Paradoxical Inhibition of Cardiac Lipid Peroxidation in Cancer Patients Treated with Doxorubicin

Pharmacologic and Molecular Reappraisal of Anthracycline Cardiotoxicity

Giorgio Minotti,* Cesare Mancuso,* Andrea Frustaci,* Alvaro Mordente,§ Stefano A. Santini,§ Antonio Maria Calafiore,‖ Giovanni Liberi,† and Nicolo’ Gentiloni‡

Departments of *Pharmacology, †Medicine, and ‡Biochemistry, Catholic University School of Medicine, 00168 Rome; and †Department of Cardiac Surgery, G. D’Annunzio University School of Medicine, 66100 Chieti, Italy

Abstract

Anticancer therapy with doxorubicin (DOX) and other quinone anthracyclines is limited by severe cardiotoxicity, reportedly because semiquinone metabolites delocalize Fe(II) from ferritin and generate hydrogen peroxide, thereby promoting hydroxyl radical formation and lipid peroxidation. Cardioprotective interventions with antioxidants or chelators have nevertheless produced conflicting results. To investigate the role and mechanism(s) of cardiac lipid peroxidation in a clinical setting, we measured lipid conjugated dienes (CD) and hydroperoxides in blood plasma samples from the coronary sinus and femoral artery of nine cancer patients undergoing intravenous treatments with DOX. Before treatment, CD were unexpectedly higher in coronary sinus than in femoral artery (342 ± 131 vs 112 ± 44 nmol/ml, mean ± SD; P < 0.01), showing that cardiac release of CD and hydroperoxides were spontaneously involved in lipid peroxidation. This was not observed in ten patients undergoing cardiac catheterization for the diagnosis of arrhythmias or valvular dysfunctions, indicating that myocardial lipid peroxidation was specifically increased by the presence of cancer. The infusion of a standard dose of 60 mg DOX/m² rapidly (~ 5 min) abolished the difference in CD levels between coronary sinus and femoral artery (134 ± 95 vs 112 ± 37 nmol/ml); meanwhile, dose fractionation studies showed that cardiac release of CD and hydroperoxides decreased by ~ 80% in response to the infusion of as little as 13 mg DOX/m². Thus, DOX appeared to inhibit cardiac lipid peroxidation in a rather potent manner. Corollary in vitro experiments were performed using myocardial biopsies from patients undergoing aorto-coronary bypass grafting. These experiments suggested that the spontaneous exacerbation of lipid peroxidation probably involved preexisting Fe(II) complexes, which could not be sequestered adequately by cardiac isoferritins and became redox inactive when hydrogen peroxide was included to simulate DOX metabolism and hydroxyl radical formation. Collectively, these in vitro and in vivo studies provide novel evidence for a possible inhibition of cardiac lipid peroxidation in DOX-treated patients. Other processes might therefore contribute to the cardiotoxicity of DOX. (J. Clin. Invest. 1996. 98:650–661.) Key words: doxorubicin • iron • free radicals • lipid peroxidation • cardiotoxicity

Introduction

The clinical usefulness of doxorubicin (DOX) and other anticancer anthracyclines is limited by peculiar toxicities to cardiac tissues. A digitalis-unresponsive congestive heart failure has been documented in greater than 30% of patients after treatment with cumulative doses above 600 mg/m² (1). However, severe dysfunctions may also occur in response to cumulative doses below 400 mg/m², especially when DOX is given in combination with other chemotherapeutic agents (2). Doxorubicin-treated patients are therefore at risk for acute and chronic cardiotoxicities, imposing dose restrictions and surveillance of the cardiovascular performance.

Previous attempts to elucidate the molecular mechanism(s) of cardiac damage have emphasized the role of a quinone moiety that is placed in the tetracycline ring of DOX and participates in reduction-oxidation processes. In fact, in vitro studies have shown that mitochondrial, nuclear and microsomal NAD(P)H oxidoreductases catalyze a one-electron reduction of the quinone group of DOX, yielding a semiquinone free radical that regenerates the parent compound by oxidizing with molecular oxygen (3). It follows that DOX administration exposes tissues to substantial fluxes of O₂ and H₂O₂. According to the prevailing hypothesis, cells with high levels of O₂ and H₂O₂-detoxifying enzymes resist the perturbing effects of DOX metabolism, whereas cells with low levels are expected to succumb. The latter should be the case for cardiomyocytes, as they contain less catalase, glutathione peroxidase, and superoxide dismutase than other cells (3–6).

