Abstract. The hemodynamic consequences of the hypoxic inhibition of angiotensin-converting enzyme activity were studied in chronically instrumented unanesthetized sheep (n = 8) breathing a hypoxic gas mixture for 60 min (Pao2 = 31 mm Hg) followed by reoxygenation with room air. Changes in cardiac output, vascular pressures, blood flow distribution, arterial pH, Paco2, Pao2, and arterial levels of plasma renin activity, angiotensin II, bradykinin, and catecholamines were measured at selected time points. Seven additional sheep underwent the same protocol but received saralasin, an angiotensin II receptor blocker beginning at 55 min of hypoxia and extending into the reoxygenation period. During hypoxia, both groups developed identical hemodynamic patterns including a rise in cardiac output (25%), blood pressure (15%), and preferential blood flow distribution to the heart, brain, adrenals, diaphragm, and skeletal muscle, as well as a decrease in the fraction of cardiac output to the kidneys and most of the gut. This was associated with a decrease in angiotensin II concentrations (from 35 to 17 pg/ml) in spite of a doubling in plasma renin activity and catecholamines. Bradykinin levels did not change. Upon reoxygenation, bolus production of angiotensin II (from 17 to 1,819 pg/ml) occurred in spite of a constant level of plasma renin activity. Concurrently, different hemodynamic patterns between control and saralasin groups emerged upon reoxygenation, including an elevation from baseline in blood pressure and systemic vascular resistance in the control group. Cardiac work (heart-rate systolic pressure product) in the control group remained elevated upon reoxygenation while coronary blood flow returned to base-line values. Saralasin reduced cardiac work upon reoxygenation and restored the match between coronary blood flow and work. We conclude that plasma renin activity and oxygen tension together govern angiotensin II levels for an optimal level of systemic vasomotor tone during hypoxia. However, upon reoxygenation, bolus production of angiotensin II may result in pathophysiologic circulatory patterns, such as impairment in oxygen delivery to the myocardium proportional to persistently elevated cardiac work in the immediate postresuscitation period.

Introduction

The lung is responsible for important metabolic functions involving the activation or degradation of many classes of circulating vasoactive substances which include circulating or tissue factors that mediate changes in blood pressure, vascular resistance, cardiac output, blood volume, or the transvascular exchange of fluid and protein (1). The biochemical processes that underlie the pulmonary handling of these substances are well described, and the endothelial cell is recognized as the cell type that is principally responsible for these functions. Nonetheless, there remains as yet little evidence that, by regulating the circulating levels of highly vasoactive compounds, the lung participates in physiologic processes or whether interference with this lung function contributes to the genesis of disease.

One well-recognized function of the pulmonary endothelial cell is the activation of angiotensin I (AI) to angiotensin II (AII) and the degradation of bradykinin by angiotensin-con

1. Abbreviations used in this paper: AI, angiotensin I; AII, angiotensin II, ACE, angiotensin-converting enzyme; BPAP, benzoyl-phen-ala-pro; pHa, arterial pH; PRA, plasma renin activity; RBF, regional blood flow.
verting enzyme (ACE). Previous work from our laboratory has demonstrated that ACE activity is rapidly and reversibly inhibited by hypoxia in vivo (2, 3) and in endothelial cell culture in vitro (4). In previous publications, we suggested that this phenomenon contributed to: (a) abnormal circulatory responses to stress in a canine model of pulmonary emphysema (5), (b) the physiologic adaptations of the circulation at the time of birth (6), and (c) the edema-producing effect of bradykinin in the hypoxic pulmonary vascular bed (7, 8).

The present study was designed to determine the hemodynamic consequences of the modulation of ACE activity by oxygen tension during acute hypoxia as well as during abrupt reoxygenation. Since we observed a fall in arterial AI1 with the onset of hypoxia in preliminary studies in anesthetized dogs (3), we hypothesized that, by virtue of this effect on AI1, the acute hypoxic inhibition of ACE would contribute to a physiologic redistribution of blood flow and prevent an unfavorable increase in systemic vasomotor tone and cardiac work. Furthermore, we hypothesized that reoxygenation would lead to rapid restoration of ACE activity and the sudden delivery of AI1 to the systemic circulation with consequent effects on blood pressure and blood flow distribution.

To examine these questions, we used anesthetized, chronically instrumented sheep preparations to study the time course of simultaneous changes in plasma renin activity (PRA), AI1, and bradykinin during hypoxia and reoxygenation, concurrent with changes in cardiac output, vascular resistance, and the distribution of blood flow to vital organs. In addition, levels of circulating catecholamines were measured as indices of sympathetic nervous system activity and adrenal medullary output for two reasons: (a) the sympathetic nervous system is known to play an important role in the circulatory response to hypoxia (9) and (b) there are important synergistic actions between the sympathetic and renin-angiotensin systems (10).

Methods

Animal preparation and experimental protocol. 15 chronically instrumented, unanesthetized sheep weighing 18–30 kg were used in these experiments. After induction (pentothal, 300 mg i.v.) and general anesthesia (1–2% halothane), a thoracotomy was performed through the left third intercostal space. Polyvinyl catheters (i.d. = 1 mm) were placed in the right and left atria and main pulmonary artery. The abdominal aorta was cannulated at the right femoral artery or its superficial branch, the saphenous artery. A short wide bore catheter was placed in the left external jugular vein. The latter served as the insertion site for a cardiac output thermocatheter catheter on the day prior to experimentation. Its position was verified by a pulmonary wedge pressure tracing.

