Serum Vitamin D-binding Protein is a Third Member of the Albumin and Alpha Fetoprotein Gene Family

Nancy E. Cooke

Departments of Medicine and Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

E. Vivek David

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

A near full-length cDNA encoding the human vitamin D-binding protein (hDBP) was isolated from a human liver mRNA expression library. Complete sequence analysis of this clone predicts the full-length amino acid sequence of the pre-hDBP. Comparison of the sequence of the hDBP mRNA and protein to existing protein and nucleic acid data banks demonstrates a strong and highly characteristic homology of the hDBP with human albumin (hALB) and human α -fetoprotein (hAFP). Based upon this structural comparison, we establish that DBP is a member of the ALB and AFP gene family.

Introduction

Human vitamin D-binding protein (hDBP), 1 also known as Gcglobulin, is an abundant, multifunctional, and highly polymorphic serum glycoprotein synthesized by the liver (1). DBP is the major serum transport protein for the vitamin D sterols (2), binds and sequesters monomers of actin with high affinity (3, 4), and has been identified on the surface of a variety of cell types including B-lymphocytes (5), subpopulations of T-lymphocytes (6), and the cytotrophoblasts of the placenta (7). The physiologic importance of these functions and their possible interrelationships remains to be defined. As an initial step in the detailed study of this abundant serum protein, we have isolated a near full-length copy (cDNA) of the hDBP mRNA, determined the primary structure of the encoded protein, and detected a close evolutionary and genetic relationship between DBP and two other abundant serum proteins, albumin (ALB) and α -fetoprotein (AFP).

Methods

RNA isolation and gel analysis. Total cellular RNA was isolated by standard technique (8) from human liver obtained at autopsy, from fresh rat liver (Sprague-Dawley), and from Hep 3B cells (9) grown in monolayer

Address reprint requests to Dr. Nancy E. Cooke, Room 531, Johnson Pavilion/G2, University of Pennsylvania School of Medicine, Philadelphia, PA 19104.

Received for publication 23 September 1985.

1. Abbreviations used in this paper: AFP, α -fetoprotein; ALB, albumin; hDBP, human vitamin D-binding protein.

© The American Society for Clinical Investigation, Inc. 0021-9738/85/12/2420/05 \$1.00 Volume 76, December 1985, 2420-2424

culture. PolyA+ mRNA was isolated from the total RNA by oligo-dT chromtography (10). The mRNAs were size-fractionated by electrophoresis through a 1% agarose-formaldehyde gel (11), transferred to nitrocellulose paper (12), and hybridized at reduced stringency (37°C with other conditions, as described in reference 12) to a nick-translated ³²P-labeled cDNA probe (13). After overnight hybridization, the filter was washed (at 42°C, otherwise as described in reference 12) and autoradiographed at -70°C on XAR film (Eastman Kodak Co., Rochester, NY) in the presence of a Cronex Lightening Plus intensifying screen. (E. I. DuPont de Nemours, Wilmington, DE). Ribosomal RNA from human reticulocytes (28S and 18S) and Escherichia coli (23S and 16S) were run on the gel in separate lanes, visualized by ethidium bromide staining, and used as molecular weight markers.

cDNA library screening. A library of human liver cDNA inserted in the expression vector λgt11 (14) was a generous gift of S. Woo, Howard Hughes Medical Institute, Baylor College of Medicine, Texas Medical Center, Houston, TX (15). This library was plated out on Y1090 bacteria and the plaques were screened by the method of Benton and Davis (16). All positives were plaque-purified by serial platings at low dilution. cDNA inserts were restriction mapped from phage DNA isolated by a minilysates procedure (17).

cDNA subcloning. DNA from each phage mini-lysate was digested with the restriction endonuclease EcoRI (New England Biolabs, Beverly, MA) at 1 U/µg DNA under conditions suggested by the manufacturer.

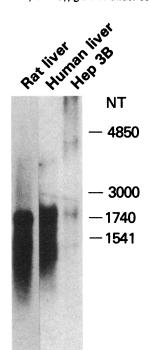


Figure 1. Detection of the human DBP mRNA by cross hybridization with a rat DBP cDNA probe. 5 μg of polyA+ mRNA from rat liver, 5 μg of polyA+ mRNA from human liver, or 20 µg of total RNA from Hep 3B cells were electrophoresed through a 1% agarose-formaldehyde gel, transferred to nitrocellulose paper, and hybridized at reduced stringency to a nick-translated, 32P-labeled rDBP cDNA probe (Cooke, N. E., unpublished data). An autoradiograph of the hybridized filter is shown with the lanes identified. The position of ribosomal RNA molecular size markers are indicated in nucleotides (NT).