The cytotoxicity of O₂ and H₂O₂ is substantially enhanced by iron. For example, the reaction of H₂O₂ with the heme iron moiety of myoglobin generates an oxoferryl species that promotes lipid peroxidation (7). While deficient in H₂O₂-detoxifying enzymes, cardiomyocytes are very rich in myoglobin; hence, they may represent the ideal scenario for a pathologic process of heme iron-dependent lipid peroxidation. Hydrogen peroxide can also promote lipid peroxidation through the reaction with low mol wt Fe(II) complexes, yielding hydroxyl radicals (8). Under physiologic conditions, this alternative mechanism of H₂O₂ toxicity is precluded by the presence of ferritin, a...
In vivo studies

Methods

Patient Age Sex Tumor Stage Individual risk factors

1 44 F Retroperitoneal fibrosarcoma IV None
2 67 F Ovary adenocarcinoma IV None
3 19 M Non-Hodgkin’s lymphoma III-B* None
4 29 M Non-Hodgkin’s lymphoma II-A* None
5 48 M Non-Hodgkin’s lymphoma IV-B* None
6 53 M Urothelial bladder carcinoma IV None
7 29 M Non-Hodgkin’s lymphoma II-B* Irradiation of mediastinum
8 43 F Ovary undifferentiated carcinoma IV None
9 39 M Epithelial type peritoneal mesothelioma IV None

*A, asymptomatic patient; B, patients with history of fever, sweats, or weight loss > 10%.

Electron spin resonance techniques have demonstrated the formation of hydroxyl radicals in DOX-perfused rat heart preparations, confirming that this drug can overwhelm the intracardiac defenses against reactions between H₂O₂ and iron (11). The pathophysiologic implications of these processes have nevertheless remained unclear. In fact, studies in DOX-treated laboratory animals have produced both positive (12, 13) and negative (14–17) evidence for a cause–effect relationship between lipid peroxidation and cardiovascular dysfunction. This experimental divergence would provide a rationale to evaluate cardiac lipid peroxidation under clinical conditions; however, such a study is made difficult by both ethical and practical reasons, precluding fine needle myocardial biopsies of sufficient size and number to perform biochemical analyses. We have therefore designed an alternative procedure, involving catheterization of the coronary sinus and measurements of lipid peroxidation products that cardiac tissues may release therein. This procedure has enabled us to unravel a free radical paradox, in the sense that cancer patients have a spontaneous exacerbation of cardiac lipid peroxidation that is abolished by DOX treatments. By combining these observations in vivo with ancillary experiments in vitro, we have also been able to show that: (a) the spontaneous enhancement of lipid peroxidation may involve preexisting low mol wt iron complexes that are not adequately sequestered by cardiac isoferritins; and (b) the reaction of iron with lipids ceases in the presence of a stoichiometric excess of H₂O₂, as it presumably occurs upon DOX administration and semiquinone formation. Collectively, these findings appear to dispel the role and mechanisms of lipid peroxidation in cardiac damage, setting the stage for a critical reappraisal of the experimental and clinical aspects of DOX toxicity.

Table I. Tumor Parameters and Individual Risk Factors of Patients Included in the Lipid Peroxidation Study

24-subunit cytosolic protein that decreases the levels of low mol wt Fe(II) by virtue of a “ferroxidase activity” coupled with the incorporation of Fe(III) (9). This protective mechanism would nevertheless be breached as the continuous reduction and oxidation of DOX exceeds the superoxide dismutase activity of cardiomyocytes, thus allowing O₂⁻ to delocalize Fe(II) by reducing ferritin-bound Fe(III) (10).

