1,25(OH)2D3 Production by T Lymphocytes and Alveolar Macrophages Recovered by Lavage from Normocalcemic Patients with Tuberculosis

Jacques Cadranel,* Michèle Garabedian,1 Bernard Milleron,§ Huguette Guillozo,§ Georges Akoun,§ and Allan J. Hance*

*Institut National de la Santé et de la Recherche Médicale U.82, Faculté de Médecine Xavier Bichat, §Centre National de la Recherche Scientifique UA 583—Paris V, France; and Hôpital Necker-Enfants Malades, §Service de Pneumo-phisiologie et Réanimation Respiratoire, Hôpital Tenon, Paris, France

Abstract

To compare extra-renal 1,25(OH)2D3 production in different types of granulomatous disease, and to identify the cell types responsible, we have evaluated the conversion of 25(OH)D3 in 1,25(OH)2D3 by uncultured cells recovered by bronchoalveolar lavage and blood mononuclear cells from normocalcemic patients with sarcoidosis and tuberculosis. 1,25(OH)2D3 was produced both by lavage cells (12/12 tuberculosis patients, 2/6 sarcoidosis patients) and blood mononuclear cells (3/5 tuberculosis patients, 0/3 sarcoidosis patients) from patients but not controls, but significantly greater amounts were produced by lavage cells from tuberculosis patients than those of sarcoidosis patients (P < 0.001). 1,25(OH)2D3 production by lavage cells from tuberculosis patients correlated with the number of CD8+ T lymphocytes present but not other cell types. T lymphocytes appeared to be an important source of 1,25(OH)2D3 production, since purified T lymphocytes from all patients with tuberculosis produced 1,25(OH)2D3, and 1,25(OH)2D3 production by these cells correlated closely with that produced by unseparated lavage cells. Because 1,25(OH)2D3 can improve the capacity of macrophages to kill mycobacteria, our results support the conclusion that macrophage-lymphocyte interactions, mediated at least in part by 1,25(OH)2D3, may be an important component of a successful antituberculous immune response. (J. Clin. Invest. 1990. 85:1588–1593.) vitamin D metabolism · tuberculous · sarcoidosis · T lymphocytes · alveolar macrophages

Introduction

Recent studies have demonstrated that patients with granulomatous diseases, including sarcoidosis and tuberculosis, can produce 1,25(OH)2D3 at sites of disease activity (1). This spontaneous production of 1,25(OH)2D3 by granulomatous tissues may play an important role in the regulation of granulomatous reactions by influencing the maturation and activity of immune and inflammatory cells (1, 2). Despite the potential importance of 1,25(OH)2D3 production at sites of granulomatous reactions, several relevant questions remain unanswered:

First, 1,25(OH)2D3 production in different types of granulomatous disease has never been compared, and therefore it is unknown whether the presence of this metabolite merely reflects the existence of a granulomatous response, or whether certain granulomatous reactions are associated with greater 1,25(OH)2D3 production.

Secondly, it is unclear, what cell types spontaneously produce 1,25(OH)2D3. Fresh tissue (3, 4) or unseparated cells (5) from sites of granulomatous reactions can spontaneously transform 25(OH)D3 into 1,25(OH)2D3. It is reasonable to expect that purified subpopulations of these cells would also retain this capacity, but freshly isolated alveolar macrophages from patients with sarcoidosis produce little or no 1,25(OH)2D3, even though alveolar macrophages from patients with granulomatous diseases do produce 1,25(OH)2D3 when cultured in vitro for 4–7 d (5–9). In this context, the possibility that other cell types, such as T lymphocytes, can produce 1,25(OH)2D3 has not been yet evaluated.

To study these questions, we have evaluated the metabolism of 25(OH)D3 by fresh cells recovered by bronchoalveolar lavage from controls and normocalcemic patients with tuberculosis and sarcoidosis. The goals of this study were to compare 1,25(OH)2D3 production in different types of granulomatous disease and to identify the cell types responsible for 1,25(OH)2D3 production.

