The Roles of Insulin and Glucagon in the Regulation of Hepatic Glycogen Synthesis and Turnover in Humans

Michael Roden, Gianluca Perseghin, Kitt Falk Petersen, Jong-Hee Hwang, Gary W. Cline, Karynn Gerow, Douglas L. Rothman, and Gerald I. Shulman

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

To determine the respective roles of insulin and glucagon for hepatic glycogen synthesis and turnover, hyperglycemic clamps were performed with somatostatin [0.1 μg/(kg · min)] in healthy young men under conditions of: (I) basal (fasting) portal vein insulinemia-hypoglucaconemia, (II) basal portal vein insulinemia-basal glucagonemia, and (III) basal peripheral insulinemia-hypoglucaconemia. Synthetic rates, pathway (direct versus indirect) contributions, and percent turnover of hepatic glycogen were assessed by in vivo 13C nuclear magnetic resonance spectroscopy during [1-13C]glucose infusion followed by a natural abundance glucose chase in conjunction with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. In the presence of hyperglycemia (10.4 ± 0.1 mM) and basal portal vein insulinemia (192 ± 6 μM), suppression of glucagon secretion (plasma glucagon, I: 31 ± 4, II: 63 ± 8 pg/ml) doubled the hepatic accumulation of glycogen (Vmax) compared with conditions of basal glucagonemia [I: 0.40 ± 0.06, II: 0.19 ± 0.03 mmol/liter · min]; P < 0.0025. Glycogen turnover was markedly reduced (I: 19 ± 7%, II: 69 ± 12%; P < 0.005), so that net rate of glycogen synthesis increased approximately fivefold (P < 0.001) by inhibition of glucagon secretion. The relative contribution of gluconeogenesis (indirect pathway) to glycogen synthesis was lower during hypoglucaconemia (42 ± 6%) than during basal glucagonemia (54 ± 5%; P < 0.005). Under conditions of basal peripheral insulinemia (54 ± 2 μM) and hypoglucaconemia (III) there was negligible hepatic glycogen synthesis and turnover. In conclusion, small changes in portal vein concentrations of insulin and glucagon independently affect hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion under conditions of hyperglycemia and basal concentrations of insulin results in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by ~73%, and (c) augmented percent contribution of the direct pathway to glycogen synthesis compared with conditions of basal glucagonemia. (J. Clin. Invest. 1996. 97:642–648.) Key words: gluconeogenesis · somatostatin · acetaminophen · 13C NMR spectroscopy

Introduction

After glucose ingestion, hepatic glycogen synthesis is a major fate for the glucose that is taken up by the liver (1) and defects in hepatic glycogen synthesis contribute to postprandial hyperglycemia of patients with poorly controlled insulin-dependent diabetes mellitus (IDDM) (2). Both insulin deficiency and relative hyperglucagonemia may lead to these abnormalities of liver glycogen metabolism (3). Hepatic glycogen synthesis has been widely investigated in vitro (4–7), but because of the difficulties in examining this process in awake animals there are relatively little in vivo data (8). Before the advent of 13C nuclear magnetic resonance (NMR) spectroscopy (9), measurements of hepatic glycogen content in humans by biopsy were limited to only a few time points (10), making detailed studies examining the hormonal regulation of hepatic glycogen synthesis in humans untenable.

The aims of this study were to evaluate the role of physiological glucagon concentrations for liver glycogen metabolism under conditions of hyperglycemia and low insulin concentrations to mimic the metabolic situation occurring in IDDM as well as to test whether or not suppression of glucagon secretion might augment hepatic glycogen synthesis and thereby offer a therapeutic option for patients with IDDM. To this end, 13C NMR methods were applied to noninvasively measure hepatic glycogen contents in humans and to compare the effects of basal versus somatostatin (SRIF)-suppressed glucagon concentrations during hyperglycemia and basal peripheral or portal vein insulin concentrations on: (a) net hepatic glycogen synthesis, (b) glycogen turnover, i.e., simultaneous synthesis and breakdown of hepatic glycogen, and (c) the relative contributions of the direct (glucose → glucose-6-phosphate → glucose-1-phosphate → UDP-glucose → glycogen) and the indirect/ gluconeogenic (C3 compounds → glucose-6-phosphate → glucose-1-phosphate → UDP-glucose → glycogen) pathway to hepatic glycogen synthesis. Infusion of [1,13C]-enriched glucose was followed by a chase period with unenriched (natural abundance) glucose to estimate the rates of hepatic glycogen synthesis and turnover (11). To examine the pathway (direct versus indirect) contributions of hepatic glycogen synthesis, acetaminophen was used to noninvasively sample the intrahepatic UDP-glucose pool (12, 13).