Electron spin resonance techniques have demonstrated the formation of hydroxyl radicals in DOX-perfused rat heart preparations, confirming that this drug can overwhelm the intracardiac defenses against reactions between H₂O₂ and iron (11). The pathophysiologic implications of these processes have nevertheless remained unclear. In fact, studies in DOX-treated laboratory animals have produced both positive (12, 13) and negative (14–17) evidence for a cause–effect relationship between lipid peroxidation and cardiovascular dysfunction. This experimental divergence would provide a rationale to evaluate cardiac lipid peroxidation under clinical conditions; however, such a study is made difficult by both ethical and practical reasons, precluding fine needle myocardial biopsies of sufficient size and number to perform biochemical analyses. We have therefore designed an alternative procedure, involving catheterization of the coronary sinus and measurements of lipid peroxidation products that cardiac tissues may release therein. This procedure has enabled us to unravel a free radical paradox, in the sense that cancer patients have a spontaneous exacerbation of cardiac lipid peroxidation that is abolished by DOX treatments. By combining these observations in vivo with ancillary experiments in vitro, we have also been able to show that: (a) the spontaneous enhancement of lipid peroxidation may involve preexisting low mol wt iron complexes that are not adequately sequestered by cardiac isoferritins; and (b) the reaction of iron with lipids ceases in the presence of a stoichiometric excess of H₂O₂, as it presumably occurs upon DOX administration and semiquinone formation. Collectively, these findings appear to dispel the role and mechanisms of lipid peroxidation in cardiac damage, setting the stage for a critical reappraisal of the experimental and clinical aspects of DOX toxicity.

Methods

In vivo studies

Patients. Cardiac lipid peroxidation was studied in patients who met the following inclusion criteria: (a) histologic diagnosis and clinical staging of tumors with a documented sensitivity to DOX; (b) electrocardiographic, x-ray, and ultrasound evidence for normal cardiac morphology and functions; (c) performance status ≥ 60%, according to Karnofsky’s grading (18); (d) hemoglobin ≥ 8 g/dl; and (e) no previous treatment with anthracyclines or other anticancer drugs. Major exclusion criteria involved cigarette smoking and high plasma cholesterol (> 200 mg/dl) or triglycerides (> 170 mg/dl), as these conditions accompany with anomalous increases of the plasma levels of lipid peroxidation products (19–21). Table I summarizes tumor parameters and individual risk factors of nine consecutive patients (six M and three F, aged 41.2±14 yr) who met the requirements for study entry. One of these patients had been previously subjected to mediastinum irradiation as a part of a combined treatment for a large mass of non-Hodgkin’s lymphoma. Thoracic irradiation increases the chances to develop cardiac damage upon subsequent treatments with anthracyclines (2). Therefore, this patient had an individual risk of cardiotoxicity and was scheduled for treatments with lower doses of DOX (see Tables I and III, and Results).

Treatments, blood sampling, and lipid peroxidation measurements. After an overnight fast, patients were placed under electrocardiographic monitoring and subjected to femoral artery and coronary sinus catheterization. The right femoral artery was entered by Seldinger’s technique (22) and catheterized by a 6F sheath suitable for blood sampling. Coronary sinus was catheterized by percutaneous left basilic vein approach. Briefly, a 7F Zucker catheter (USCI-BARD, Billerica, MA) was advanced under fluoroscopic monitoring for blood sampling. Coronary sinus was catheterized by percutaneous left basilic vein approach. Briefly, a 7F Zucker catheter (USCI-BARD, Billerica, MA) was advanced under fluoroscopic monitoring and placed in the middle portion of coronary sinus with sufficient clearance to allow for free aspiration of blood. Unless otherwise indicated, ~ 1–2-ml blood samples were drawn from catheters into heparinized Vacutainer Tubes (Becton Dickinson, Inc., Rutherford, NJ) before and 5 min after the rapid (≈ 3 min) infusion of DOX (Adriblastina®; Pharmacia-Farmitalia Carlo Erba, Milan, Italy). Similar samples were collected from antecubital veins. Throughout this treatment, there were no relevant electrocardiographic abnormalities, including rhythm disturbances or alterations of the repolarization phase. For comparative purposes, blood samples were also collected from the femoral artery and coronary sinus of eight normolipidemic patients (five M and three F, 28±4 yr) undergoing cardiac catheterization for the electrophysiologic characterization of Wolff-Parkinson-White disease, a supraventricular arrhythmia. Additional samples were obtained from two normolipidemic female patients, 50 and 59 yr, undergoing hemodynamic evaluation of mitral valve prolapse or stenosis, respectively. This general protocol, as well as the modifications shown later in Table III and Fig. 3, had been approved by the Committee for Ethics in Clinical Research at the Catholic University School of Medicine (Rome, Italy). Informed consent was obtained from each patient before DOX treatment and/or blood sampling.

