Abstract. In this study, we have investigated the effects of alimentary lipemia in 15 normotriglyceridemic individuals on high density lipoproteins (HDL2) with respect to structure, composition, and substrate efficacy for hepatic lipase in vitro. In the study subjects, HDL2 levels ranged widely from 4.7 to 151.7 mg/dl plasma. HDL2 were isolated in the postabsorptive (pa) state and in the postprandial (pp) state, i.e., 7 h after ingestion of a standard fatty meal. In going from the pa state to the pp state, HDL2 exhibited higher flotation rates and lower densities due to a decreased proportion of protein (38.7 → 36.2%) and a higher abundance in phospholipid (32.5 → 34.9%). There was a variable increase in triglyceride at the expense of cholesteryl esters; this increase was correlated positively with the magnitude of pp lipemia (r = 0.69, P < 0.01) and inversely with HDL2 levels (r = −0.72, P < 0.01). HDL2 fractions were incubated with human hepatic lipase in vitro. Product lipoproteins formed from lipolysis of pa-HDL2 and triglyceride-poorer pp-HDL2 were reduced in phospholipid content (by 25 and 50%, respectively) but remained in the size and density range of native HDL2. By contrast, a major fraction of triglyceride-richer pp-HDL2 was converted to particles with density, size, and apoprotein composition of native HDL3. Changes consistent with these findings in vitro were observed in vivo also, where 15 h postprandially, individuals with high-level lipemia showed a decrease in HDL2 and rise in HDL3, while those with lower-level lipemia did not. This study indicates that the magnitude of postprandial lipemia determines the proportion of triglyceride in pp-HDL2, which in turn determines whether or not HDL2 are converted to HDL3 by hepatic lipase action.

Introduction

High density lipoproteins (HDL) are one of the two major HDL subclasses (1). In normotriglyceridemic subjects, HDL2 levels correlate with HDL cholesterol (2) which has a powerful inverse correlation with the incidence of coronary heart disease (3, 4). Therefore, it appears very important to identify the mechanism(s) that control HDL2 levels in the plasma. We provide evidence that ingestion of a fatty meal can raise the triglyceride content of HDL2, which varies directly with the magnitude of postprandial lipemia and indirectly with HDL2 levels. We also show that the extent of enrichment of HDL2 with triglycerides determines whether or not HDL2 can be converted into HDL3 by hepatic lipase in vitro.

Methods

Study subjects were healthy males and females ranging in age from 29 to 37 yr. No participant took medication. Fasting plasma triglyceride levels were <160 mg/dl and HDL-cholesterol ranged from 27 to 87 mg/dl. Concentrations of HDL2 particles in fasting plasma of the 15 volunteers ranged from 4.7 to 151.7 mg/dl. Postabsorptive (pa)-HDL2

1. Abbreviations used in this paper: apo, apolipoprotein; F, flotation rate in aqueous NaBr solution of density 1.21 g/ml at 20°C expressed in Svedbergs (10^-13 s); pa-HDL2 and pp-HDL2, HDL2 isolated from plasma in the pa state and the pp state, respectively; pa, postabsorptive, after a 12-14-h overnight fast; pp, postprandial, 7 h after oral ingestion of a fatty meal.

2017 Postprandial Lipemia
were isolated from plasma after a 14-h overnight fast. Thereafter, a standard liquid fatty meal, whose composition has been described in detail previously (2), was administered orally. Each subject ingested 65 g of fat/m² of body surface. 7 h after ingestion of the meal, a second blood sample was obtained for isolation of pp-HDL₂. Additional minor blood sampling was performed at 2, 4, 6, and 8 h to determine pp triglyceride levels. The magnitude of pp lipemia was quantified as reported previously (2) as the area under the time dependent pp triglyceride level curve, and is expressed as milligrams per deciliter times 8 h triglyceride area. In some subjects, blood samples were obtained also at 15 h to analyze plasma for changes in HDL₂ and HDL₃ levels at this time. Fresh plasma was subjected to zonal ultracentrifugation (5) and the volume fraction containing HDL₂ was subjected to gel filtration chromatography using Bio-gel A-5M in 2.5 cm × 95-cm columns (Bio-Rad Laboratories, Richmond, CA). This isolation strategy gave highly purified pa- and pp-HDL₂, even from subjects with extremely low levels of HDL₂ in the presence of vast amounts of triglyceride-rich lipoproteins.