Methods

Subjects. Eight healthy men (mean age 27 ± 2 yr, mean body wt 77 ± 2 kg, mean body mass index 24.1 ± 0.5 kg/m², glycosylated hemoglobin 6.2 ± 0.3%) with body weights between 87 and 105% of ideal body wt

1. Abbreviations used in this paper: APE, atom percent enrichment; GC-MS, gas chromatography-mass spectrometry; IDDM, insulin-dependent diabetes mellitus; NMR, nuclear magnetic resonance; PI, peak intensity; SRIF, somatostatin.
performed in random order and spaced by intervals of 3–12 wk.

ments were begun at 8:00 a.m. The different parts of this study were
and hormones at 6:30 a.m. Another catheter was placed in an antecu-
realized in the opposite arm to allow blood withdrawal. The experi-
clinical Research Center. After an overnight fast (12–14 h), one Tef-
other catheter was inserted in an antecubital vein for infusion of glucose
and monitored for glucose C13 enrichment. Basal insulinemia was

Hyperglycemic clamp. Hyperglycemia was induced by the glu-
cose clamp technique as described previously (14, 15). To inhibit en-
dogenous insulin and glucagon secretion, an SRIF infusion [0.1 μg/
(kg body wt ⋅ min)] was initiated 5 min before the start of the glucose-
insulin infusion. Starting with time zero, insulin (Humulin-R; Eli Lilly
& Co., Indianapolis, IN) was administered as a primed-continuous
[0.6 μU/(kg body wt ⋅ min)] or continuous [0.15 μU/(kg body wt ⋅
min)] infusion to establish basal (fasting) portal vein or peripheral in-
sulin concentrations, respectively. To define the dose–response rela-
tionship three subjects received primed-continuous insulin infusions
at a rate of 0.3, 0.5, or 0.7 μU/(kg body wt ⋅ min), respectively. Simul-
taneously with the start of the insulin infusion, a prime-variable infu-
sion of [1-13C]glucose (20% enriched) was initiated to acutely raise
and maintain the plasma glucose concentration by ~ 5 mM above
baseline. At t = 160 min the infusate was switched to natural abun-
dance glucose which was used as the infusate until the end of the ex-
periment (t = 245 min). During protocol II [insulin dose: 0.6 μU/(kg
body wt ⋅ min)], glucagon (Eli Lilly & Co.) was infused continuously
[0.7 ng/(kg body wt ⋅ min)] starting with time zero to create condi-
tions of basal plasma glucagon concentrations. This resulted in three
experimental protocols: basal portal vein insulinemia-hypoglu-
cagonemia (protocol I, n = 8), basal portal vein insulinemia-basal

glucagonemia (protocol II, n = 8), and basal peripheral insulinemia-
hypoglucagonemia (protocol III, n = 3). Based on the results of negli-
gible glucose C13 enrichment and turnover, protocol III was discontinued
after three experiments. All subjects ingested 1.5 grams of acetamin-
ophen 5 min before the start of each glucose clamp test.

Plasma glucose concentrations were measured at 5-min intervals
during the first hour and then every 7 or 8 min until the end of the clamp.
The variable infusion of glucose (either 13C-enriched or natu-
ral abundance) was adjusted to maintain the desired hyperglycemic
plateau. Mean glucose infusion rates were calculated for 20-min inter-
vals and corrected for urinary glucose loss.

Blood samples were taken every 15 min for determination of plasma
insulin and glucagon concentrations and for gas chromatogra-
phy-mass spectrometry (GC-MS) analysis of 13C isotopic enrichment
in plasma glucose and plasma acetaldehyde-glucuronic acid. Urine was
collected from 60 to 155 min and 155 to 245 min for isolation of ace-
taminophen-glucuronic acid.

