors and Type I IGF receptors.

In conclusion, our results seem most compatible with the hypothesis that insulin receptors and Type I IGF receptors are distinct molecules, with similar but not identical structures. The differences may reside in the amino acid sequence or in posttranslational glycosylation. Similar conclusions were reported in a preliminary communication by Jonas et al. (36) using serum from some of the same Type B patients. Together with the homologous subunit structure and overlapping peptide binding specificities, these results suggest that the two receptors may have evolved from a common gene, as presumably occurred for the peptides themselves.

Acknowledgments

We wish to thank Dr. Steven J. Jacobs (Wellcome Research Laboratories, Research Triangle Park, NC) for graciously providing rabbit antiserum to purified insulin receptors, and Helen Jenerick for expert secretarial assistance.

References