The sheep were allowed to recover from surgery for a minimum of 7 d. On the first postoperative day, 150 ml of blood was withdrawn from the sheep and refrigerated in a sterile citrate phosphate-dextrose blood bank bag. This blood was rewarmed and used during the experiment to replace blood withdrawn from microsphere reference flow. All sheep were afebrile and had base-line hemodynamic and blood gas data consistent with previously published work (7). Animals were studied standing in their cage. A light plastic hood with venting tubes was placed over each animal’s head. Gas mixtures with known concentrations of O2 and N2 were delivered to the animals at gas flows >10 liters/min to prevent rebreathing. Base-line hemodynamic and biochemical data were determined over an initial 30-min interval of room air breathing (20% O2, 80% N2). The animals were then abruptly switched to the hypoxic gas mixture (10% O2, 90% N2) for a 60-min interval. This gas mixture was chosen to achieve a Pao2 between 30–40 mm Hg; in this range, angiotensin-converting enzyme activity is markedly inhibited (2). Because inhibition of enzyme activity is rapidly reversible, we then abruptly switched the gas back to room air, and continued observations for 60 min after reoxygenation.

Vascular pressures were continuously recorded on a polygraph recorder (Beckman Instruments, Inc., Fullerton, CA) by using pressure transducers (P23b, Gould-Statham Instrument Inc., Oxnard, CA) with zero reference at the mid-chest level. Cardiac output, heart rate, arterial blood gases and acid-base status, and hematocrit and vasoactive mediators were measured during base-line room air breathing (15 and 25 min after starting observations), hypoxic gas breathing (5, 10, 30, and 55 min after onset), and reoxygenation with room air (5, 10, 15, 30, and 60 min after onset). Cardiac output was determined in triplicate by thermodilution using a computer (Kimray Medical Associates, Inc., Oklahoma City, OK). Systemic vascular resistance was calculated by using the difference of the mean systemic arterial and mean right atrial pressure divided by the mean cardiac output. Heart rate was determined from a 10-s aortic pressure tracing. An index of myocardial work and oxygen consumption, the heart rate-systolic pressure product (11), was calculated at each sampling point. Blood samples from the aortic catheter were drawn to measure PRA, AI1, catecholamines, bradykinin, Pao2, Paco2, and arterial pH (pHa) (IL 513 pH/blood gas analyzer, Instrumentation Laboratory, Inc., Lexington, MA). A total of 4.5 ml of blood was required at each time point.

Eight sheep were used to describe the time course of change in systemic hemodynamics and circulating vasoactive mediators during acute hypoxia followed by abrupt reoxygenation. In seven other sheep, we used the same experimental protocol except for the infusion of 1-sarcosine, 8-ala, AI1 (AI1 receptor blocker, saralasin) (Calbiochem-Behring Corp., San Diego, CA) at 20 μg/kg per min beginning 5 min before and lasting for 15 min after the onset of reoxygenation. Saralasin was delivered in 0.1% lysoyzme and normal saline at 1 ml/min via the right atrial catheter. In preliminary experiments, we found no effect of 0.1% lysomyzme at 1 ml/min on resting blood pressure and heart rate, and no effect of this saralasin infusion on resting heart rate and blood pressure. However, within 5 min, this saralasin infusion could completely prevent a 20 mm Hg rise in mean systemic arterial blood pressure after the injection of 1 μg of AI into the right atrium.

Radioisotope labeled microsphere technique. The distribution of systemic blood flow was determined at five selected time points based on previous work which indicated critical time points for changes in circulating vasoactive mediators during hypoxia (3). Five separate injections of differently labeled microspheres were made during base-line room air breathing, at 5 and 55 min after the onset of hypoxia, and at 5 and 15 min after reoxygenation. Each microsphere injection was made immediately after sampling for blood gases and vasoactive mediators at corresponding time points.

The microsphere methods used in our experiments are similar to those published in extensive reviews of this method (12, 13). We employed microspheres labeled with either scandium-46, niobium-96, ruthenium-103, tin-113, or cobalt-67. The microsphere diameter was 15 μm and the specific activity was 10 mCi/mg. In two experiments, we collected central venous blood samples during the microsphere injection and found no evidence for nonentrapment. The stock solution of microspheres and final injectate solution consisted of 0.01% Tween in normal saline.
We found no hemodynamic changes upon injection of 5 ml of this solution in preliminary experiments. Each stock bottle of microspheres was examined for nominal size, fragmentation, aggregation, and leaching. Two million microspheres of each isotope were drawn into five different syringes with injectate volumes of 5 ml. After vigorous mixing of each injectate with a vortex mixer (Scientific Industries, Inc., Bohemia, NY), we delivered the injectate via the left atrial catheter over 30 s. 10 s before a microsphere injection, a withdrawal pump (Harvard Apparatus Co., Inc., South Natick, MA) began collecting the reference flow sample at 15 ml/min for 2 min from the catheter in the abdominal aorta. 30 ml of warm banked blood was transfused via the left atrial line immediately after the microsphere injection, over the remainder of the reference flow collection period.