In vivo 13C NMR spectroscopic techniques. To assess rates of syn-
thesis and breakdown of hepatic glycogen 13C NMR spectra were ac-
quired from 60 to 155 min and from 185 to 245 min. The measure-
ments were limited to these time periods to minimize the subject

discomfort resulting from lying motionless inside the 2.1-T 1-m bore
spectrometer (Biospec I; Bruker Instruments, Inc., Billerica, MA).
The 13C NMR signals were obtained with a 9-cm circular 13C obser-
vation coil and a 12 × 14-cm coplanar butterfly H-decoupler coil
placed rigidly over the lateral aspect of the liver in the supine subject,
as described previously (9). Briefly, the position of the coil over the
liver was initially determined by percussion of the liver borders and
then confirmed by imaging the liver from the surface coil with a
multislice gradient echo image. The magnetic field homogeneity was
optimized with the water signal obtained from the decoupling coil.
Localized 13C NMR liver spectra were obtained with a modified one-
dimensional inversion-based sequence for surface suppression. Each
spectrum consisted of 6,400 scans and required 15 min of signal aver-
aging. Liver glycogen was quantified by integration of the C1 glycogen
peak at 100.5 ppm using the same frequency bandwidth (250 Hz)
for all spectra. The absolute concentration of hepatic glycogen was
determined by comparing the peak integral (PI) of the C1 liver glycog-
en peak with that of a glycogen standard taken under identical con-
ditions.

Analytical procedures. Plasma glucose concentrations were mea-
sured by the glucose oxidase method (Glucose analyzer II; Beckman
Instruments, Inc., Fullerton, CA). Plasma immunoreactive insulin,
glucagon, and C-peptide were measured using commercially available
double-antibody radioimmunoassay kits (insulin: Diagnostic Systems
Laboratories, Inc., Webster, TX; glucagon: Linco Research Inc., St.
Charles, MO; C-peptide: Diagnostic Products Corp., Los Angeles,
CA). Plasma lactate concentrations were measured by using the lact-
tate dehydrogenase method (16). Plasma free fatty acid concentra-
tions were determined using a microfluorimetric method (17). Plasma
amino acid concentrations were measured by an automated amino
acid analyzer (Dionex Corp., Sunnyvale, CA).

Plasma glucose and acetaldehyde-glucuronic acid were derivatized
to allow determination of 13C atom percent enrichments (APE) by
GC-MS. Plasma glucose was derivatized as the pentaaacetate, after
Ba(OH)2/ZnSO4, deproteination and semipurification by anion/cation
exchange chromatography (AG1-X8, AG50W-X8; Bio Rad Lab-
oratories, Hercules, CA), as described previously (18). Plasma ace-
taminophen-glucuronic acid was derivatized by a modification of that
used for amino acids (13). Plasma was deproteinated with Ba(OH)2/
ZnSO4, the supernatant was freeze-dried, and the glucuronide moiety
was derivatized as the n-butyl ester, triacetate.

For determination of 13C isotopic enrichments by NMR, urine
samples were freeze-dried and redissolved in water, and urine ace-
taminophen-glucuronic acid was semipurified by anion exchange chroma-
tography (AG1-X8, 100–200 mesh, acetate form) as described previ-
ously (19). The purified acetaldehyde-glucuronic acid was finally
dissolved in a small volume of D2O for NMR analysis.

GC-MS analysis. GC-MS analysis was performed with a Hewlett-
Packard 5890 gas chromatograph (HP-1 capillary column, 12 m × 0.2
mm i.d., 0.33 μm film thickness) interfaced to a Hewlett-Packard
5971A Mass Selective Detector operating in the positive chemical
ionization mode with methane as reagent gas. For glucose penta-
acetate, glycosylated hemoglobin 5.4
2 yr, mean body wt 78
9 kg, mean body mass index 24.1 ± 2.3 kg/m2, glycosylated hemoglobin
5.4 ± 0.2%). The experi-
mental protocols were reviewed and approved by the Human Investi-
gation Committee of the Yale University School of Medicine, and
informed consent was obtained from all subjects.