All incubations were performed at 25°C in a final volume of 15 ml. Incubation mixtures contained HDL₂ (between 5.0 and 5.5 mg phospholipid) in 20 mM Tris-HCl buffer, pH 8.2 and fatty acid-free bovine serum albumin (Sigma Chemical Co., St. Louis, MO) at a concentration of 4 g/dl. To prepare hepatic lipase, human postheparin plasma was chromatographed on heparin-Sepharose (6). Fractions containing the peak of hepatic lipase activity and separated from lipoprotein lipase were pooled. This pool was incubated with antilipoprotein lipase immunoglobulins to remove any traces of lipoprotein lipase (7) and was rechromatographed on N-desulfated, acetylated heparin-Sepharose (6). A typical hepatic lipase preparation used contained 0.05 mg protein/ml of 0.9 M NaCl, 10 mM Tris, pH 7.4, 20% glycerol. At completion of preparation, the specific activity of trioleylglycerol as substrate (6) at pH 8.5, 25°C was ~200 μmol fatty acid released per minute per mg protein. For every comparative experiment such as those shown in Fig. 1 and Fig. 4, aliquots of one enzyme pool were used. In control experiments, 0.15 M NaCl was substituted for hepatic lipase. Incubation time was typically 15 h and ranged from 3 to 30 h. After incubation, the reaction was stopped by chilling the mixture to 4°C and adjusting the density with NaBr to 1.4 g/ml for zonal ultracentrifugation to analyze and isolate HDL₂ (5). Recoveries of HDL₂-protein and HDL₂-total cholesterol averaged 89.3 and 91.8%, respectively. Phospholipid, triglyceride, cholesterol, cholesteryl esters, protein, and phospholipid classes were quantified by standard procedures used and described (1, 2, 5). For analysis of particle size, HDL₂ fractions were subjected to polyacrylamide gradient gel electrophoresis (8). Apolipoproteins were separated by polyacrylamide gel electrophoresis in 0.1% SDS (1) and apolipoprotein (apo) A-I and A-II were quantified by respective double antibody radioimmunoassay procedures used previously (2). Analytical ultracentrifugation was performed at 52,000 rpm, 20°C, and at Δ = 1.21 g NaBr/ml. Flotation rates are expressed as Svedbergs (10⁻¹³ s) and are designated F* (1).

Results

The compositions of pa-HDL₂ and pp-HDL₂ from 15 subjects are contrasted in Table I. Pp-HDL₂ had a lower proportion of protein and were enriched in phospholipids. Thus, they were less dense and had higher F* (1) values in agreement with observations reported by Tall et al. (9). They also contained a lower proportion of cholesteryl esters and a higher one of triglycerides. The percentage of core components, as computed from the sum of triglycerides and cholesteryl esters, was not significantly different. As can be seen from the last column of Table I, triglyceride contributed an average of 18% to the mass of the pa-HDL₂ core; this contribution increased to an average of 30% in pp-HDL₂ at the expense of cholesteryl esters. However, there were great individual differences in the postprandial triglyceride increase in HDL₂ as can be appreciated from the large standard deviations (13.25%) and the wide range (8.6–52.7%). This increase correlated directly with the magnitude of postprandial lipemia (r = 0.69, P < 0.01), and inversely with the HDL₂ levels in plasma (r = −0.72, P < 0.01).