Methods

Study populations

Patients with pulmonary tuberculosis. The diagnosis of pulmonary tuberculosis was established on the basis of cultures of sputum or gastric aspirates positive for Mycobacterium tuberculosis (n = 11) and/or the presence of epithelioid granulomata with caseous necrosis on histological study of biopsy specimens (n = 4). The 12 patients had a mean age of 34±7 yr. All patients had a normal level of serum calcium (2.34±0.10 mmol/liter) and normal 24-h urinary calcium excretion (0.04±0.03 mmol/kg per d; normal range <0.11 mmol/kg per d) at the time of evaluation. Patients were studied before receiving any antituberculous therapy.

Patients with pulmonary sarcoidosis. The diagnosis of pulmonary sarcoidosis was established according to previously described criteria (10). The six patients had a mean age of 37±10 yr. Chest radiographic types were as follows: type I (n = 2), type II (n = 2), and type III (n = 2). The patients had normal serum calcium levels (2.37±0.15 mmol/liter) and normal urinary calcium excretion (0.08±0.03 mmol/kg per d) at the time of evaluation. One patient had previously received corticosteroid therapy, which had been discontinued > 3 mo before evaluation.

Control subjects. Three normal volunteers and two patients undergoing bronchoscopic evaluation for nonparenchymal pulmonary disorders served as controls. These individuals had an average age of 28±8 yr.

Bronchoalveolar lavage

Informed consent was obtained from all patients and control subjects. Bronchoalveolar lavage was performed as previously described (10).
all patients, a radiologically abnormal lung segment was lavaged when present, and the right middle lobe or lingula lavaged when the radiograph was normal.

Total and differential cell counts and the evaluation of the expression of CD4 and CD8 surface antigens on T lymphocytes were performed as previously described (10).

Separation of cell populations
Mononuclear cells were isolated from peripheral blood by centrifugation on Lympho-paque (Neygaard Co., Oslo, Norway), and the cells were resuspended in 20 ml Hank's balanced salt medium with 0.08% EDTA and centrifuged (100 g for 15 min) two times to remove platelets.

T lymphocytes were isolated from concentrated fresh lavage cells by passage through nylon wool columns using previously described techniques (11). To isolate alveolar macrophages, concentrated lavage cells were suspended in complete medium containing 10% human AB serum and transferred to bacteriologic petri dishes that had previously been incubated with human AB serum for 18 h at 4°C and subsequently washed twice with phosphate buffered saline (12). After a 60-min incubation at 37°C, nonadherent cells were removed and adherent cells were washed twice with complete medium and incubated for 30 min at 4°C in 10 ml Hank's balanced salt solution containing 0.2% EDTA. Cells which detached spontaneously or after gentle pipetting were recovered and washed in complete medium before use.

The viability of fresh cells recovered by lavage stained with acridine orange and ethidium bromide (13) was: controls, 86±2% (mean±SD); tuberculosis, 81±14%; and sarcoidosis, 90±6%. The viability and purity of lavage T lymphocytes were respectively: controls, 99±1% and 93±5%; tuberculosis, 96±5% and 96±3%; and sarcoidosis, 98±1% and 95±6%. The viability and purity of pulmonary macrophages from tuberculosis patients after separation by adherence were respectively 98±1% and 97±4%.

Metabolism of 25(OH)D3 by cells in vitro
To evaluate the capacity of cells to metabolize 25(OH)D3, in vitro, 1.0 x 106 viable cells were preincubated for 15 min (37°C, 95% air/5% CO2) in a 2-cm diameter glass vial containing 1 ml of serum free Dulbecco's modified Eagle's medium containing 1.8 mM Ca2+ and 0.9 mM phosphate (Boehringer Mannheim GmbH, Penzberg, FRG). 10 µl of ethanol was then added which contained either: (a) 50 nCi [26,27(3H)25(OH)D3] (Radiological Centre, Amersham, UK; final concentration 2.5 x 10-9 M and final 20 Ci mmol sp act); or (b) 1 µg unlabelled 25(OH)D3 (Rousell-Uclaf Laboratories, Paris, France) with or without 50 nCi [3H]25(OH)D3 (final concentration 1 x 10-9 M and final specific activity: 20 Ci/mmol). Incubation was continued for 150 min, after which 2 ml HPLC grade methanol and 2 ml chloroform were added to each sample, the vials agitated, the chloroform phase removed and dried under N2, and the residue redissolved in chromatographic solvent (see below). Before chromatography, 100 ng unlabelled synthetic 1,25(OH)2D3 (Hoffmann-La Roche, Inc., Nutley, NJ) was added to extracts from cells incubated in the presence of 2.5 x 10-9 M [3H]25(OH)D3, and 10 nCi synthetic [3H]1,25(OH)2D3 was added to those incubated with 1 x 10-7 M unlabelled 25(OH)D3.