After a 15-min centrifugation of the blood samples at 1,500 g, 4°C, plasma was aspirated and extracted immediately as described by
In vitro studies

Materials. Ammonium sulfate (ultrapure grade, Fe(III) < 0.5 ppm) was purchased from Schwarz/Mann (Cleveland, OH). EDTA and FeSO₄ were from Merck (Darmstadt, Germany), whereas H₂O₂ and t-histidine were from Aldrich Chemical Co. and Calbiochem-Behring Corp. (La Jolla, CA), respectively. 2,2′-azobis(2-amidinopropane)hydrochloride (AAPH) was a product of Polysciences, Inc. (Warrington, PA). Bovine liver catalase (EC 1.11.1.6) was obtained from Boehringer Mannheim GmbH (Mannheim, Germany) and was made free of thymol by ultrafiltration in Diaflo membranes (YM100; Amicon, Inc., Beverly, MA). Electrophoresis reagents were purchased from Pharmacia Fine Chemicals (Uppsala, Sweden); all other chemicals were obtained from Sigma Chemical Co. Electrophoretically homogenous recombinant heart-type and liver-type ferritin homopolymers (rHF and rLF, respectively) were obtained through the courtesy of Dr. Paolo Arosio (Department of Biotechnology, Istituto Scientifico San Raffaele, Milan, Italy). Ferritin expression and purification were as described by Levi et al. (30). Unless otherwise indicated, all the experiments were carried out in 0.3 M NaCl, carefully adjusted to pH 7.0 just before use. This was done to avoid ligand-catalyzed interactions of most common buffers with iron (8, 31, 32). Although unbuffered, the pH of the reaction mixtures did not vary throughout the experiment time. All the solutions were prepared with double-distilled water that had been passed through a Milli-Q Water System (Millipore Corp. Marlborough, MA). Trace metals were eventually removed by ion-exchange chromatography on Chelex 100 (Bio Rad Laboratories, Richmond, CA).

Lipid peroxidation experiments. Aliquots of ethanol-dissolved sodium arachidonate were vacuum-dried, suspended in 0.3 M NaCl, pH 7.0, and subjected to vesicle formation by indirect anaerobic sonication (33). Lipid peroxidation was studied in incubations (0.5–1 ml final vol) containing arachidonic acid vesicles (0.4 mM) and either FeSO₄ (0.1 mM) or metmyoglobin (0.2 mM). The latter had been previously quantified by assuming ε₃10 nm = 3.5 mM⁻¹ cm⁻¹ (7). Where indicated, ADP or t-histidine were included to achieve a 10:1 ratio with FeSO₄. This was done because the intracellular formation of low mol wt iron complexes is thought to involve a stoichiometric excess of oxygen or nitrogen donor ligands such as ADP or histidine, respectively (34). Where indicated, increasing amounts of H₂O₂ were also included to simulate DOX treatments and reaction of semiquinone metabolites with oxygen. After 30-min incubation at 37°C, lipid peroxidation was measured as the formation of thiobarbituric acid-reactive substances (TBARS), according to Buege and Aust (35) with modifications involving butanol extraction of the thiobarbituric acid (TBA) adduct (36). The antioxidant butylated hydroxytoluene (0.03 vol in 2% ethanol) was added to the TBA reagent to prevent further peroxidation of lipids during the heating step of the assay (35). Before the TBA test, all lipid peroxidation samples were treated with excess catalase (400 U/ml) for ~30 s. This was done to ensure rapid decomposition of unreacted H₂O₂ and prevent its possible interference with the TBA test (37). In other experiments, the reaction mixtures were similarly treated with catalase and extracted with a four-fold excess of chloroform/methanol (2:1) to assay for CD and LOOH, as already described.

Isolation and oxidation of LDL. After an overnight fast, blood was collected from the antecubital veins of normolipidemic volunteers and processed for plasma separation. Low density lipoprotein was subsequently isolated by a 60-min ultracentrifugation at 362,500 g in a vertical rotor (Centricon TVF 65.13; Kontron Instruments, Everett, MA), using a discontinuous density gradient obtained by overlaying 48% (wt/vol) sucrose (2 ml), 0.4 M NaCl-fortified plasma (3 ml), and 0.67 M NaCl (5 ml) (38, 39). After recovery from the mid-upper part of the gradient and dialysis against phosphate-buffered saline, pH 7.3, LDL (0.1 mg protein/ml) was incubated in the same medium and oxidized by exposure to peroxyl radicals, generated via thermal decomposition of 5 mM AAPH (40). After a 2-h reaction at 37°C, LDL was extracted with chloroform/methanol and assayed for CD and LOOH.