J. Clin. Invest.

c	GGT	GCT	GCA.	AGA	. CTC	TCT	GGT	AGA	AAA		Lys			Leu CTG			Leu													
Arg CGG	Asp GAT	TYE	Glu GAA	Lys AAG	19 Asn Aat	Lys AAA	Val GTC	Cys TGC	Lys AAG	Glu GAA	Phe TTC	Ser TCC	His CAT	Leu CIG	29 Gly GGA	Lys	Glu GAG	Asp GAC	Phe	Thr ACA	Ser TCT	Leu CTG	Ser TCA	Leu	30 Val	Leu	Tyr	Ser	Arg	178
Lys AAA	Phe	Pro	Ser AGT	Gly GGC	49 Thr ACG	Phe TTT	Glu GAA	Gln C A G	Val GTC	Ser AGC	Gln CAA	Leu CTT	Val GTG	Lys AAG	50 Glu GAA	Val GTT	Val GTC	Ser	Leu TTG	Thr ACC	Glu G AA	Ala GCC	Cys TGC	Cys TGT	Ala GCG	Glu GAA	Gly GGG	Ala	Asp GAC	268
Pro	λsp GAC	Cys TGC	Tyr TAT	Asp GAC	70 Thr ACC	Arg AGG	Thr ACC	Ser TCA	Ala GCA	Leu CTG	Ser TCT	Ala GCC	Lys AAG	Ser TCC	8Ø Cys TGT	Glu GAA	Ser AGT	Asn Aat	Ser TCT	Pro CCA	Phe TTC	Pro CCC	Val GTT	His CAC	90 Pro CCA	Gly GGC	Thr ACT	Ala GCT	Glu GAG	358
Cys TGC	Cys TGC	Thr ACC	Lys AAA	Glu GAG	199 Gly GGC	Leu CTG	Glu GAA	Arg CGA	Lys AAG	Leu CTC	Cys TGC	Met ATG	Ala GCT	Ala GCT	110 Leu CTG	Lys AAA	His CAC	Gln CAG	Pro CCA	Gln CAG	Glu GAA	Phe TTC	Pro CCC	Thr ACC	120 Tyr TAC	Val GTG	Glu GAA	Pro CCC	Thr ACA	448
		Glu GAA																												
Pro	Leu CTG	Ser TCA	Leu CTT	Leu TTA	160 Val GIC	Ser AGT	Tyr TAC	The ACC	Lys AAG	Ser AGT	Tyr TAT	Leu CTT	Ser TCT	Met ATG	170 Val GTA	Gly GGG	Ser TCC	Cys TGC	Cys TGT	Thr ACC	Ser TCT	Ala GCA	Ser AGC	Pro CCA	180 Thr ACT	Val GTA	Cys TGC	Phe TTT	Leu TTG	628
Lys AAA	Glu GAG	Arg AGA	Leu CTC	Gln CAG	196 Leu CTT	Lys AAA	His CAT	Leu TTA	Ser TCA	Leu CTT	Leu CTC	Thr ACC	Thr ACT	Leu CTG	200 Ser TCA	Asn AAT	Arg AGA	Val GTC	Cys TGC	Ser TCA	Gln CAA	Tyr TAT	Ala GCT	Ala GCT	210 Tyr TAT	Gly GGG	Glu GAG	Lys AAG	Lys AAA	718
		Leu CTC																												8Ø8
Ile ATC	Leu CTC	Ser TOC	Lys AAA	Cys TGC	250 Cys TGT	Glu GAG	Ser TCT	Ala GCC	Ser TCT	Glu GAA	Asp GAT	Cys TGC	Met ATG	Ala GCC	260 Lys AAA	Glu GAG	Leu CTG	Pro CCT	Glu GAA	His CAC	Thr ACA	Val GTA	Lys AAA	Leu CTC	270 Cys TGT	Asp GAC	Asn AAT	Leu TTA	Ser TCC	898
		Asn AAT																												988
Pro CCC	Glu GAG	Leu CTT	Pro CCA	Asp GAT	310 Val GTG	Arg AGA	Leu TTG	Pro CCC	Thr ACA	Asn AAC	Lys AAA	Asp GAT	Val GTG	Cys TGT	320 Asp GAT	Pro CCA	Gly GGA	Asn AAC	Thr ACC	Lys AAA	Val GTC	Met ATG	Asp GAT	Lys AAG	330 Tyr TAT	Thr ACA	Phe TTT	Glu GAA	Leu CTA	1078
		Arg AGG																												1168
Ser TCA	Thr ACT	Thr ACC	Cys TGT	Phe TTT	370 Asn Aat	Ala GCT	Lys AAG	Gly GGC	Pro CCT	Leu CTA	Leu CTA	Lys AAG	Lys AAG	Glu GAA	38ø Leu CTA	Ser TCT	Ser TCT	Phe TTC	Ile ATT	Asp GAC	Lys AAG	Gly GGA	Gln CAA	Glu GAA	390 Leu CTA	Cys TGT	Ala GCA	Asp GAT	Tyr TAT	1258
Ser TCA	Glu GAA	Asn Aat	Thr ACA	Phe TTT	400 Thr ACT	Glu GAG	Tyr TAC	Lys AAG	Lys AAA	Lys AAA	Leu CTG	Ala GCA	Glu GAG	Arg CGA	410 Leu CTA	Lys AAA	Ala GCA	Lys AAA	Leu TTG	Pro CCT	Glu GAG	Ala GCC	Thr ACA	Pro CCC	420 Thr ACG	Glu GAA	Leu CTG	Ala GCA	Lys AAG	1348
Leu CTG	Val GTT	Asn AAC	Lys AAG	Arg CGC	430 Ser TCA	Asp GAC	Phe TTT	Ala GCC	Ser TCC	Asn Aac	Cys TGC	Cys TGT	Ser TCC	Ile ATA	440 Asn AAC	Ser TCA	Pro CCT	Pro CCT	Leu CTT	Tyr TAC	Cys TGT	Asp GAT	Ser TCA	Glu G A G	450 Ile ATT	A.sp CAT	Ala GCT	Glu GAA	Leu TTG	1438
		Ile ATC			TOC	TGA	A GC	ATG	TTT	ATT	AAC	TTT	GAC	CAG	agt	TGG	A GC	CAC	CCA.	AGG	GAA '	IGA 1	гст	CTG	atg	ACC	TAA	сст	AAG	1528
CAA	AAC	CAC	TGA	CT	TCT	GGG	AAG	ACA	act	AGG	ATA	CTT	TCT	ACT	ттт	TCT	AGC	TAC	AAT	ATC	TTC i	ATA (CAA '	TGA	CAA	GTA	TGA	TGA	TTT	1618
CCT	ATC	AAA	ATA	aat	TGA	AAT	ATA	ATG	CAA	ACC .	ATA	Poly	λ															,		1654