Table I. Weight Percentage Chemical Composition of pa- and pp-HDL₂ from 15 Subjects‡

<table>
<thead>
<tr>
<th></th>
<th>pa-HDL₂</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>5.3</td>
<td>38.7</td>
<td>32.5</td>
<td>5.0</td>
<td>19.5</td>
<td>4.3</td>
<td>23.8</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>0.29</td>
<td>2.36</td>
<td>1.16</td>
<td>0.96</td>
<td>2.61</td>
<td>1.47</td>
<td>2.21</td>
<td>6.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4.7–5.5</td>
<td>36.1–43.6</td>
<td>30.2–34.3</td>
<td>2.7–6.5</td>
<td>13.6–22.6</td>
<td>2.1–6.7</td>
<td>18.6–26.2</td>
<td>8.8–26.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>6.2</td>
<td>36.2</td>
<td>34.9</td>
<td>5.0</td>
<td>16.8</td>
<td>7.1</td>
<td>24.0</td>
<td>30.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>0.15</td>
<td>1.59</td>
<td>1.79</td>
<td>0.97</td>
<td>3.71</td>
<td>2.96</td>
<td>2.07</td>
<td>13.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>5.7–6.3</td>
<td>33.7–39.0</td>
<td>32.2–38.9</td>
<td>3.2–6.7</td>
<td>9.7–21.5</td>
<td>2.0–11.8</td>
<td>19.7–26.7</td>
<td>8.6–52.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P†</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>NS</td>
<td><0.001</td>
<td><0.001</td>
<td>NS</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡ The HDL₂ levels in the 15 subjects averaged 48 mg/dl (mean)±43 (SD) and ranged from 5 to 152 mg/dl fasting plasma. The magnitude of postprandial lipemia as quantified by the trapezoidal rule (2) averaged 665.3±420.8 ranging from 101 to 1,344 mg/dl 8 h TG area. The difference of percentage TG of core (Δ (TG)/(TG + CE) × 100) in going from pa-HDL₂ to pp-HDL₂ averaged 12.1±10.70 ranging from −1.5 to 27.9 and correlated positively with magnitude of lipemia (r = 0.687, P < 0.01) and inversely with HDL₂ levels (r = −0.724, P < 0.01). * Statistics obtained by paired t test.
For in vitro incubation studies with hepatic lipase, we first performed a series of pilot experiments to establish the optimal conditions for comparing various HDL₂ preparations and their respective product lipoproteins. Two pools of pp-HDL₂, each obtained from two individuals, and their respective pa-HDL₂ were incubated for increasing lengths of time. With three additions of enzyme aliquots of 200–300 µl each at 0, 3, and 12 h, phospholipid hydrolysis in both pa-HDL₂ and pp-HDL₂ had approached a plateau at 15 h. At this time, ~25% of phospholipid (40% of phosphatidylcholine) was hydrolyzed from pa-HDL₂, and 49–55% (or 60–70% of phosphatidylcholine) from pp-HDL₂. In both types of HDL₂, triglyceride hydrolysis averaged 85% at 12 h and 93% at 15 h. Because we aimed at comparing product lipoproteins formed from HDL₂ at end-point conditions, the selected incubation conditions unless stated otherwise, were: 25°C for 15 h and additions of enzyme aliquots at 0, 3, and 12 h.

For comparative studies with hepatic lipase in vitro, we selected from 8 of the 15 study subjects pa-HDL₂ and respective pp-HDL₂ whose triglyceride content differed widely; three preparations of pp-HDL₂ had a very low proportion of triglyceride (<15% of core), two pp-HDL₂ had medium triglyceride content (29 and 30% of core), and three other pp-HDL₂ had a very high triglyceride content (36–53% of core). Each HDL₂ preparation from every individual was tested in separate experiments, performed in duplicate. Figure 1 shows representative zonal ultracentrifugal analyses of these incubation experiments. A, B, and C refer to individuals whose pp-HDL₂ contained low, medium, and high amounts of triglycerides, respectively. Upper and lower panels show pa-HDL₂ and their respective pp-HDL₂. pp-HDL₂ (dashed lines in Fig. 1, bottom panels) banded at earlier rotor volume fractions than their respective pa-HDL₂ (dashed lines in Fig. 1, top panels), in agreement with higher Fₚ values and lower protein content (Table I).