Tissue aliquots and reference flow samples were placed into preweighed counting vials and then each vial was reweighed to the nearest milligram on a microanalytic balance (Brinkman Instruments, Inc., Westbury, NY). Tissue aliquots weighing ~1-3 g were obtained, and the total number of aliquots used for each organ contained a minimum of 400 spheres. Lung samples were taken after 30 cm H₂O inspiratory pressure. Gamma counting was performed on a three channel gamma counter with a 3-in crystal and punch tape recorder (Packard Instrument Co., Inc., Downers Grove, IL). An aliquot of each microsphere suspension was used as a standard for energy overlap corrections. Gamma counting windows were set with a maximum of 1% upscatter error from isotopes of lower energy. All specimens counted were kept below 1 cm in height to avoid counting error due to differences in sample geometry (14). A computer program was established in order to perform blood flow calculations for up to five different microsphere labels on the IBM 360/91 at Columbia University. Absolute regional blood flow (RBF) was determined as the flow per 100 g of tissue (milliliters per minute per 100 grams).

Assay methods for vasoactive mediators. Commercially available kits were used to determine PRA (New England Nuclear, Boston, MA) and plasma catecholamine concentrations (CAY, A KIT, Upjohn Diagnostics Co., Kalamazoo, MI). Blood bradykinin concentration was measured by radioimmunoassay as previously described (2). The assay sensitivity was 25 pg/ml and the intra-assay coefficient of variation was 10.2%.

Blood samples for all were extracted into ethanol and assay by radioimmunoassay. Blood (1 ml) was drawn into chilled syringes containing 0.02 M 1,10-phenanthroline and placed in 4 ml of 95% ethanol at room temperature. Without mixing, this blood ethanol mixture was immediately placed on ice. Following centrifugation and washing with 50% ethanol, the ethanol was evaporated and the remainder acidified and extracted with ether to remove lipids. The extractate was then reduced to dryness and reconstituted in 0.1 M Tris-acetate buffer, pH 7.4, with 1% bovine serum albumin and 0.1% sodium azide for radioimmunoassay. Labeled synthetic AII as well as AII antibody was obtained commercially (New England Nuclear, Boston, MA). Sensitivity, defined as the smallest amount of unlabeled AII that results in a significantly (P < 0.05) different bound/free ratio than that obtained for the zero standard, was 2.5 pg. Cross-reactivity of this antibody to AII was 4.2%. The coefficient of variation was 20.1%. Recovery of AII added to the extraction of 17 samples was 71.8%.

Statistical methods. Statistical analyses of the hemodynamic and chemical mediator data collected on control animals were performed using a two factor repeated measures analysis of variance on the changes from mean base-line values (15). The two factors were state of oxygenation and time measurement.

Hemodynamic data on animals receiving saralasin at 5 min before reoxygenation were collected in a second set of experiments. To rule out the effect of elapsed time between the groups of experiments as a factor in the interpretation of results, mean base lines were compared by using a t test between control and saralasin groups. Since no significant differences were found in baseline data between control and saralasin groups, the hypoxia data were analyzed by using a two factor repeated measures analysis of variance on the changes from mean base-line values. The two factors were group (control and saralasin) and time of measurement. No significant differences in any variable were obtained between control and saralasin data during hypoxia, so it was justifiable to compare the reoxygenation data. These were analyzed by using a two factor repeated measures analysis of variance with group and time as factors.

In all analyses of variance, statistical tests for interaction between factors were performed prior to tests on the factors themselves. In the absence of interaction, main effects were tested directly, while in the presence of interaction, means were tested by time by using the appropriate mean square. If it was necessary to pool error mean squares, the appropriate degrees of freedom for the resulting error mean square were determined by using a Satterwaithe approximation. The Bonferroni method was used to give an overall level of statistical significance of P < 0.05; that is, if 10 statistical tests were possible in a given analysis, a test was considered significant at the P < 0.005 level (16).

The changes from base line for the chemical mediators were not normally distributed (skewed with a long tail to the right) and hence were transformed with a logarithmic transformation.

Results

Arterial blood gases and acid-base status were the same in control and saralasin groups during the base-line, hypoxia, and reoxygenation periods. Breathing a hypoxic gas mixture of 10% O₂ and 90% N₂ resulted in moderately severe hypoxia with respiratory alkalosis (Table I). Over the 1-h period of hypoxia, the mean values for pH, PaCO₂, and PaO₂ were 7.55, 29 mm Hg, and 31 mm Hg, respectively. The base deficit did not exceed 5 meq/liter in any animal. Upon reoxygenation, the arterial blood gases and acid-base status returned to base line within 5 min.

Vasoactive mediator response. The time course of change in arterial catecholamines, PRA, and AII levels in response to acute hypoxia and reoxygenation are shown in Fig. 1. Total arterial catecholamines (epinephrine plus norepinephrine plus dopamine) rose to values significantly above base line during the entire hypoxic period. The peak was at 10 min with a mean level of 898 pg/ml representing a 143% increase above base line; thereafter, between 30 and 55 min of hypoxia, total catecholamines declined slightly to a mean level of 642 pg/ml. Both norepinephrine and epinephrine contributed to the rise in total catecholamines; however, only norepinephrine rose significantly during hypoxia. Epinephrine and norepinephrine values as well as their ratio are shown in Table II. Catecholamine levels remained mildly elevated above base line during the reoxygenation period but this did not reach statistical significance.