Figure 2. The nucleotide sequence of the hDBP cDNA and the full-length predicted amino acid sequence of hDBP. Nucleotides are numbered beginning with the first base of the hDBP cDNA insert. Amino acids are numbered with 1 representing the first residue of the mature protein.

The digest was phenol-extracted and ligated to EcoRI-digested and dephosphorylated SP65 plasmid (18) at a 5:1 molar ratio of insert to vector using 400 U of T4 ligase (New England Biolabs) in a total volume of 20 μl containing 50 mM Tris HCl, pH 7.4, 10 mM MgCl₂, 10 mM dithiothreitol, 1 mM spermidine, and 1 mM ATP. The entire ligation reaction was used to transform E. coli HB101 rendered competent by cold CaCl₂ treatment (19). Transformations were spread on L-broth plates containing ampicillin (35 µg/µl). Ampicillin-resistant transformants were screened in situ (20) with ³²P-labeled cDNA.

Plasmid preparation. All recombinant work was done under P1 containment conditions. Bacterial plasmids were grown in 1-liter batches to an OD₆₆₀ of 0.8, amplified with chloramphenicol (170 μ g/ μ l), and harvested 18 h later. Supercoiled plasmid was purified from a clarified lysate by cesium chloride isopycnic centrifugation in the presence of 0.75 mg/ ml ethidium bromide, harvested, and phenol-extracted before use.