Incubation of pa-HDL₂ with hepatic lipase produced particles with slightly higher density (solid lines in Fig. 1, upper panels). This was the case with all pa-HDL₂ tested, and in no case were lipoprotein populations with HDL₃ density observed. When pp-HDL₂ with low triglyceride content were incubated with hepatic lipase, the product particles banded as a single peak at somewhat higher densities in the zonal rotor (Fig. 1, pp-A). The peak position of this single band was between 120 and 170 ml in six individual experiments (using pp-HDL₂ from three different donors), which is within the elution volume of native pa-HDL₂ in the zonal rotor (1). The HDL formed in vitro from panels pa-A (n = 3), pa-B (n = 2), pa-C (n = 3), and pp-A (n = 3) showed very similar percentage composition (n = 11): 44.5±2.0% protein, 23.5±1.7% phospholipid, 4.8±1.7% cholesterol, 25.3±0.9% cholesteryl ester, and 1.7±1.4% triglyceride.

The two pp-HDL₂ samples with medium triglyceride content both yielded denser peaks within the HDL₂ density range and a trailing shoulder (Fig. 1, pp-B). Material from panel pp-B was not analyzed for composition because of poor resolution of HDL peaks. All triglyceride-rich pp-HDL₂ (Fig. 1, pp-C), when incubated with hepatic lipase, gave rise to a minor peak within HDL₂ density and a main peak banding at a volume between 200 and 250 ml, which is in the range of native HDL₃ (1). The HDL₃, formed in these experiments exhibited mean peak Fₚ values of 2.9 (Table II) typical of the most abundant HDL₃ class, also termed HDL₃⁎ (1). Quantitative compositional analysis of HDL from Fig. 1, pp-C is illustrated in Table II.

In Fig. 1, only the first 500 ml of the entire rotor volume (665 ml) is shown. Material eluting past 400 ml contained the albumin added to the incubation mixture. In absence of hepatic lipase, <0.2 mg phospholipid was recovered from this fraction. With hepatic lipase present, between 0.6 and 0.8 mg phospholipid was recovered from albumin in pa-A, pa-B, and pa-C, and between 1.6 and 2.1 mg phospholipid in panels pp-A, pp-B, and pp-C. More than 85% of this phospholipid was lyso phosphatidylcholine.

The size distributions as determined by gradient gel electrophoresis are given in Fig. 2. Pa- and pp-HDL₂ from all subjects were indistinguishable by size (Fig. 2, lanes 3, 5, 7, and 9). When incubated with hepatic lipase, pa-HDL₂ were reduced in size only slightly and none of them were converted into particles within the size range of HDL₃ (Fig. 2, lanes 4 and 6). Similarly, triglyceride-poor pp-HDL₂ were reduced in size only slightly to particles that were not in the size range of native HDL₃ (Fig. 2, lane 8). By contrast, triglyceride-rich pp-

![Figure 1](image_url)
Table II. Incubation of Triglyceride-Rich
pp-HDL2* with Hepatic Lipase In Vitro

<table>
<thead>
<tr>
<th>Weight percent</th>
<th>Hepatic lipase absent</th>
<th>Hepatic lipase present</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp-HDL2</td>
<td>"HDL2"</td>
<td>"HDL3"</td>
</tr>
<tr>
<td>Protein</td>
<td>38.4±1.62</td>
<td>44.7±0.58</td>
</tr>
<tr>
<td>PL</td>
<td>34.1±1.25</td>
<td>28.6±1.46</td>
</tr>
<tr>
<td>UC</td>
<td>5.1±0.45</td>
<td>6.4±1.03</td>
</tr>
<tr>
<td>CE</td>
<td>12.1±2.59</td>
<td>16.5±0.36</td>
</tr>
<tr>
<td>TG</td>
<td>10.4±1.18</td>
<td>3.8±0.29</td>
</tr>
<tr>
<td>Peak F*1,2 A</td>
<td>6.0±0.19</td>
<td>4.9±0.65</td>
</tr>
<tr>
<td>Apo A-I,Apo A-II†</td>
<td>3.0±0.75</td>
<td>4.0±1.39</td>
</tr>
</tbody>
</table>

* HDL fractions are those defined in Fig. 1, pp-C. Numbers are mean±SD from six (n = 6) experiments using pp-HDL2 from three subjects in duplicate experiments. Hydrolysis of phospholipid and triglyceride from HDL2 ranged from 50.8 to 55.9% and from 90.4 to 95.9%, respectively. The ratio of HDL2 to HDL3 formed from pp-HDL2 from the three subjects was 0.17, 0.39, and 0.73, respectively. Abbreviations are those used in Table I.
† Molar ratio.