PRA rose significantly during hypoxia reaching a plateau at 30 min with a mean value of 2.44 ng/ml per h (an 85% increase above base-line values) and remained at the same level during the 1-h period after reoxygenation. Base-line AII con-
Table I. Arterial Blood Gases, pH, and Hemodynamic Measurements in the Control and Saralasin Groups during Hypoxia and Reoxygenation

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Base line (Room air)</th>
<th>Hypoxia (10% O₂, 90% N₂)</th>
<th>Reoxygenation (Room air)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-15</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>PaO₂ (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>83 (2)</td>
<td>78 (1)</td>
<td>37 (2)</td>
</tr>
<tr>
<td>S</td>
<td>81 (2)</td>
<td>79 (2)</td>
<td>33 (2)</td>
</tr>
<tr>
<td>PaCO₂ (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>32 (1)</td>
<td>35 (1)</td>
<td>28 (2)</td>
</tr>
<tr>
<td>S</td>
<td>36 (1)</td>
<td>36 (1)</td>
<td>30 (2)</td>
</tr>
<tr>
<td>pH</td>
<td>C</td>
<td>7.52 (0.01)</td>
<td>7.48 (0.01)</td>
</tr>
<tr>
<td>S</td>
<td>7.48 (0.02)</td>
<td>7.47 (0.02)</td>
<td>7.56 (0.03)</td>
</tr>
<tr>
<td>Mean systemic arterial pressure (mm Hg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>78 (4)</td>
<td>79 (5)</td>
<td>91 (4)</td>
</tr>
<tr>
<td>S</td>
<td>82 (3)</td>
<td>85 (3)</td>
<td>91 (4)</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>107 (8)</td>
<td>103 (6)</td>
<td>145 (7)</td>
</tr>
<tr>
<td>S</td>
<td>91 (7)</td>
<td>91 (7)</td>
<td>132 (6)</td>
</tr>
<tr>
<td>Cardiac output (liter/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.4 (0.3)</td>
<td>3.5 (0.3)</td>
<td>4.6 (0.5)</td>
</tr>
<tr>
<td>S</td>
<td>3.7 (0.2)</td>
<td>3.7 (0.2)</td>
<td>4.9 (0.2)</td>
</tr>
</tbody>
</table>

Values are mean±SE. C, control; S, saralasin. * Overall control group mean during reoxygenation different (P < 0.05) from base-line and saralasin group.
centrations were 35±15 pg/ml for the control group. With hypoxia, mean AII concentrations decreased to 17±5 pg/ml. Three of eight animals had base-line AII concentrations which were at the lowest sensitivity of the assay. Table III illustrates all data for individual control and two saralasin-treated animals. In 7 of the 10 animals, AII levels started above the assay sensitivity. In all seven animals, AII levels dropped by 55 min ($P <$0.02, sign test). Upon reoxygenation, there was a large increase in AII levels in all animals to a mean peak of 1,819 pg/ml at 5 min. All levels remained significantly elevated for at least 15 min after reoxygenation. Bradykinin values remained below the lower limit of the assay (25 pg/ml) throughout the hypoxia and reoxygenation periods, indicating that hypoxia alone does not lead to increased kinin formation, as we have previously described (2).

Hemodynamic response to hypoxia. The control and saralasin groups demonstrated the same base-line values and the same changes in cardiac output, heart rate, mean systemic arterial pressure, and calculated systemic vascular resistance before the start of the saralasin infusion (Table I). The pattern of hemodynamic responses (Fig. 2) were similar for each variable with higher values of cardiac output and mean systemic arterial pressure early in the hypoxic period, reaching a peak at about 10 min, followed by a gradual decline. Mean heart rate increased from 107 beats/min to a range of 170–200 beats/min. Mean cardiac output initially rose 41% above base line at 10 min and remained 28% above base line at 1 h; the overall increase in cardiac output during hypoxia was significant. The mean systemic arterial pressure rose initially by 22% and the average of all measurements during hypoxia indicated a significant elevation. The mean value at 55 min of hypoxia declined such that mean pressure at this point was not significantly different from base line. Thus, at the end of the hypoxic period, cardiac output remained elevated while blood pressure returned towards base-line values. Although there was only a small decline in calculated systemic vascular resistance during hypoxia, this occurred in all 15 animals and achieved statistical significance when data was pooled from both the control and saralasin groups ($P <$0.01).

Blood flow distribution data during base-line, hypoxia, and reoxygenation periods are shown in Table IV. Tissues that received a significant ($P <$0.05) increase in absolute blood flow during the entire hour of hypoxia include gray and white matter, myocardium, adrenal gland, diaphragm, and skeletal muscle. Only the outer renal cortex and spleen received a significant decrease in absolute blood flow. In general, there were no significant changes in absolute stomach, intestinal, and hepatic (arterial) blood flow during hypoxia. Since preliminary experiments ruled out nonentrapment, lung and liver values represent blood flow from the bronchial and hepatic arterial circulation, respectively.

The percent change in the fraction of cardiac output is listed in Table IV to indicate which organs preferentially received a greater or smaller amount of the cardiac output. Brain gray and white matter followed a biphasic pattern with no appreciable increase in the fraction of cardiac output at 5 min (white matter actually declined); however, both tissues received a statistically significant 40 and 32% increase, respectively, by 55 min. The myocardium, diaphragm, and skeletal muscle received a large significant increase in the fraction of cardiac output; this occurred to a lesser extent in the adrenal gland. The outer renal cortex and most of the gastrointestinal tissues, generally, received a decrease in their fraction of cardiac output; however, only the renal cortical data achieved statistical significance. There was a biphasic change in the liver and ileum with no overall change.