DNA sequencing. Restriction sites with 5' protruding ends were dephosphorylated with calf intestinal alkaline phosphatase (Bethesda Research Laboratories, Gaithersburg, MD) and ³²P end-labeled in a 25-µl reaction with T4 polynucleotide kinase (New England Biolabs) and (32P)rATP (5,000 Ci/mM, Amersham Corp., Arlington Heights, IL). 3' recessed ends were labeled with E. coli DNA polymerase, Klenow fragment (Bethesda Research Laboratories), and the appropriate (32P)dNTP in the recommended buffer. End-labeled fragments were either strandseparated (21) or digested with a second restriction enzyme before gel purification and sequencing. All DNA sequencing was by the method of Maxam and Gilbert (22) with modifications as previously described (23). All regions were either sequenced on both strands, or two separate times on the same strand.

Primer extension analysis. For primer extension analysis a gel-purified end-labeled ³²P cDNA fragment was hybridized to liver mRNA in 30 μl

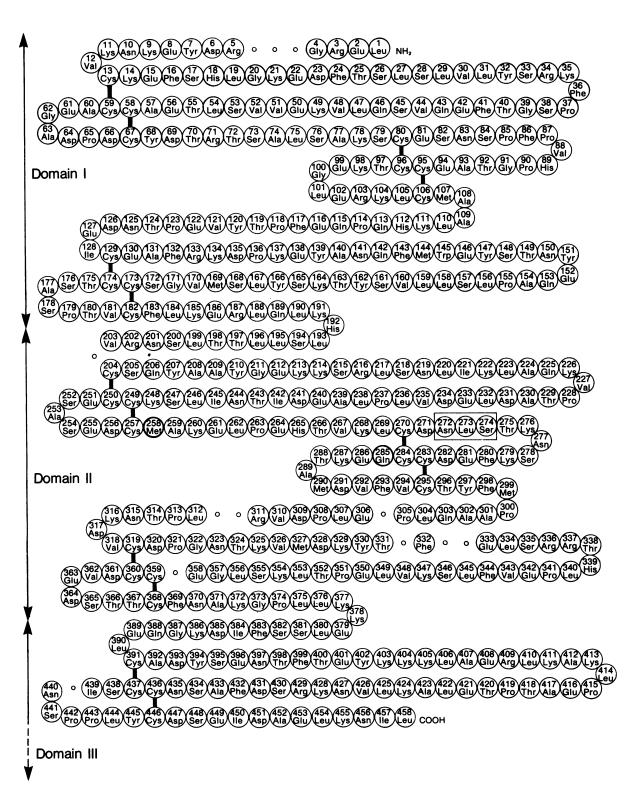


Figure 3. Conservation of cysteine positioning in hDBP and hALB. The predicted amino acid sequence of hDBP is displayed in the format originally proposed by J. R. Brown for albumin (30). Deletions in hDBP, when aligned with hALB, are indicated by the small circles,

and insertions by bold outline. A potential N-linked glycosylation site is enclosed in a rectangle. The position of the homologous internal domains is indicated in the left margin.

of hybridization buffer (80% deionized formamide, 0.4 M NaCl, 40 mM PIPES, pH 6.4, 1 mM EDTA) at 42°C for 3 h. Primer extension with avian myeloblastosis virus reverse transcriptase was subsequently carried out as previously described (24) with no significant modification.

Computer analysis. GenBank, European Molecular Biology Labs, and National Biomedical Research Foundation databases and software used in the data analysis were accessed through the Bionet National Computer Resource for Molecular Biology, Palo Alto, CA.