To quantitate 1,25(OH)2D3 production, samples were chromatographed using a n-hexane:isopropanol solvent system, and the metabolites comigrating with 1,25(OH)2D3 were rechromatographed using a methylenechloride:isopropanol solvent system as previously described (5). Chromatography of samples on two successive systems was obligatory to isolate 1,25(OH)2D3, since large amounts of (5E)-19-nor-10-oxo-25(OH)D3 produced by the cells and comigrated with 1,25(OH)2D3 in the first, but not the second chromatographic system (data not shown).

For incubations performed in the presence of 2.5 x 10-9 M [3H]25(OH)D3, the rate of conversion of [3H]25(OH)D3 into [3H]1,25(OH)2D3 was determined by calculating the percentage of total radioactivity with an appropriate elution profile after the two successive chromatographies. Results are expressed as fmol/106 cells per 150 min, based on the assumption that the specific activity of the product was the same as that of the substrate (see below). Thus, conversion of 1% of substrate into [3H]1,25(OH)2D3 corresponds to the production of 33 fmol. All incubations and the subsequent purification of metabolite were performed in duplicate, and each value reported in the study represents the mean of duplicate determinations. The interassay coefficient of variation of the duplicate determinations of 1,25(OH)2D3 was 25±4%.

In preliminary experiments, 1,25(OH)2D3 production by lavage cells was demonstrated to be linear over the 150-min period studied. Furthermore, <15% of [3H]25(OH)D3 added to lavage cell incubations was consumed over the incubation period. When medium without cells (n = 4) was incubated in the presence of 2.5 x 10-9 M [3H]25(OH)D3, 0-0.065% isotope eluted with 1,25(OH)2D3. This background value has not been subtracted from the values reported for incubations containing cells.

To measure the specific activity of 1,25(OH)2D3 produced in incubations containing 1 x 10-6 M [3H]25(OH)D3, 1,25(OH)2D3 was purified as described above by sequential chromatography using the two different solvent systems and the absorbance at 254 nm and radioactivity of the isolated metabolite were determined. Ultraviolet (UV) absorborspectra of the purified metabolite were obtained using a HPLC system fitted with a photodiode array detector (model 990; Millipore/Continental Water Systems, St. Quentin en Yvelines, France).

Binding of 25(OH)D3 metabolites to 1,25(OH)2D3 receptors
To characterize the ability of 25(OH)D3 metabolites to bind to 1,25(OH)2D3 receptors, metabolites produced in incubations containing 1 x 10-6 M 25(OH)D3 were purified by successive chromatographies, and tested for their ability to compete with synthetic [3H]-1,25(OH)2D3 for binding to 1,25(OH)2D3 receptors present in chick intestinal cytosol as previously described (14). For samples incubated in the presence of [3H]25(OH)D3, measurement of the quantity of metabolite present was based on radioactivity, assuming that the specific activity was the same as that of the 25(OH)D3 substrate. For samples incubated in the presence of unlabeled 25(OH)D3, measurement of the quantity of metabolite present was based on its absorbance at 254 nm. Each sample was tested in duplicate at three different dilutions. A standard curve was performed in parallel using known amounts of synthetic 1,25(OH)2D3. The displacement of binding produced by the standards and experimental samples were each fitted to sigmoid curves and compared as previously described (15) using the Ligand program provided by these authors.

Statistical methods
Results are expressed as mean±SD. Comparison of the production of 25(OH)D3 metabolites by the three study groups was performed by the Kruskal-Wallis one-way analysis of ranks procedure, and comparisons between subgroups of patients within a given diagnostic category were performed using the Mann-Whitney test. Correlations between the production of 25(OH)D3 metabolites and other metric variables were evaluated by linear regression. In each case, a P < 0.05 was considered significant.