Figure 1. Simultaneous changes in arterial catecholamines, PRA, and AII levels during 1 h of acute hypoxia (Paco2 = 31 mm Hg) followed by reoxygenation ($n = 8$). A significant ($P <$0.05) rise in the overall mean of circulating catecholamines during hypoxia is shown, reflecting an increase in sympathetic nerve activity or adrenal release of catecholamines or both. There was no overall change in AII levels during hypoxia in spite of a significant twofold increase in PRA. However, by 55 min, all animals with ALL levels above the assay sensitivity had a measurable drop in AII. Reoxygenation was associated with bolus production of AII while PRA remained constant.
Table II. Time Course of Change in Arterial Catecholamines during 1 H of Hypoxia, Followed by Reoxygenation in Eight Sheep

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Baseline (Pao₂ = 80 mm Hg)</th>
<th>Hypoxia (Pao₂ = 31 mm Hg)</th>
<th>Reoxygenation (Pao₂ = 80 mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Norepinephrine*</td>
<td>164±14</td>
<td>314±63</td>
<td>524±110</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>148±34</td>
<td>115±21</td>
<td>310±125</td>
</tr>
<tr>
<td>Dopamine</td>
<td>31±16</td>
<td>64±21</td>
<td>64±17</td>
</tr>
<tr>
<td>Total</td>
<td>343±60</td>
<td>493±64</td>
<td>898±206</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.90</td>
<td>0.37</td>
<td>0.59</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>0.90</td>
<td>0.37</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Values are mean±SE, picograms per milliliter. *The overall mean of norepinephrine increased (P < 0.05) from base line during hypoxia and reoxygenation.

in their fraction of cardiac output occurring at 5 and 55 min of hypoxia.

Hemodynamic response to reoxygenation. Fig. 3 illustrates the hemodynamic data obtained during the hypoxic period (at 55 and 60 min) as well as the data obtained in the reoxygenation period for both control and saralasin groups. There was no difference between these groups in cardiac output, heart rate, mean systemic arterial pressure, and systemic vascular resistance during hypoxia, and the saralasin infusion (which was started at 55 min of hypoxia) had no effect on these hemodynamic parameters for the remaining 5 min of the hypoxic period. However, 5 min after reoxygenation, two different hemodynamic patterns developed between the control and saralasin groups. Cardiac output dropped immediately to base-line values in both groups. In the control group, blood pressure rose above the values at the end of hypoxia and thus above base line as well. In the saralasin group, blood pressure returned to base line upon reoxygenation. The rise in blood pressure observed in the control group upon reoxygenation was highly significant for at least 60 min after restoring room air breathing. Similarly, there was a significant difference in the pattern of response for systemic vascular resistance for the two groups; the large increase above base line in the control group was completely prevented by saralasin. Heart rate dropped to the same levels for both groups upon reoxygenation, though there was a trend towards slower heart rates in the saralasin-treated group.

We found no difference in the cardiac output and distribution of blood flow between control and saralasin groups when these measurements were made at 5 and 15 min after reoxygenation. A trend towards lower muscle blood flow was observed in the control group compared with the saralasin group at 5 min after reoxygenation, but this did not reach statistical significance (P = 0.1). Myocardial blood flow, which was equally elevated in both groups before saralasin and reoxygenation, returned to base-line values in both groups by 5 min of reoxygenation. However, the heart rate-systolic pressure product for the control group remained significantly higher than the product for the saralasin group which returned to base line (Fig. 4).

Discussion

Hypoxia is often present in many cardiopulmonary diseases and is known to result in severe inhibition of an important

![Figure 2. Hemodynamic measurements during 1 h of acute hypoxia followed by reoxygenation (n = 8). During hypoxia (Pao₂ = 31 mm Hg), calculated systemic vascular resistance dropped in all animals because cardiac output rose to a greater extent than did mean aortic blood pressure. Upon reoxygenation, cardiac output returned to base line while blood pressure rose significantly above base line, indicating an increase in systemic vasomotor tone. L. liter.](image)
Table III: Individual All Levels during Hypoxia and Reoxygenation in Eight Control Sheep and Two Sheep
Receiving Saralasin upon Reoxygenation

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Base line (Pao₂ = 80 mm Hg)</th>
<th>Hypoxia (Pao₂ = 31 mm Hg)</th>
<th>Reoxygenation (Pao₂ = 80 mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>3</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>107</td>
<td>95</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>20</td>
<td>114</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

Values are in picograms per milliliter. (---), missing samples. * Saralasin administered with the onset of reoxygenation.