Results

A rat DBP cDNA clone (Cooke, N. E., unpublished data), selected by an immunological approach (to be described elsewhere), was shown by Northern analysis to cross-hybridize under conditions of reduced stringency to a single mRNA species of 1,750 nucleotides from the human liver (Fig. 1). This same mRNA is present in the human hepatoma cell line Hep 3B which is known to synthesize DBP (25) but not in human placental mRNA (data not shown). A slightly smaller mRNA species of 1,650 nucleotides is seen in the rat liver mRNA. Utilizing this low stringency cross-hybridization between the rDBP cDNA and the hDBP mRNA, several human liver DBP cDNA clones were selected from a human liver cDNA library constructed in the bacteriophage λgt11 (15). The cDNA insert in each of the hybridizationpositive phage clones was mapped, and the largest, 1,383 nucleotides long, was fully restriction-mapped and sequenced. The identity of this clone as encoding hDBP was established by identification of three previously sequenced peptide fragments of hDBP (amino acids 1-41 [26], 414-419, and 421-424 [27]) and by 77% homology to the terminal 441 amino acids of the rDBP cDNA clone. Using the 5' EcoRI fragment of this partial clone as probe, an overlapping hDBP cDNA clone extending further in the 5' direction was selected and restriction-mapped. This recombinant contained a 1,654 base-pair cDNA insert. The sequence of this human cDNA, shown in Fig. 2, contains a 1,422 nucleotide open reading frame beginning with a Met codon at the 29th base.

To establish whether the cDNA displayed in Fig. 2 was full-length, a 107 base-pair restriction fragment labeled at the EcoRI site (nucleotide 119) and extending to the HinfI site (nucleotide 12) was isolated from the 5' end of the cDNA, and hybridized to human liver RNA. cDNA synthesis was extended with reverse transcriptase. The resultant cDNA, sized next to a DNA sequence ladder, extended 48 nucleotides 5' to the labeled fragment (data not shown). Thus the reported cDNA sequence begins 36 base pairs 3' to the mRNA cap site and the full-length hDBP mRNA is predicted to contain 1,690 nucleotides, excluding its polyA⁺ tail.

Discussion

The full-length primary sequence of hDBP, as displayed in Fig. 2, can be correlated with several of the known physical properties

of this protein. DBP is a secreted protein and would therefore be predicted to have a signal sequence. The amino-terminus of the mature serum protein was established by aligning the sequence predicted by the cDNA to a sequenced amino-terminal hDBP peptide (27). From this alignment we deduce that the coding region of prehDBP begins with a 16-amino-acid hydrophobic signal sequence. Human DBP is known to be glycosylated and the determined sequence contains one potential N-linked glycosylation site (Fig. 3, enclosed in rectangle). The encoded mature hDBP contains 458 residues with a calculated molecular weight of 51,335, compared with experimental estimates of 54,000-58,000 for the serum glycoprotein.

DBP, ALB, and the fetal analogue of ALB, AFP, are major serum proteins synthesized by mammalian liver parenchymal cells. All three molecules possess a high content of cysteine residues. Comparison of the cysteines in hDBP to those in hALB and hAFP reveals a high degree of conservation in their number and positions. An alignment of hDBP, hALB (28), and hAFP (29) using the cysteine residues as landmarks, revealed significant additional amino acid and nucleotide homologies (Table I). The similarities between these three molecules are so strong that hDBP can be easily displayed in the format proposed by J. R. Brown (30) for albumin (Fig. 3). Human DBP terminates 123 amino acids before hALB or hAFP, and there is a rapid drift in the 3' untranslated region of hDBP compared with the continued coding regions of the other two mRNAs. Human DBP contains a unique tryptophan at position 145 not present in hALB, or hAFP. The glycosylation pattern of the three proteins appears to differ: the predicted glycosylation sites in hAFP are not conserved in hDBP, and hALB is not glycosylated at all.

The triplicated internal domain structure first noted in ALB and AFP is also present in hDBP (Table I) with the exception of the previously mentioned truncation within the third domain of hDBP. This suggests a common evolutionary origin of these three serum proteins from a precursor with a triplication of an original single domain. The hDBP gene may in fact be situated in close proximity to the hALB and hAFP genes. Previous studies of families with albumin mutations have documented a linkage of <1.5 centimorgan map units between the hDBP and the hALB loci on human chromosome 4 in segment 4q11-13 (31-34). This localization and linkage has been recently confirmed by in situ hybridization using the hDBP cDNA as probe (Cooke, N. E., H. Willard, E. V. David, and D. George, unpublished

Table I. Amino Acid and Nucleotide Sequence Comparisons between hDBP, hALB, hAFP, and Internal Domains