Results
1,25(OH)2D3 production by lavage cells and blood mononuclear cells. Fresh lavage cells from patients with tuberculosis incubated in the presence of 2.5 x 10-9 M [3H]25(OH)D3 produced a metabolite which coeluted with [3H]1,25(OH)2D3 in two successive chromatographic systems. Further studies supported the conclusion that this metabolite was, in fact, 1,25(OH)2D3. When lavage cells from these patients were incubated in the presence of 10-6 M 25(OH)D3 and extracts chromatographed successively on the two HPLC systems, a
metabolite coeluting with \([^{3}H]_{1,25}(OH)_{2}D_{3}\) could also be detected in all cases by monitoring absorbance, and this metabolite had the same capacity as synthetic \(1,25(OH)_{2}D_{3}\) to compete with \([^{3}H]_{1,25}(OH)_{2}D_{3}\) for binding to \(1,25(OH)_{2}D_{3}\) receptors and its UV spectrum had a maximum at 267 nm and a minimum at 228 nm, values identical to those observed for synthetic \(1,25(OH)_{2}D_{3}\) (data not shown).

Fresh lavage cells from tuberculosis patients produced \(1,25(OH)_{2}D_{3}\) in all cases, although the amounts of total \(25(OH)D_{3}\) converted into \(1,25(OH)_{2}D_{3}\) varied over a 10-fold range (Table I). Peripheral blood mononuclear cells from three of the five patients with tuberculosis tested also produced detectable amounts of \(1,25(OH)_{2}D_{3}\), but the production of this metabolite by blood mononuclear cells was always less than that produced by the same number of lavage cells from the same individual (\(P < 0.05\) by paired analysis). \(1,25(OH)_{2}D_{3}\) production by fresh lavage cells was correlated with the proportion of CD8\(^+\) T lymphocytes present in the cell suspension (Fig. 1; \(r = 0.67, P < 0.005\)), but not with the proportion of CD4\(^+\) T lymphocytes, total lymphocytes or alveolar macrophages present (data not shown).

The conversion of \([^{3}H]_{25}(OH)D_{3}\) into \([^{3}H]_{1,25}(OH)_{2}D_{3}\) by lavage cells from patients with sarcoidosis was observed in two of six cases, but only small amounts were present (Table I). Thus, the production of \(1,25(OH)_{2}D_{3}\) by lavage cells from patients with sarcoidosis was significantly less than that of cells from patients with tuberculosis (\(P < 0.001\)). No conversion of \([^{3}H]_{25}(OH)D_{3}\) into \([^{3}H]_{1,25}(OH)_{2}D_{3}\) was detected by blood mononuclear cells from the three sarcoid patients tested. Similarly, lavage cells and blood mononuclear cells from controls did not produce detectable amounts of \(1,25(OH)_{2}D_{3}\).

Identification of cell types recovered by lavage from patients with tuberculosis capable of converting \(25(OH)D_{3}\) into \(1,25(OH)_{2}D_{3}\). Lymphocytes and alveolar macrophages were the predominant cell types recovered by lavage from patients with tuberculosis, and in 7/12 individuals, these two cell types accounted for > 80% of recovered cells. To determine which of these cell types could produce \(1,25(OH)_{2}D_{3}\), the two populations were separated and studied individually.

Lymphocytes. Lavage T lymphocytes from all eight patients with tuberculosis tested were able to convert \([^{3}H]_{25}(OH)D_{3}\) into \([^{3}H]_{1,25}(OH)_{2}D_{3}\) (Fig. 2). In contrast, lavage T lymphocytes from patients with sarcoidosis or normals did not produce detectable amounts of \(1,25(OH)_{2}D_{3}\).