Table IV: Cardiac Output, Regional Blood Flow, and Percent Change in Fraction of Cardiac Output from Base Line, during 1 hour of Acute Hypoxia and Reoxygenation in Eight Sheep

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Cardiac output (liter/min)</th>
<th>Base line (Pao₂ = 80 mm Hg)</th>
<th>5</th>
<th>55</th>
<th>5</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RBF</td>
<td>RBF</td>
<td>% RBF</td>
<td>RBF</td>
<td>% RBF</td>
<td>RBF</td>
</tr>
<tr>
<td>Gray matter</td>
<td>106</td>
<td>157*</td>
<td>26</td>
<td>13</td>
<td>183</td>
<td>25*</td>
</tr>
<tr>
<td>White matter</td>
<td>60</td>
<td>77</td>
<td>19*</td>
<td>32</td>
<td>98</td>
<td>12*</td>
</tr>
<tr>
<td>Myocardium (Left ventricle)</td>
<td>158</td>
<td>394</td>
<td>73*</td>
<td>90</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>Adrenal</td>
<td>195</td>
<td>318</td>
<td>58*</td>
<td>24</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>32</td>
<td>128</td>
<td>41*</td>
<td>204</td>
<td>219</td>
<td>45*</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>5.3</td>
<td>14.9</td>
<td>3.7*</td>
<td>114</td>
<td>11.6</td>
<td>12*</td>
</tr>
<tr>
<td>Outer renal cortex</td>
<td>556</td>
<td>107</td>
<td>62*</td>
<td>-44</td>
<td>296</td>
<td>34</td>
</tr>
<tr>
<td>Stomach</td>
<td>70</td>
<td>71</td>
<td>11</td>
<td>-23</td>
<td>72</td>
<td>9</td>
</tr>
<tr>
<td>Duodenum</td>
<td>113</td>
<td>75</td>
<td>7</td>
<td>-50</td>
<td>126</td>
<td>20</td>
</tr>
<tr>
<td>Ileum</td>
<td>67</td>
<td>63</td>
<td>9</td>
<td>-23</td>
<td>95</td>
<td>12</td>
</tr>
<tr>
<td>Colon</td>
<td>42</td>
<td>55</td>
<td>28</td>
<td>0</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Liver</td>
<td>53</td>
<td>2.6</td>
<td>0.7</td>
<td>-43</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Spleen</td>
<td>272</td>
<td>124</td>
<td>36*</td>
<td>-65*</td>
<td>145</td>
<td>44*</td>
</tr>
<tr>
<td>Skin</td>
<td>8.6</td>
<td>11.6</td>
<td>1.3</td>
<td>3</td>
<td>11.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Lung (bronchial)</td>
<td>50</td>
<td>32</td>
<td>18</td>
<td>-51*</td>
<td>33</td>
<td>10</td>
</tr>
</tbody>
</table>

All values are mean±SE. * Significantly different from base line (P < 0.05). RBF units are milliliters per minute per 100 grams.
metabolic function of the lung, ACE activity (2, 4). To examine
the hemodynamic consequences of the hypoxic modulation of
ACE activity, we studied chronically instrumented, unanesthe-
tized sheep breathing a hypoxic gas mixture followed by abrupt
reoxygenation with room air. During 1 h of hypoxia, mean
arterial blood pressure rose initially and then returned to base
line, and cardiac output rose and remained elevated. There was
a redistribution of blood flow toward the brain, heart, adrenals,
diaphragm, and skeletal muscle, and away from the splanchnic
circulation. The total hemodynamic response agrees closely with
work by other investigators using chronically instrumented, un-
anesthetized sheep (17). Simultaneous measurements of vaso-
active mediators during these hemodynamic changes demonstrat-
ed that the arterial concentration of AI1 dropped despite
an increase in PRA and norepinephrine levels. This decline in
arterial AI1 concentration is similar both in time course and
magnitude to that observed in rabbits made acutely hypoxic by
Zakheim et al. (18).

Our studies continued into the reoxygenation period because
a rapid increase in oxygenation can occur under both physiologic
conditions (at birth) or in the treatment of acute respiratory
failure; and inhibition of ACE by hypoxia is rapidly reversible
(3). Upon return to room air breathing, cardiac output returned
immediately to base line while blood pressure rose. In addition,
myocardial blood flow dropped to base-line values by 5 min
after reoxygenation, while myocardial work remained elevated.
Coexistent with these hemodynamic changes, we found ex-
trremely elevated levels of AI1 for 15 min after reoxygenation,
while PRA and catecholamine levels initially remained un-
changed from the hypoxic period. Upon reoxygenation, we at-
tributed the rise in systemic arterial blood pressure and the
decrease in the proportion of cardiac output going to the myo-
cardium relative to elevated cardiac work to the increase in AI1,
since saralasin, a specific AI1 receptor antagonist, prevented
these hemodynamic events.

Hemodynamic and vasoactive mediator response to acute
hypoxia. With the onset of acute hypoxia and consequent fall
in blood oxygen content, one task of the circulation is to increase
cardiac output so that systemic oxygen delivery is maintained.
Concurrently, a greater fraction of cardiac output is directed to
organs vital to survival. The present study indicates that one
mechanism for achieving an increase in cardiac output during
hypoxia is by increasing skeletal muscle blood flow which at
rest receives 20-25% of the cardiac output. Muscle blood flow
(excluding muscle involved in breathing) increased over twofold
during hypoxia without any apparent increase in muscle work
because in all cases the sheep stood or laid quietly and unre-
strained. We believe that this supports the concept of Caldini
et al. (19), who suggested that skeletal muscle serves as a fast
time constant bed (through which blood moves very rapidly),
having the effect of accelerating venous return to the heart.
Therefore, an increase in flow out of the heart (cardiac output)
is permitted because blood flow back to the heart (venous return)
is accelerated. In some previously reported work, muscle flow
did not increase with hypoxia (20) but this may have been
related to acute surgery and anesthesia. Recent work in chron-
ically instrumented, unanesthetized animals (17, 21) supports
the finding that skeletal muscle blood flow increases during
hypoxic stress.