		Amino acids								
				Conservative	renlacement		Coding nucleotides			
		Identical		(35)	теріасеніст			Homology	-	
Comparison	Gaps	No. Percent		No.	Percent	Total* percent	Gaps	No.	Percent	
DBP/ALB (28)	14	112/487	23.0	124/487	25.4	48.5	42	570/1,461	39.0	
DBP/AFP (29)	16	95/448	19.5	118/488	24.2	43.7	48	536/1,464	36.6	
ALB/AFP	12	244/616	39.6	160/616	26.0	65.6	36	953/1,848	51.6	
DBP internal domains										
I/II	10	45/194	23.2	43/194	22.2	45.4	30	224/582	38.5	
I/III	1	12/81	14.8	20/81	24.6	39.4	3	79/243	32.5	
II/III	3	15/81	18.5	22/81	27.2	45.7	9	89/243	36.6	

Gaps were inserted to maximize amino acid homology. The signal peptides are included in the amino acid analyses. Total lengths include gaps which are treated as mismatches. * Total includes identical and conservative replacements.

data). Based upon the primary structural homologies at both mRNA and protein levels, the presumed similarities in the secondary structures indicated by strictly conserved placement of cysteine residues, and the linkage of the three encoding genes on chromosome 4, we conclude that DBP is a member of the gene family that encodes the other major serum proteins, ALB and AFP.

Note added in proof. While this manuscript was in press, we learned of the work of Yang et al. (36) in which a DBP cDNA of the Gc² type was characterized. Our sequence differs from theirs in positions 152, 311, 416, and 420. The latter two amino acids of our sequence are consistent with those reported in Gc by Svasti et al. (27) and suggest that our sequence represents the Gc¹ allele.

Acknowledgments

This work was supported by National Institutes of Health research grant RO1GM32035 (Dr. Cooke). Dr. Cooke is a recipient of a Basil O'Connor Starter Grant from the National Foundation-March of Dimes.

References

- 1. Haddad, J. G. 1979. Transport of vitamin D metabolites. Clin. Orthop. Relat. Res. 142:249-274.
- 2. Daiger, S. P., M. S. Schanfield, and L. L. Cavalli-Sforza. 1975. Group specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D. *Proc. Natl. Acad. Sci. USA*. 72:2076–2080.
- 3. Cooke, N. E., J. Walgate, and J. G. Haddad. 1979. Human serum binding protein for vitamin D and its metabolites. I. Physicochemical and immunological identification in human tissues. *J. Biol. Chem.* 254: 5965-5971.
- 4. Van Baelen, H., R. Bouillon, and P. DeMoor. 1980. Vitamin D binding protein (Gc-Globulin) binds actin. *J. Biol. Chem.* 255:2270-2272
- 5. Petrini, M., D. L. Emerson, and R. M. Galbraith. 1983. Linkage between surface immunoglobulin and cytoskeleton of B lymphocytes may involve Gc protein. *Nature (Lond.)*. 306:73-74.
- 6. Petrini, M., R. M. Galbraith, D. L. Emerson, A. E. Nel, and P. Arnaud. 1985. Structural studies of T lymphocyte Fc receptors. *J. Biol. Chem.* 260:1804–1810.
- 7. Nestler, J. E., E. Lange, J. McLeod, H. J. Kliman, and J. F. Strauss. 1985. Detection of vitamin D binding protein (DBP) in human cytotrophoblasts. Seventh Annual American Society for Bone and Mineral Research. Wash. DC. 266a. (Abstr.).
- 8. Chirgwin, J., A. E. Przybyla, R. S. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. *Biochemistry*. 18:5294–5301.
- 9. Knowles, B. B., C. Howe, and D. P. Aden. 1980. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. *Science (Wash. DC)*. 209:497-499.
- 10. Aviv, H., and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. *Proc. Natl. Acad. Sci. USA*. 69:1408–1412.
- 11. Rave, N., R. Crkvenjakov, and H. Boedtker. 1979. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. *Nucl. Acids Res.* 6:3559–3567.
- 12. Thomas, P. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. *Proc. Natl. Acad. Sci. USA*. 77:5201–5205.
- 13. Maniatis, T., A. Jeffrey, and D. G. Kleid. 1975. Nucleotide sequence of the rightward operator of Phage λ . *Proc. Natl. Acad. Sci. USA*. 72:1184–1188.
- 14. Young, R. A., and R. W. Davis. 1983. Yeast RNA polymerase II genes: isolation with antibody probes. *Science (Wash. DC)*. 222:778–782.