Preparation of cytosols from cardiac and hepatic biopsies. Small atrial samples (~0.2 g) were taken from 41 male and female patients, 62±12 yr, undergoing aorto-coronary bypass grafting. All biopsies were collected before cardiopulmonary bypass, using a previously described technique (41). Larger liver samples (4–5 gm) were obtained from one male and two female patients (47 to 65 yr) undergoing surgical removal of benign hepatocellular adenomas. Tissues were excised from areas surrounding the adenomas and were judged as microscopically free of inflammatory reactions or atrophic degeneration by two independent pathologists. Pooled myocardial biopsies or individual liver specimens were processed for cytosol preparation by sequential homogenization, ultracentrifugation, and 65% ammonium sulfate precipitation of 105,000 g supernatants, as described previously (41). In the present study, hydroxyapatite chromatography of ammonium sulfate precipitates was omitted, as it would have removed ferritin (41). Cytosols were dialyzed overnight against two 1-liter changes of 0.3 M NaCl-1 mM EDTA (to remove adventitious iron), and then against two 1-liter changes of 0.3 M NaCl (to remove EDTA and EDTA-iron complexes) (41). Informed consent was obtained from all patients undergoing tissue sampling.

Gel filtration analysis of cytosolic iron. 8 mg protein of cytosolic fractions were concentrated to 1 ml by ultrafiltration in 10-kD exclusion limit Minicon Cells (Danvers, MA) and loaded onto a (1.8×27 cm) Sepharose 6B column, previously equilibrated with 0.3 M NaCl.
and isomerase(s) acting on 9-
oleic acid, which is absorbed preformed by the small intestine
Keeping this in mind, nine cancer patients elected to DOX
treatments (Table I) were sampled for circulating CD and LOOH in comparison with sex- and age-matched healthy subjects (six M and three F, 37.3±13 yr). As shown in Table II, CD, LOOH, and LOOH/CD ratios were significantly higher in plasma samples from the antecubital veins of cancer patients than in similar samples obtained from healthy subjects, showing that differences existed between the two groups with respect to the levels of CD and the ease with which they converted into LOOH. We therefore used second-derivative spectroscopy to resolve the absolute spectrum of CD in minima that can be seen at ~230 and/or ~240 nm, depending on the biologic environment(s) in which lipids have been oxidized (25, 26, 47). As shown in Fig. 1 A, LOOH-poor CD from healthy volunteers exhibited a spectral pattern with minima at 227 and 244 nm. Biological 9-cis, 11-trans linoleic acid is not available; however, previous studies with equivalent 9-trans, 11-trans stereoisomers have demonstrated that minima at ~230 and ~240 nm are indeed indicative of the presence of large amounts of 9-cis, 11-trans linoleic acid in plasma (26). By contrast, Fig. 1 B shows that LOOH-rich CD from cancer patients exhibited a second-derivative spectrum with a single minimum at 244 nm, the same as observed in laboratory animals that form membrane CD and LOOH in response to oxidant injury (47). Oxidative modifications of LDL did not contribute to the spectral characteristics of CD in cancer patients. In fact, LDL that had been oxidized in vitro and contained as many as 214 or 44 nmol CD or LOOH/mg protein, respectively, exhibited a single minimum at 232 nm rather than at 244 nm (Fig. 1 C). Collectively, these comparative analyses showed two major modifications in cancer patients: (a) an increase of membrane lipid peroxidation, causing the intravascular release of LOOH-rich CD; and (b) a decrease or disappearance of LOOH-poor dietary CD, reflecting disturbances of the absorption, synthesis, and/or clearance of these compounds.