Experimental design. The subjects were given an isocaloric (33
cal/kg body wt daily) diet consisting of 60% carbohydrate, 20% pro-
tein, and 20% fat prepared by the metabolic kitchen of the Yale/New
Haven Hospital General Clinical Research Center for 3 d before the
study. On the day before the study the subjects were admitted to the
Clinical Research Center. After an overnight fast (12–14 h), one Tef-
lon catheter was inserted in an antecubital vein for infusion of glucose
and hormones at 6:30 a.m. Another catheter was placed in an antecu-
bial vein of the opposite arm to allow blood withdrawal. The experi-
iments were begun at 8:00 a.m. The different parts of this study were
performed in random order and spaced by intervals of 3–12 wk.
ronid molarity of acetaminophen-glucuronide were determined from the ratio of the PI of C1 of the glucuronide moiety with the mean PI of C2' and C3' (i.e., C2 and C3 of the aromatic ring) of the acetaminophen moiety. Additionally, the NMR acquisition parameters of peak width and delay between pulses were optimized to minimize correction factors and maximize the signal to noise ratio. A delay of 6.0 s between scans and a 30° pulse width were used to acquire all spectra obtained in this study. Correction factors ranged from 0.96 to 1.06. 13C NMR chemical shifts of acetaminophen-glucuronide have been assigned from pure standards and mixtures, after taking into account the expected change in the 13C chemical shift of unconjugated acetaminophen (13). Chemical shifts were referenced to trimethylsilylpropionate-(2,2,3,3-d4) assigned to 0 ppm (MSD Isotopes, Montreal, Canada). The 13C NMR chemical shift glucuronic acid, C1, C2, and C6 have been assigned to 101.0, 73.2, and 176.1 ppm, respectively. In the acetaminophen moiety, C2' (C6') and C3' (C5') of the aromatic ring were assigned to 117.7 and 123.8 ppm (chemical shifts not specified).

Calculations and data analysis. The method for calculating rates of hepatic glycogen synthesis and simultaneous breakdown is based on measuring initial total (13C + 12C) glycogen concentration and changes in C1 glycogen peak integral (ΔP, [11]). Briefly, the rate of hepatic accumulation of glycogen (Vsyn) was assessed from the increase in [13C]glycogen concentration during the initial [1-13C]glucose infusion. The increase in total liver glycogen concentration (ΔGly) for each 15-min interval is given as: [ΔGly; a · 100]/[(b · APE glu) + 1.1] where a = [13C]glycogen concentration per signal intensity unit (mmol/liter liver), APE glu = atom percent excess 13C over baseline in plasma glucose, and b = dilution factor. The dilution factor, b, represents the fraction of UDP-glucose formed by the direct pathway as determined from the 13C APE in C1 and C6 of plasma glucose and of acetaminophen-glucuronide: ([C1 APE - C6 APE] gluconidate) / ([C1 APE - C6 APE] glucose). The percentage of glycogen synthesized by the direct pathway (percent direct pathway) can be expressed as b · 100. Since the increase in the total liver glycogen concentration was linear from t = 60–155 min during protocol I (r = 0.987), II (r = 0.953), and III (r = 0.963), the hepatic accumulation of glycogen [Vsyn: mmol glycogen/liter liver · min] can be assessed from the slope of the line in a plot of the increase in total glycogen concentration versus time. To estimate a minimal rate of simultaneous glycogen breakdown, i.e., only the glycogen broken down that escapes the hexose-1-phosphate pool (Vout), the observed change in [1-13C]glycogen concentration ([13C-Gly]) during the unenriched glucose infusion (chase period; 185–245 min) is compared with the predicted change in [13C-Gly], which is assumed constant glycogen synthesis without breakdown. The observed change in [1-13C]glycogen concentration (Δ[13C-Gly]), is given as: ΔP · a, whereas the predicted increase in [13C-Gly] during each 15-min (ΔT) of the chase period is given as: ΔT · Vout / (b · APE glu) + 1.1)/100. The difference between Δ[13C-Gly], and Δ[13C-Gly]out represents the amount of [1-13C]glycogen broken down (Δ[13C-Gly]out) during each time interval. The Δ[13C-Gly]out is plotted versus time and the data are fitted to a line to give the average rate of [1-13C]glycogen breakdown. To obtain a minimum estimate for the rate of total glycogen breakdown (Vout), the slope of that line is divided by the maximum fractional 13C enrichment [(b · APE glu) / (Vout · 100)] + 0.011] in C1 glycogen. The relative glycogen turnover (percentage) is then calculated as: Vout / Vsyn and the net rate of glycogen synthesis (Vsynout) is given as the difference between Vsyn and Vout. The assumption made for these calculations will lead to underestimation of both liver glycogen accumulation which results from the rapid loss of glycogen preventing some newly formed glycogen to be detected in the [13C]glycogen peak and of liver glycogen turnover to the extent that the unlabeled glycogen pool is also subject to turnover.