In concert with the selective increases in organ blood flow
to vital organs and muscle, blood flow is distributed away from
the gastrointestinal tract and kidneys, presumably slow time
constant beds (19). The increase in splanchnic vascular resistance
will help maintain blood pressure and contribute to the aug-
mented blood flow to other organs. Blood flow distribution
varies over time. For example, at 5 min after the onset of hypoxia,
the fraction of blood flow going to the muscle and away from
the stomach and intestines was greater than the respective frac-
The role that circulating vasoactive mediators play in the hemodynamic adaptations to hypoxia are poorly understood. In the present experiments, we found that hypoxia increases PRA, as has also been shown by others (23). The mechanism for the rise in PRA during hypoxia is not completely understood but is probably due to a catecholamine-mediated decrease in renal vascular threshold pressure for renin release (24). Measurements of circulating catecholamines in the present study revealed an initial 162% increase over base line with 96% increase at the end of 1 h of hypoxia. Both norepinephrine and epinephrine rose to levels which would cause modest effects on blood pressure and cardiac output (25). The norepinephrine levels, in part, represent washout from sympathetic nerve terminals and reflect increased sympathetic activity (26).

While PRA increased during hypoxia, all levels remained low or dropped in the present study, confirming past work (3). This can be explained by the hypoxic inhibition of ACE activity to a very low level. At a PaO$_2$ of 35 mm Hg, measured converting enzyme activity was 30% of activity seen during normoxia using an AI pressor technique (27) and nearly 0% of normoxic activity using bradykinin clearance across the lung as a measure of ACE activity (2). In the present study, bradykinin levels remained below the level of assay sensitivity, confirming past work that hypoxia is not associated with elevated circulating levels of bradykinin unless the kallikrein-kinin system is activated (2).

The present and previous studies from our laboratory suggest...
that alveolar oxygen tension adjusts ACE activity and hence
All concentrations, i.e., All concentrations are regulated by Po2
in addition to renin release. Thus, in concert with alterations
in cardiac output and regional vasomotor tone produced by
increased sympathoadrenal activity, All levels are adjusted to
maintain perfusion pressure in an optimal range to insure oxygen
delivery to tissues. This analysis has been extended by the work
of Milledge and Catley (28) to explain how the effect of hypoxia
on the renin-angiotensin system controls aldosterone release.
These investigators demonstrated that when human subjects
exercised, PRA and aldosterone levels rose. However, when
hypoxia was superimposed, aldosterone levels fell despite a fur-
ther increase in PRA. The fall in aldosterone paralleled a fall
in plasma ACE activity. Thus, when PRA increases during hy-
poxia, Po2 governs all levels, thereby (a) contributing to optimal
systemic vasomotor tone and cardiac work, (b) contributing to
a redistribution of blood flow that accelerates venous return,
and (c) regulating circulating levels of aldosterone proportional
to the degree of hypoxia. In addition, the suggestion that the
modulation of ACE activity by oxygen tension plays a physiologic
circulatory role can be inferred from the studies of Gavras et
al. (29), who studied the hemodynamic effects of the phar-
macologic inhibition of ACE activity in salt-depleted dogs: car-
diac output was enhanced, systemic vascular resistance was de-
creased, and there was a redistribution of blood flow to the
brain and heart. These findings are similar to those observed
in the present study in which hypoxia was used to inhibit ACE
activity. However, in states in which blood pressure support is
highly dependent on the renin-angiotensin system, such as in
early hemorrhagic shock (30) and early neonatal life (31), in-
hibition of ACE activity by hypoxia could lead to hypotension
and a pathophysiologic redistribution of blood flow.

**Hemodynamic and vasoactive mediator response to abrupt
reoxygenation.** After 1 h of hypoxic gas breathing, normal arterial
oxygen tension was suddenly restored by substituting the hypoxic
gas mixture with room air. Reoxygenation resulted in a rise in
mean aortic blood pressure and systemic vascular resistance
peaking at 5 min and remaining elevated above base-line values
for an hour after reoxygenation. Heart rate remained elevated
above base-line values in spite of the sudden rise in blood pres-
sure. The rise in blood pressure while cardiac output and blood
flow distribution remained the same as base line indicated there
was a generalized increase in vasomotor tone.

With the onset of reoxygenation, there was bolus production
of All. All levels peaked at 5 min after the onset of reoxygenation
with a mean value of 1,819 pg/ml and returned to normal values
by 1 h. These high levels of All occurred without a simultaneous
change in PRA or circulating catecholamines. This can be ex-
plained by the sudden restoration of ACE activity upon reox-
genation and conversion of AI substrate which increased in
concentration during marked hypoxic inhibition of enzyme ac-
tivity. At the end of the reoxygenation period, All levels dropped
to the base-line range in spite of a persistent elevation in PRA.
Possible explanations for this observation include transient an-
giotensinogen depletion causing a decrease in AI production in
spite of continued renin release or an increase degradation rate
of All, after bolus production of All.