HDL2 (Fig. 2, lane 9) were transformed into two types of particles, i.e., one with HDL2 size (Fig. 2, lane 10) and one (Fig. 2, lane 11) with size of native HDL3 (Fig. 2, lane 2).

Particles formed from pa-HDL2 and from triglyceride-poor pp-HDL2 had the same apoprotein composition as the particles prior to treatment with hepatic lipase (data not shown). By contrast, the two particle populations formed from all triglyceride-rich pp-HDL2 tested (Fig. 3 A) differed considerably in their apoprotein composition. The HDL2-like particles had a low abundance of apo A-II (Fig. 3 B), equivalent to an apo A-I/apo A-II molar ratio of 4.0 (Table II). The HDL3-like particles, however, had a much higher abundance of apo A-II (Fig. 3 C), and hence an apo A-I/apo A-II molar ratio of 1.7 (Table II).

To determine whether formation of HDL2-like particles from triglyceride-enriched pp-HDL2 could be observed with shorter incubation times and with smaller amounts of the enzyme preparation, we reduced incubation time to 6 h with two enzyme additions (at 0 and 3 h), and to 3 h with addition of one aliquot of enzyme at 0 h. The results are illustrated in Fig. 4. Reduction of incubation time and amount of enzyme resulted in progressive reduction of phospholipid hydrolysis that was paralleled by reduced density of the product lipoproteins. With triglyceride-poor pp-HDL2, no HDL2-like particles were formed (Fig. 4, upper panel). With triglyceride-rich pp-HDL2, HDL2-like particles were formed after 15 h of incubation. However, the existence of two lipoprotein populations was evident already at 3 h of incubation using one aliquot of hepatic lipase (Fig. 4, lower panel). This experiment demonstrates that it is the composition of HDL2 rather than the experimental conditions that allow HDL3 formation.

After establishing that triglyceride-enriched pp-HDL2 can

Figure 2. Behavior of HDL fractions on gradient gel electrophoresis. Lanes 3–11 show HDL fractions from Fig. 1; 1, - , without hepatic lipase; lanes 10 and 11, "HDL2" and "HDL3" from Fig. 1, pp-C. Lanes 1 and 12, calibration proteins (high molecular weight, Pharmacia, Piscataway, NJ) ranging from 669,000 to 67,000 mol wt; lane 2, native HDL3.

Figure 3. Electrophoretic behavior of apoproteins of HDL from two different donors represented in Fig. 1, pp-C. a, without hepatic lipase; b, "HDL2"; c, "HDL3". The same result was obtained with triglyceride-rich pp-HDL2 from the third donor (for apo A-I/apo A-II molar ratios of all three subjects, see Table II).

Figure 4. Effect of incubation time and enzyme additions on formation of HDL2 in vitro. Upper panel, triglyceride-poor pp-HDL2 (15.5% triglyceride of core). Lower panel, triglyceride-rich pp-HDL2 (40.7% of core). C, control incubation for 15 h in absence of hepatic lipase. With 3 h incubation time, one 300-μl aliquot of enzyme was added at start of incubation. With 6 h incubation time, two 300-μl aliquots were added at 0 and 3 h. With 15 h incubation, three aliquots of enzyme were added at 0, 3, and 12 h, respectively. Other conditions were those described in Fig. 1. Extent of phospholipid hydrolysis in both panels averaged 50% at 15 h, 35% at 6 h, and 20% at 3 h.
be converted to HDL₃ by hepatic lipase in vitro, we tested these observations for their in vivo relevance. We administered to some of the study subjects whose HDL₂ were used for the experiment shown in Fig. 1 the standardized oral fat load and analyzed their plasma for HDL subclass distribution at 0 h (pa state), 7 h (pp state), and 15 h postprandially. Fig. 5 illustrates the results with two individuals with high HDL₂ levels. In these subjects, concentrations of HDL₂ in plasma did not decrease throughout the observation period. Different results were observed with individuals with medium-low HDL₂ levels (Fig. 6). At 15 h, HDL₂ concentrations in the plasma of these subjects were decreased by 23 and 13%, respectively. Concomitantly, there was an increase of HDL₃ by 6 and 7%, respectively.