All data are presented as means ± SEM. Linear regressions were calculated by the method of the least squares. Statistical comparisons between protocols I and II were made by the paired Student’s t test. Data within a group or between the three protocols (I–III) were compared by ANOVA followed by the Student-Newman-Keuls post-hoc test.

Results

Plasma glucose, insulin, glucagon, C-peptide. Basal fasting concentrations of glucose (protocol I: 5.3 ± 0.1, II: 5.3 ± 0.2, III: 4.9 ± 0.2 mM), insulin (I: 36 ± 6, II: 36 ± 6, III: 36 ± 6 pM), and glucagon (I: 54 ± 4, II: 53 ± 5, III: 52 ± 6 pg/ml) before the clamp studies were not different between the three experimental protocols. Within 15 min of starting the hyperglycemic clamp the desired level of hyperglycemia was achieved and then maintained until the end without differences between the protocols (I: 10.3 ± 0.1, II: 10.4 ± 0.1, III: 10.5 ± 0.1 mM) (Fig. 1, top).

Plasma insulin concentrations rapidly increased (P < 0.0001) and reached steady state values, which were not different between protocols I (192 ± 12 pm) and II (192 ± 12 pm) (Fig. 1, middle). During protocol III plasma insulin concentrations were slightly higher than the basal concentrations (54 ± 2 vs. 36 ± 6 pM, P < 0.01). SRIF resulted in a decrease by ~39% of plasma glucagon concentrations during protocols I (t = 15–245 min: 31 ± 4 pg/ml, P < 0.0001 vs. basal values) and III (32 ± 7 pg/ml, P = 0.0051) (Fig. 1, bottom). When glucagon was infused during protocol II, plasma glucagon concentrations were kept at baseline values (t = 15–245 min: 63 ± 8 pg/ml, NS vs. basal values), but were higher (P < 0.005) than during protocol I (Fig. 1, bottom). Basal C-peptide levels (I: 326 ± 27, II: 361 ± 24, III: 334 ± 28 pm) were suppressed (P < 0.0001) during the clamp tests (t = 125–245 min), but were not different between protocols I (83 ± 8 pm), II (94 ± 7 pm), and III (84 ± 16 pm).

Plasma lactate, free fatty acids, amino acids. Plasma lactate concentrations were similar before the experiments (protocol I: 0.88 ± 0.07, II: 0.97 ± 0.07, III: 0.87 ± 0.08 mM) and increased during the insulin infusion (I: 1.37 ± 0.06, II: 1.39 ± 0.04, III: 0.98 ± 0.06 mM). Baseline values of plasma free fatty acids were 430 ± 6, 409 ± 16, and 304 ± 12 µM and were suppressed (P < 0.0001) to 164 ± 12, 151 ± 6, and 88 ± 8 µM, respectively, under clamp conditions. Similarly, plasma concentrations of branch-chained amino acids (basal, I: 412 ± 16, II: 438 ± 21, III: 452 ± 14 µM) decreased during protocols I (235 ± 16 µM, P < 0.0001), II (234 ± 14 µM, P < 0.0001), and III (372 ± 5 µM, P < 0.05). Plasma gluconic acid amino acids (I: 1.67 ± 0.59, II: 1.73 ± 0.4, III: 1.804 ± 0.13 µM) were lower (P < 0.001) during steady state clamp conditions of protocols I (1.438 ± 0.1 µM) and II (1.429 ± 0.1 µM), but remained unchanged during protocol III (1.823 ± 0.4 µM).

Glucose infusion rate. Under conditions of basal glucagon concentrations (protocol II) mean rates of glucose infusion were 14–18% lower compared with those during suppressed glucagon secretion (protocol I) (Table I). In the presence of basal peripheral vein concentrations of insulin (protocol III) the mean glucose infusion rate was reduced by 70% to 2.7 ± 0.1 mg/(kg · min) compared with conditions simulating basal insulin concentrations in the portal vein (protocol II).