Additional experiments confirmed the identification of this metabolite as \(1,25(OH)_{2}D_{3}\). First, purified T lymphocytes from the five tuberculosis patients incubated in the presence of unlabeled \(1 \times 10^{-6}\) M \(25(OH)D_{3}\) produced a metabolite detected by UV absorbance at 254 nm which coeluted with synthetic \([^{3}H]_{1,25}(OH)_{2}D_{3}\) in the two sequential HPLC chromatographic systems. Second, when T lymphocytes from patients were incubated in the presence of \(1 \times 10^{-6}\) M \([^{3}H]_{25}(OH)D_{3}\) (20±2 mCi/mmol sp act) the specific activity of the metabolite was similar (19±2 mCi/mmol sp act; \(n = 5\)). Third, when the metabolite isolated from nine individual patients was tested in the receptor-binding assay, its ability to compete with the binding of \([^{3}H]_{1,25}(OH)_{2}D_{3}\) to its receptor was similar to that of synthetic \(1,25(OH)_{2}D_{3}\) (Fig. 3). Finally, when the metabolite with chromatographic properties of

Table I. Production of \([^{3}H]_{1,25}(OH)_{2}D_{3}\) by Blood Mononuclear Cells and Lavage Cells from Control Subjects and Patients with Tuberculosis and Sarcoidosis

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Controls</th>
<th>Tuberculosis</th>
<th>Sarcoidosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fmol/10^9) cells per 150 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood mononuclear cells</td>
<td><0.2</td>
<td>2.9±2.6(^{4})</td>
<td><1.1</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td></td>
</tr>
<tr>
<td>Unseparated lavage cells</td>
<td><0.2</td>
<td>10.1±8.7(^{1})</td>
<td>2.1±1.2</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(n = 12)</td>
<td>(n = 6)</td>
<td></td>
</tr>
</tbody>
</table>

* Results are given as mean±SD.

\(^{1}\) \(P < 0.05\) comparing blood mononuclear cells and lavage cells;

\(^{4}\) \(P < 0.01\) or \(\times 0.001\) comparing tuberculosis patients with control subjects and sarcoidosis patients.

Figure 2. Production of \([^{3}H]_{1,25}(OH)_{2}D_{3}\) by lavage T lymphocytes. T lymphocytes were purified from cells recovered by bronchoalveolar lavage from normals (C), patients with tuberculosis (T), and patients with sarcoidosis (S). \(1 \times 10^9\) cells were incubated in the presence of \(2.5 \times 10^{-8}\) M \([^{3}H]_{25}(OH)D_{3}\) and the amount of \(1,25(OH)_{2}D_{3}\) produced was determined. The shaded areas represent the apparent production of \(1,25(OH)_{2}D_{3}\) in incubations performed without added cells.
1,25(OH)\(_2\)D\(_3\) was isolated from five different patients, pooled, and rechromatographed using the methylene-chloride/isopropanol solvent system, this metabolite eluted as a sharp single peak with an elution volume identical to that of synthetic 1,25(OH)\(_2\)D\(_3\) (data not shown). It had the same capacity as synthetic 1,25(OH)\(_2\)D\(_3\) to compete with \([\text{H}]1,25(\text{OH})_2\text{D}_3\) for binding to receptors present in chick intestinal cytosol (data not shown), as well as a UV spectrum identical to that of synthetic 1,25(OH)\(_2\)D\(_3\) (Fig. 3). The only known vitamin D metabolite with these characteristics is 1,25(OH)\(_2\)D\(_3\) (16–18).

In addition, a variety of evidence indicated that the 1,25(OH)\(_2\)D\(_3\) produced did not result from 1,25(OH)\(_2\)D\(_3\) produced by other cell types (e.g., alveolar macrophages) contaminating the lymphocyte preparations. First, 1,25(OH)\(_2\)D\(_3\) production by T lymphocytes correlated with the number of CD8\(^+\) lymphocytes, not the number of alveolar macrophages, present in the original cell population. Second, the production of \([\text{H}]1,25(\text{OH})_2\text{D}_3\) by purified T lymphocytes correlated very closely with the production of \([\text{H}]1,25(\text{OH})_2\text{D}_3\) by unseparated fresh lavage cells from the same individual (Fig. 4, \(r = 0.95, P < 0.001\)).

![Graph showing correlation](image)

Figure 4. Correlation between the production of 1,25(OH)\(_2\)D\(_3\) by fresh lavage cells from patients with tuberculosis and purified lavage T lymphocytes from the same individuals. The solid line was determined by linear regression (\(r = 0.95, P < 0.001\)).
whereas 1,25(OH)₂D₃ production was detectable in only two of the six patients with sarcoidosis and for both individuals only small amounts were produced. (c) This study demonstrates that production of 1,25(OH)₂D₃ is not restricted to sites of granulomatous lesions, because blood mononuclear cells from some patients with tuberculosis were capable of producing detectable amounts of 1,25(OH)₂D₃.