- 15. Kwok, S. C. M., F. D. Ledley, A. G. DiLella, K. J. H. Robson, and S. L. C. Woo. 1985. Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase. *Biochemistry*. 24:556-561.
- 16. Benton, W. D., and R. W. Davis. 1977. Screening λgt recombinant clones by hybridization to single plaques in situ. *Science (Wash. DC)*. 196:180–182.
- 17. Leder, P., D. Tiemeier, and L. Enquist. 1977. EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organisms: the λgtWES system. *Science (Wash. DC)*. 196:175–177.
- 18. Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. *Nucl. Acids Res.* 12:7035-7054.
- 19. Dagert, M., and S. D. Ehrlich. 1979. Prolonged incubation in calcium chloride improves the competence of *Escherichia coli* cells. *Gene (Amst.)*. 6:23–28.
- 20. Grunstein, M., and D. Hogness. 1975. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. *Proc. Natl. Acad. Sci. USA*. 72:3961-3965.
- 21. Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific cleavage reactions. *Methods Enzymol.* 65:499–560.
- 22. Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 74:560-564.
- 23. Cooke, N. E., D. Coit, R. I. Weiner, J. D. Baxter, and J. A. Martial. 1980. Structure of the cloned DNA complementary to rat prolactin messenger RNA. *J. Biol. Chem.* 255:6502-6510.
- 24. Liebhaber, S. A., and Y. W. Kan. 1981. Differentiation of the mRNA transcripts originating from the $\alpha 1$ and $\alpha 2$ globin loci in normals and α -thalassemics. J. Clin. Invest. 68:439–446.
- 25. Haddad, J. G., D. P. Aden, and M. A. Kowalski. 1983. Characterization of the human plasma binding protein for vitamin D and its metabolites synthesized by the hepatoma-derived cell line, Hep 3B. J. Biol. Chem. 258:6850-6854.
- 26. Schoentgen, F., M. H. Metz-Boutigue, J. Jolles, J. Constans, and P. Jolles. 1985. Homology between the human vitamin D-binding protein (group specific component), α-fetoprotein and serum albumin. *FEBS* (Fed. Eur. Biochem. Soc.) Lett. 185:47-50.
- 27. Svasti, J., A. Kurosky, A. Bennett, and B. H. Bowman. 1979. Molecular basis for the three major forms of human serum vitamin D binding protein (group specific component). *Biochemistry*. 18:1611-1617.
- 28. Dugaiczyk, A., S. W. Law, and O. E. Dennison. 1982. Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. *Proc. Natl. Acad. Sci. USA*. 79:71–75.
- 29. Morinaga, T., S. Masaharu, T. G. Wegman, and T. Tamaoki. 1983. Primary structures of human α-fetoprotein and its mRNA. *Proc. Natl. Acad. Sci. USA.* 80:4604–4608.
- 30. Brown, J. R. 1976. Structural origins of mammalian albumin. Fed. Proc. 35:2141-2144.
- 31. Weitkamp, L. R., D. L. Rucknagel, and H. Gershowitz. 1966. Genetic linkage between structural loci for albumin and group specific component (Gc). Am. J. Hum. Genet. 18:559-566.
- 32. Kaarsalo, E., L. Melartin, and B. S. Blumberg. 1967. Autosomal linkage between the albumin and Gc loci in humans. *Science (Wash. DC)*. 158:123-125.
- 33. Mikkelson, M., P. Jacobsen, and K. Henningsen. 1977. Possible localization of Gc-system on chromosome 4. *Hum. Hered.* 27:105–107.
- 34. Harper, M. E., and A. Dugaiczyk. 1983. Linkage of the evolutionarily-related serum albumin and α -fetoprotein genes within q11-22 of human chromosome 4. Am. J. Hum. Genet. 35:565-572.
- 35. Dayhoff, M. O. 1978. Atlas of Protein Sequence. Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, DC. 345–352.
- 36. Yang, F., J. L. Brune, S. L. Naylor, R. L. Cupples, K. H. Naberhaus, and B. H. Bowman. 1985. Human group-specific component (Gc) demonstrates striking homology with the albumin family of genes. *Proc. Natl. Acad. Sci. USA*. In press.