Basal glycogen, Vsyn, Vout, Vsynout. Basal liver glycogen concentrations were similar before each study (protocol I: 359 ± 22, II: 342 ± 25, III: 294 ± 37 mM). From t = 60 min to t = 155 min, total liver glycogen concentrations increased linearly during protocols I (r = 0.987), II (r = 0.953), and III (r = 0.963) (Fig. 2). The rates of hepatic glycogen synthesis, breakdown, and relative glycogen turnover are summarized in Table

644 Roden et al.
Replacement of the basal glucagon concentration decreased the mean rate of hepatic glycogen synthesis (accumulation of glycogen) by 53% (P < 0.0025), while simultaneous glycogen turnover was increased more than threefold (P < 0.005). This resulted in reduction by 82% (P < 0.001) of the rate of net glycogen synthesis compared with the hypogluca
gonemia group.

Under similar conditions of hyperglycemia and SRIF-suppressed glucagon secretion, accumulation of glycogen [V_{\text{syn}}: 0.07±0.03, 0.09, 0.30, 0.40±0.06, 0.44 mmol/(liter·min)] was stimulated by increasing the plasma insulin concentration (54±12, 129±4, 173±6, 192±6, 280±11 pM, respectively) (Fig. 3).

Pathways of hepatic glycogen synthesis. To obtain an estimate of the percent contribution of the pathways (direct versus indirect) to hepatic glycogen synthesis, the ratios of 13C enrichments (APE) in plasma glucose and in plasma (urine) acetaminophen-glucuronide were compared. Plasma 13C-glucose

Table I. Glucose Infusion Rates [mg/(kg·min)] during the Hyperglycemic Clamps

<table>
<thead>
<tr>
<th>Protocol</th>
<th>60–120 min</th>
<th>120–180 min</th>
<th>180–240 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal vein insulin (~192 pM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol I: − Glucagon</td>
<td>8.7±0.4</td>
<td>10.4±0.4</td>
<td>12.3±0.5</td>
</tr>
<tr>
<td>Protocol II: + Glucagon</td>
<td>7.4±0.5*</td>
<td>9.0±0.5†</td>
<td>10.1±0.5†</td>
</tr>
<tr>
<td>Portal vein insulin (~54 pM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol III: − Glucagon</td>
<td>2.6±0.1†</td>
<td>2.7±0.2†</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Values are means±SE. *P < 0.05, †P < 0.01, ‡P < 0.01 vs. protocols I and II. N.D., not determined.

APE approached plateau values within 120 min and increased by < 9% until the end of the labeled glucose infusion. Mean maximum values of $[^{13}]$C-glucose enrichments were not different between protocols I (16.2±0.5%) and II (16.0±0.5%), but were lower during protocol III (9.8±0.3%). Both plasma and urine acetaminophen-glucuronide 13C APE represent the UDP-glucose pool labeled by $[^{13}]$C-glucose and thereby indicate the percent contribution of the direct pathway to hepatic glycogen synthesis (11). The maximum 13C enrichments in plasma acetaminophen-glucuronide corresponded well with the data obtained from urine (variation < 10%). During protocols I and II 13C APE in plasma acetaminophen-glucuronide reached plateau values at t = 185 min and did not change significantly until the end of the experiment (t = 245 min: 9.5±0.9 vs. 8.2±1.1%). This indicates a time lag of 90 min between maximal plasma 13C enrichments in glucose and in acetaminophen-glucuronide. The mean relative flux through the direct pathway (Fig. 4) for hepatic glycogen synthesis was higher during glucagon deficiency compared with basal concentrations of

![Figure 1](image1.png)

Figure 1. Time course of plasma glucose (top), insulin (middle), and glucagon (bottom) concentrations during hyperglycemic-SRIF [0.1 μg/(kg·min)]-insulin clamp studies in healthy humans. Protocol I (n = 8): insulin replacement [0.6 mU/(kg·min)] only (open circles); protocol II (n = 8): insulin [0.6 mU/(kg·min)] and glucagon replacement [0.7 ng/(kg·min)] (filled circles); protocol III (n = 3): low-dose insulin replacement [0.15 mU/(kg·min)] only (filled triangles).