As can be seen from Fig. 6, at 7 h the HDL₂ from both subjects banded at lower densities than at 0 h (in agreement with the higher F₁₂₁ values observed for pp-HDL₂ when compared with pa-HDL₂, Table I). At 15 h, however, the HDL₂ banded at higher densities than at 0 h. Therefore, the flotation rates (F₁₂₁) of these HDL₂ were measured. F₁₂₁ from subject A (B) were at 0 h 5.1 (5.3), at 7 h 5.8 (6.1), and at 15 h 4.8 (4.9). Protein content (weight percent) was at 0 h 39 (40)% and at 15 h 43 (44)% at 15 h, the HDL₂ of these subjects thus showed higher abundance of protein, higher densities, and lower flotation rates than at 0 h and hence were very similar to the “HDL₂” found in vitro after action of hepatic lipase on triglyceride-rich pp-HDL₂ (Fig. 1, pp C and Table II).

Discussion

The rationale for this study was provided by our discovery that, in normolipidemic subjects, ingestion of a standard fatty meal altered HDL₂ that had large individual variations with respect to triglyceride content (Table I). In subjects with very high HDL₂ levels, little or no change in core components occurs. In individuals with extremely low HDL₂ levels and pronounced pp lipemia, the HDL₂ particles become enriched with triglycerides at the expense of cholesteryl esters. This is most likely caused by protein-mediated (10, 11) net exchange of triglycerides and cholesteryl esters between chylomicrons and HDL₂ and appears to be governed by the relative abundance of donor and acceptor particles (12).

The compositional variance among pp-HDL₂ suggested they may yield different product lipoproteins upon interaction with hepatic lipase since the enzyme hydrolyzes both phospholipids and triglycerides in HDL₂ (13). From clinical studies, evidence has accumulated that hepatic lipase plays a role in the catabolism of HDL₂ (for review, see reference 14). In familial deficiency of hepatic lipase, the levels of HDL₂ are elevated (15) and in healthy humans the activity of hepatic lipase in postheparin plasma is correlated negatively with HDL₂ levels (16). However, it has been demonstrated that HDL₂ from fasting normolipidemic plasma are not converted into HDL₃ by hepatic lipase in vitro (13) and our experiments with pa-HDL₂ confirm this finding (Fig. 1, upper panels). As could be expected from our experiments, a higher proportion of phospholipids was hydrolyzed from the phospholipid-rich pp-HDL₂ than from pa-HDL₂. One primary physiologic function of hepatic lipase could be to remove, from HDL₂, the postprandially derived phospholipids so that HDL₂ can continue to serve as phospholipid acceptors during renewed chylomicron catabolism. With triglyceride-poor pp-HDL₂, hepatic lipase would maintain the structural integrity of HDL₂ essentially without reducing HDL₂ levels. With triglyceride-enriched pp-HDL₂, removal of triglycerides from the core of HDL₂ would form smaller HDL₃ particles. In this situation, hepatic lipase would reduce HDL₂ levels by converting them into HDL₃. Between these two extremes, there appears to be a continuous transition (Fig. 1, pp B). A similar mechanism involving lipoprotein lipase instead of hepatic lipase has been postulated for the formation of small LDL (17).
Three aspects from this study support the physiologic relevance of our observations. The first is that triglyceride-rich pp-HDL, upon treatment with hepatic lipase, consistently yielded two lipoprotein populations. One population has the size and flotation characteristics of HDL, and a second population has the characteristics of HDL. When we gradually reduced incubation times from 15 to 6 to 3 h, the existence of two particle populations was always apparent (Fig. 4, lower panel). Thus, formation of HDL was initiated early in lipolysis as a quantized change and was not the result of conversion of native HDL to HDL due to prolonged incubation. With triglyceride-poor pp-HDL, no HDL-like particles were formed even after 15 h of incubation (Fig. 4, upper panel). Therefore, it is the intrinsic property of pp-HDL that determines whether HDL is formed. Infusion of heparin into individuals with lipoprotein lipase deficiency causes a decrease in HDL and an increase in HDL caused by hepatic lipase (18). Since the HDL of these severely hypertriglyceridemic subjects must be enriched with triglycerides, the study by Rao et al. (18) suggests that hepatic lipase can degrade such triglyceride-rich HDL in vivo at significant rates.