The results presented here also define the cell types recovered by lavage that can contribute to the production of 1,25(OH)₂D₃. Our findings indicate that T lymphocytes recovered by lavage from patients with tuberculosis spontaneously produce 1,25(OH)₂D₃. The production of 1,25(OH)₂D₃ could not be explained by the nonspecific activation of the lymphocytes during the purification procedure, for none of the lavage T lymphocytes from patients with sarcoidosis and normals produced detectable 1,25(OH)₂D₃. In addition, a variety of evidence indicated that the 1,25(OH)₂D₃ produced did not result from 1,25(OH)₂D₃ produced by other cell types (e.g., alveolar macrophages) contaminating the lymphocyte preparations. It is noteworthy that the close correlation observed between 1,25(OH)₂D₃ production by fresh lavage cells and purified lavage T lymphocytes from the same individual suggests that T lymphocytes are an important source of 1,25(OH)₂D₃ produced by lavage cells.

The production of 1,25(OH)₂D₃ by normal T lymphocytes has not been previously detected, although extrarenal production of 1,25(OH)₂D₃ has been suggested to occur in patients with adult T cell leukemia/lymphoma (19), and HTLV-1 transformed cord blood T lymphocytes have been reported to produce 1,25(OH)₂D₃ (20). It is noteworthy that 1,25(OH)₂D₃ production by lavage cells was correlated with the number of CD₈⁺ T lymphocytes present, but not with the number of CD₄⁺ T lymphocytes, consistent with the possibility that CD₈⁺ lymphocytes are the major source of this metabolite. Other explanations are possible for the observed correlation however, such as the possibility that CD₈⁺ cells produce cytokines which stimulate 1α-hydroxylase activity in other cells, or that 1,25(OH)₂D₃ favors the expansion of CD₈⁺ T lymphocytes (1, 2, 21, 22). Even if CD₈⁺ lymphocytes are directly involved in 1,25(OH)₂D₃ production, they must be activated to do so, since the proportion of CD₈⁺ T lymphocytes recovered by lavage from patients with sarcoidosis was not significantly different from that of patients with tuberculosis.

These studies also demonstrate for the first time that freshly purified alveolar macrophages from some tuberculosis patients can spontaneously produce 1,25(OH)₂D₃. In contrast, unfractionated lavage cells from patients with sarcoidosis (containing a majority of alveolar macrophages in each case) produced little or no 1,25(OH)₂D₃, consistent with the previous observation that fresh alveolar macrophages from sarcoidosis patients produce little or no 1,25(OH)₂D₃ (7). Degradation of 1,25(OH)₂D₃ by the cells cannot explain these results, because little apparent degradation of preformed 1,25(OH)₂D₃ was observed over the period of incubation. Because changes in "maturation" or "differentiation" of alveolar macrophages by in vitro culture increases their capacity to produce this metabolite (22), it is unclear whether the low 1,25(OH)₂D₃ production by freshly isolated sarcoid alveolar macrophages reflects the fact that they are often relatively immature (23), or reflects a basic difference in the production of 1,25(OH)₂D₃ in tuberculosis and sarcoidosis.

In conclusion, this study indicates that 1,25(OH)₂D₃ production occurs commonly in tuberculosis, and that T lymphocytes, possibly CD₈⁺ T lymphocytes, are an important source of this mediator. Because 1,25(OH)₂D₃ can improve the capacity of macrophages to kill mycobacteria (24–26), our results support the conclusion that macrophage–lymphocyte interactions, mediated at least in part by 1,25(OH)₂D₃, may be an important component of a successful antituberculous immune response.

Acknowledgments

The authors gratefully acknowledge the help of Alain Loiseau in performing the statistical analyses, Jacques Hervagault (Millipore/Continental Water Systems) in performing the UV spectroscopy, Françoise Paillard (Hôpital Tenon, Paris, France) in performing some of the clinical analyses, and Dominique Valeyre and Jean-Paul Battesti (Hôpital Avicenne, Bobigny) for providing lavage samples and clinical information for some of the patients studied.

References