![Figure 2](image2.png)

Figure 2. Increase in total liver glycogen over baseline values (Δ glycogen; mmol/liter liver) from 60 to 155 min during hyperglycemic-SRIF [0.1 μg/(kg·min)] clamp studies combined with insulin replacement [protocol I, open circles, and protocol II, filled circles: 0.6 mU/(kg·min)]; protocol III, filled triangles: 0.15 mU/(kg·min)] without (protocols I and III) or with glucagon replacement [protocol III: 0.7 ng/(kg·min)].
Table II. Rates of Hepatic Glycogen Synthesis (V_{syn}), Glycogen Breakdown (V_{out}), and Net Glycogen Synthesis ($V_{\text{syn-out}}$) as well as Relative Turnover of Liver Glycogen

<table>
<thead>
<tr>
<th>Protocol</th>
<th>V_{syn}</th>
<th>V_{out}</th>
<th>$V_{\text{syn-out}}$</th>
<th>Glycogen turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal vein insulin (~ 192 pM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol I: ~ Glucagon</td>
<td>0.40±0.06</td>
<td>0.07±0.03</td>
<td>0.33±0.05</td>
<td>19±7</td>
</tr>
<tr>
<td>Protocol II: + Glucagon</td>
<td>0.19±0.03*</td>
<td>0.12±0.03</td>
<td>0.06±0.03†</td>
<td>69±12†</td>
</tr>
</tbody>
</table>

Values are means±SE. *$P < 0.0025$, †$P < 0.001$, ‡$P < 0.005$ vs. protocol I.

glucagon (I: 58±6 vs. 46±5%; $P = 0.0032$). It is of note that despite the lower relative flux through the indirect pathway, the absolute flux rates through this pathway were higher during protocol I than during protocol II [0.17±0.04 vs. 0.10±0.02 mmol/(liter · min)].

Discussion

In the presence of hyperglycemia, hypoglucagonemia, and conditions that approximate fasting peripheral insulin concentrations (~ 50 pM) there was only a small amount of [13C]glucose incorporated into liver glycogen, indicating that there was a negligible amount of glycogen synthesis and glycogen turnover occurring. However, increasing the plasma insulin concentration to ~ 190 pM elicited hepatic glycogen synthesis at a rate of ~ 0.4 mmol/(liter · min). That insulin concentration is similar to values obtained directly from the portal vein in overnight fasted humans (20), but assuming a portal vein to peripheral vein insulin ratio of ~ 3:1 (21), moderate hyperinsulinemia might have been present at the level of the portal vein. In a previous hyperglycemic-hypersulinemic clamp study using SRIF, only slightly higher glycogen synthetic rates [0.49 mmol/(liter · min)] were reported in the presence of peripheral and portal vein insulin concentrations of ~ 410 pM (11). After a hyperglycemic clamp performed without SRIF resulting in a comparable level of hyperglycemia (9.4 mM), the mean glycogen synthetic rate was found to be ~ 0.43 mmol/(liter · min) (11). Since this study was performed without SRIF infusion, portal vein insulin concentrations can be estimated to be ~ 780 pM from the peripheral mean plasma insulin concentration of ~ 260 pM (21). Taken together along with the data of the present study, these results suggest that portal vein insulin concentrations in the range of ~ 130–170 pM are required for half-maximal hepatic glycogen synthesis under conditions of intravenous glucose administration and suppressed glucagon secretion (Fig. 3). This insulin concentration range is close to the half-maximally effective concentration for suppression of hepatic glucose production (22–24). Since hepatic accumulation of glycogen might be expected to reflect glucose uptake by the liver (1), the present results are supported by reports on stimulation of net splanchnic glucose uptake during hypogluca- gonomia at low plasma insulin concentrations in dogs (25) and healthy humans (26), but even at increased insulin levels in dogs (27).

This study also found that glucagon plays an important role in the regulation of hepatic glycogen synthesis under conditions of hyperglycemia and basal portal vein concentrations of insulin. Restoring the basal plasma glucagon concentration must have resulted in mild hypoglucagonemia in the portal vein (28), but still reduced net glycogen synthesis by ~ 82%. This finding is in keeping with reports that hyperglycemia alone or in the presence of basal insulin concentrations causes little or no net hepatic/splanchnic glucose uptake (22, 25, 29, 30). The decrease in net hepatic glycogen synthesis could have occurred from decreased glycogen synthesis, increased glycogenolysis, or both. To examine these possibilities [13C]glucose pulse-[13C]glucose chase studies were performed. Restoring the basal plasma glucagon concentration in this study resulted

![Figure 3](image_url)

Figure 3. Concentration dependence of mean glycogen synthetic rate [mmol/(liter · min)] at varying (portal vein) plasma insulin concentrations (pM) under conditions of intravenous glucose infusion and suppressed glucagon secretion (filled circles). Additional data points are derived from Cline et al. (13) (open circle) and Magnusson et al. (11) (open triangle).
in a 53% decrease in the accumulation of glycogen (V$_{syn}$) and a 71% increase of V$_{out}$ under identical conditions of hyperglycemia and basal portal vein concentrations of insulin resulting in an almost fourfold increase in hepatic glycogen turnover. Overall decreases in V$_{syn}$ accounted for \sim 80% of the decrease in net hepatic glycogen synthesis.