Since the publication of our several studies demonstrating
this inhibition of converting enzyme activity by hypoxia (2, 4,
7, 8), controversy has arisen as to both the extent and mechanism
of this phenomenon. Szidon et al. (32), administering bolus
injections of trace doses of AI to anesthetized dogs, found a
20% decrease in conversion when the dogs were made hypoxic,
which was attributed to a faster pulmonary transit time. How-
ever, when pressor doses of AI were administered, conversion
fell to 30%, even lower than in our published studies of angio-
tensin conversion in hypoxia. Catravas and Gillis (33) found
little effect of hypoxia on conversion of a synthetic ACE substrate,
benzoyl-pha-ala-pro (BPAP). However, Gillis et al. (34) found
a reduction of BPAP conversion in newborn lambs made hy-
poxic. The latter studies also revealed no effect of changes in
transit time on conversion. Also, we recently confirmed our
earlier observations on the inhibition of converting enzyme ac-
tivity by hypoxia in endothelial cells in tissue culture, using
BPAP as substrate (35). Using four different doses of BPAP, we
calculated an eightfold decline in maximum velocity (Vmax)
for ACE in hypoxic cells, with essentially no change in Michaelis
constant (Km). We should emphasize that whatever the mech-
anism, extensive studies reveal that the handling of both ACE
substrates, Al and bradykinin, is substantially altered by hypoxia,
and the studies described in this manuscript demonstrate that
hypoxia dissociates PRA from AI formation and this altered
peptide metabolism has important implications for cardiovas-
cular physiology.

**Effect of saralasin on the hemodynamic changes during
reoxygenation.** To assess the hemodynamic role of All upon
reoxygenation, we studied a separate group of animals receiving
saralasin, the specific AI receptor blocker. Upon reoxygenation,
the increase in systemic vascular resistance and blood pressure
above base-line values was blocked. Cardiac output returned to
base line in both control and saralasin groups. Coronary blood
flow returned to base-line values in both control and saralasin
groups within 5 min after reoxygenation. To determine if myo-
cardial oxygen delivery met demand upon reoxygenation, we
used the heart rate-systolic pressure product as an index of
myocardial work. This index of work correlates well with oxygen
consumption in the presence of elevated circulating catecho-
lamines (11). Upon reoxygenation, cardiac work in the control
group remained appreciably elevated above the level observed
in the saralasin group and base line. This was explained by the
Al-mediated rise in blood pressure upon reoxygenation. In addi-
tion, this hemodynamic effect of AlI may have been en-
hanced by the synergistic action of sympathetic nerve activity
and circulating catecholamines (10), which were still elevated
at the time of reoxygenation. Cardiac work was also elevated
in the control group because heart rate remained elevated during
reoxygenation. This may be explained by an AlI-mediated in-
terference with vagal tone (36). We conclude that, in the control
group, AII resulted in low coronary blood flow relative to cardiac work. When the AII receptor was blocked by saralasin, the match between coronary blood flow and cardiac work was restored and cardiac work was reduced.

Sudden reoxygenation may have pathophysiologic circulatory effects, which have not been previously recognized, specifically in the coronary circulation. Gavras et al. (37) has shown that high levels of AII similar to that seen in our experiment can cause myocardial ischemia and necrosis. This may have particular significance when a patient with severe coronary artery disease or infarction is being resuscitated or when the coronary circulation and its metabolic activities are suddenly restored after lung bypass. The present studies suggest that either an AII receptor blocker or converting enzyme inhibitor may be useful in these situations. Future studies which directly examine myocardial oxygen delivery with and without a proximal critical coronary stenosis may delineate whether an AII-mediated pathophysiologic circulatory pattern is indeed created upon reoxygenation.

The present experiments raise speculations for several problems pertaining to the care of critically ill patients. With the combination of hypoxia and acute hypovolemia, e.g., hemorrhage, PRA would likely be greatly elevated, but efficiency of pulmonary conversion of AII impaired. We speculate that abrupt reoxygenation may lead to an exaggerated AII-mediated impairment in coronary and splanchnic blood flow (38). Indeed, this clinical situation is not infrequently followed by such pathologic entities as ischemic cardiomyopathy and necrotizing enterocolitis. Since the vasoconstrictive effects of high concentrations of AII are in part antagonized by angiotensin-stimulated release of dilator prostaglandins (39), patients in these settings treated with cycloxygenase inhibitors (aspirin, indomethacin) would likely be at higher risk for regional ischemic effects of bolus AII formation. We speculate similarly that the hypoxic, prematurely born infant known to have impaired cerebral blood flow autoregulation after asphyxia (40) may be at enhanced risk for intraventricular hemorrhage if acute AII-mediated hypertension accompanies resuscitation.

Acknowledgments

The authors thank Dr. R. B. Mellins for his encouragement and critical evaluation of this study. We thank Dr. S. Permutt for stimulating and helpful discussions of our results. We also gratefully acknowledge the technical assistance of Joel Lipset, Jo Anne Falciano, Joseph Penna, and Alla Farber.

This work was supported by National Institutes of Health research grant HL 14218-12 (Specialized Centers of Research), Institutional National Research Service Award Training Program in Pediatric Pulmonary Research HL 07421-04, and a gift from the Gerald and May Ellen Ritter Memorial Fund.

References

The effect of hypoxia on the regional distribution of cardiac output in the dog.

328 D. Davidson and S. A. Stalcup