The second consideration related to the physiological role of this process is the finding that the HDL-like particles that remained in vitro contained less apo A-II than the starting standard HDL (Table II and Fig. 3). The HDL-like particles contained large amounts of apo A-II with an apo A-I/apo A-II molar ratio of 1.7, which is that of native HDL (1, 19). The product lipoproteins formed from triglyceride-rich pp-HDL thus not only had the density and size but also the apoprotein composition of native HDL.

The third finding supporting the physiologic relevance of our in vitro observations is the kinetics of HDL and HDL distribution in the plasma of our study subjects between 0 and 15 h postprandially. In the subjects with high HDL levels and low postprandial lipemia, HDL were not enriched with triglyceride at 7 h postprandially (Fig. 5, legend) and were not converted to HDL by hepatic lipase in vitro (Fig. 1, pp-A). In these subjects, ingestion of the standard fatty meal failed to cause a decrease in HDL plasma levels throughout the observation period (Fig. 5).

In the individuals with lower HDL levels and pronounced lipemia, HDL were enriched with triglyceride at 7 h postprandially (Fig. 6) and were converted partly to HDL by hepatic lipase in vitro (Fig. 1, pp-B, pp-C). In these subjects, ingestion of the standard fatty meal caused a decrease in HDL concentration in plasma (Fig. 6). Composition and density of these HDL at 15 h resemble that of HDL found after hepatic lipase action in vitro on triglyceride-rich pp-HDL. Observations consistent with these findings have been reported by Kashyap et al. (20) who monitored in six subjects the changes in relative HDL subfraction distribution using gradient gel electrophoresis from 0 to 12 h postprandially. In the two individuals with low HDL levels and pronounced lipemia, HDL levels decreased 12 h postprandially. The subjects with high HDL levels showed no decrease in HDL.

Our findings suggest that the following sequence of events could occur in vivo: Dietary ingestion of fat is followed by postprandial chylomicronemia which allows transfer of triglycerides from chylomicrons into HDL in exchange for cholesterol esters. The resulting triglyceride-rich pp-HDL are converted by hepatic lipase to HDL. Postprandial lipemia would be a prerequisite for the initiation of the above sequence of events and the magnitude of postprandial lipemia would determine the degree of enrichment with triglycerides in HDL. Thus, with increasing magnitude of postprandial lipemia, the proportion of HDL that is converted into HDL would increase and, ultimately, decrease the steady-state levels of HDL in plasma. This hypothesis provides an explanation for the great differences in HDL levels among normotriglyceridemic individuals and for their negative association with the magnitude of postprandial lipemia (2).

Acknowledgments

The authors wish to thank I. Y. Chen, I. Thandi, and A. S. Norlin for expert technical assistance, Sarah Myers and Irene Perez for editorial assistance, Susan Kelly for providing the line drawings and T. Olivecrona for helpful discussions.

This work was supported by grants HL-24759 and HL-27341 from the National Institutes of Health, by grant 13x-727 from the Swedish Medical Research Council, and by a Grant-in-Aid from the American Heart Association (83-1098), with funds contributed in part by the American Heart Association, Texas Affiliate, Inc.

References