The direct pathway accounted for \sim 58% of the newly synthesized hepatic glycogen, when glucagon secretion was suppressed during hyperglycemia and plasma insulin concentrations of \sim 190 nM. In a previous clamp study performed at comparable hyperglycemia and SRIF-suppressed glucagon secretion, but higher plasma insulin levels of \sim 410 nM, the percent contribution of the direct pathway for hepatic glycogen synthesis was only slightly higher (\sim 65%; [13]). Similarly, during intravenous glucose infusion (plasma glucose of \sim 9.3 mM) and plasma insulin concentrations of \sim 260 nM, the contribution of the direct pathway to newly formed glycogen was \sim 50% after an overnight fast (19). In this study, replacement of the basal plasma glucagon concentration resulted in an increase in the relative, but not in the absolute contribution of the indirect (gluconeogenic) pathway. In this context it is of note that higher concentrations of glucagon than used in this study are required to induce the well known stimulating effect on hepatic gluconeogenesis (31–34).

Defects in hepatic glycogen metabolism in subjects with IDDM have been demonstrated recently (2, 13). Although pancreatic plasma glucagon concentrations in IDDM patients are typically only slightly higher than in healthy subjects (35, 36), the glucagon secretion pattern has been shown to be altered (37), and the insulin/glucagon ratio is substantially lower during mixed meal ingestion (2, 38). When SRIF or SRIF analogues were used to inhibit glucagon secretion in IDDM patients, differing results have been reported: most investigators found improvement of basal and postprandial hyperglycemia during glucagon deficiency (39–44), whereas others could not detect any effects of a SRIF analogue (SMS 201-995) on 24-h glucose and insulin profiles (43, 44). It is possible that these differences might be explained by incomplete inhibition of glucagon secretion (43, 44). While extrapancreatic effects of SRIF (analogues) on growth hormone secretion might have contributed to the improvement in the glycemic profile, suppression of glucagon secretion by the SRIF analogues WY-41,747 (45) or SMS 201-995 (46) combined with replacement of growth hormone was still able to decrease plasma glucose and insulin requirements after a single meal or during a day of mixed meal ingestion in IDDM patients. Metabolic effects of SRIF can be explained also by impairment of intestinal nutrient absorption (47). However, a recent report found that preventing the fall in plasma glucagon during SRIF infusion leads to higher postprandial glucose concentrations and greater integrated glycemic response in IDDM patients compared with conditions of glucagon suppression (48) which is consistent with the findings of the present study.

In summary, physiologic alterations in portal vein insulin and glucagon concentrations independently modify hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion by SRIF under conditions of hyperglycemia and basal portal vein concentrations of insulin resulted in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by \sim 73%, and (c) augmented relative contribution of the direct pathway to glycogen synthesis when compared with conditions of basal glucagon concentrations. Thus, blocking secretion and/or action of glucagon at times of mixed meal ingestion may improve hepatic glycogen synthesis and thereby contribute to amelioration of postprandial hyperglycemia in IDDM patients who typically have relatively low concentrations of insulin and high concentrations of glucagon in the portal vein.

Acknowledgments

We thank the nurses and staff of the Yale/New Haven Hospital General Clinical Research Center, Mrs. Veronica Walton and Ms. Yvonne Milewski for technical assistance, Mrs. Donna Casseria for assistance with the diets, and Mr. Terry Nixon and Mr. Peter Brown for maintenance of the spectrometer and probe.

This work was supported by grants from the Public Health Service: R01 DK-49230, P30 DK-45735, M01 RR-00125, and R29 NS-32126. M. Roden was supported by a Max-Kade Foundation Fellowship Award and was on leave from the Department of Internal Medicine III, University of Vienna, Austria. G. Perseghin was supported by a postdoctoral fellowship from the Juvenile Diabetes Foundation International, and by a Research Training Award from the Instituto Scientifico San Raffaele, Milan, Italy.

References