Following these characterizations, CD were measured in the coronary sinus and femoral artery of cancer patients before and after a bolus of DOX (60 mg/m² i.v.). Before DOX infusion, CD were significantly higher in coronary sinus than in plasma samples from the antecubital veins of cancer patients than in similar samples obtained from healthy subjects, showing that differences existed between the two groups with respect to the levels of CD and the ease with which they converted into LOOH. We therefore used second-derivative spectroscopy to resolve the absolute spectrum of CD in minima that can be seen at ~230 and/or ~240 nm, depending on the biologic environment(s) in which lipids have been oxidized (25, 26, 47). As shown in Fig. 1 A, LOOH-poor CD from healthy volunteers exhibited a spectral pattern with minima at 227 and 244 nm. Biological 9-cis, 11-trans linoleic acid is not available; however, previous studies with equivalent 9-trans, 11-trans stereoisomers have demonstrated that minima at ~230 and ~240 nm are indeed indicative of the presence of large amounts of 9-cis, 11-trans linoleic acid in plasma (26). By contrast, Fig. 1 B shows that LOOH-rich CD from cancer patients exhibited a second-derivative spectrum with a single minimum at 244 nm, the same as observed in laboratory animals that form membrane CD and LOOH in response to oxidant injury (47). Oxidative modifications of LDL did not contribute to the spectral characteristics of CD in cancer patients. In fact, LDL that had been oxidized in vitro and contained as many as 214 or 44 nmol CD or LOOH/mg protein, respectively, exhibited a single minimum at 232 nm rather than at 244 nm (Fig. 1 C). Collectively, these comparative analyses showed two major modifications in cancer patients: (a) an increase of membrane lipid peroxidation, causing the intravascular release of LOOH-rich CD; and (b) a decrease or disappearance of LOOH-poor dietary CD, reflecting disturbances of the absorption, synthesis, and/or clearance of these compounds.

Following these characterizations, CD were measured in the coronary sinus and femoral artery of cancer patients before and after a bolus of DOX (60 mg/m² i.v.). Before DOX infusion, CD were significantly higher in coronary sinus than in
and Healthy Subjects

<table>
<thead>
<tr>
<th>Sample donor</th>
<th>CD</th>
<th>LOOH</th>
<th>LOOH/CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer patients</td>
<td>124±44*</td>
<td>11.2±1.5*</td>
<td>0.09±0.01*</td>
</tr>
<tr>
<td>Healthy subjects</td>
<td>55±7</td>
<td>1.8±0.7</td>
<td>0.03±0.02</td>
</tr>
</tbody>
</table>

CD and LOOH were measured in plasma samples from cancer patients and healthy individuals, as described in Methods and Results. *Significantly different from healthy subjects (P < 0.01).

femoral artery or antecubital veins (342±131 to 112±44 and 119±39 mmol/ml, respectively; P < 0.01). Conjugated dienes from femoral artery or coronary sinus had the same second-derivative spectrum as CD from antecubital veins, involving a single minimum at 244 nm (not shown). Thus, the peroxidative tone of cancer patients was specifically enhanced at the cardiac level. After DOX infusion, the CD content of samples from femoral artery and antecubital veins remained unchanged (112±37 and 131±54 mmol/ml, respectively). By contrast, DOX infusion significantly decreased the levels of CD in the coronary sinus (from 342±131 to 134±95 mmol/ml, P < 0.01) (Fig. 2 A). Having measured the individual changes of CD in femoral artery (FA) and coronary sinus (CS), we could calculate [CD]_{FA}/[CD]_{CS} ratios as additional indexes of lipid peroxidation. Before DOX infusion, the [CD]_{CS}/[CD]_{FA} ratios largely exceeded unity (3.4±1.6) as cardiac tissues were involved in lipid peroxidation and released CD in excess of those present in the coronary affluents. After DOX infusion, the [CD]_{CS}/[CD]_{FA} ratios decreased to 1.1±0.3, indicating that cardiac lipid peroxidation had been abolished (Fig. 2 B). Spontaneous exacerbation of cardiac lipid peroxidation was a rather unique feature of cancer patients. In fact, the [CD]_{CS}/[CD]_{FA} ratios all-ways averaged unity in cancer-free patients with cardiac arrhythmias or valvular dysfunctions (Fig. 2 B).

Figure 2. Effects of 60 mg DOX/m² on the circulating levels of CD in cancer patients. (A) CD were measured in the coronary sinus, femoral artery and antecubital veins of six cancer patients. (# 1–6 in Table I). Blood was collected before (solid symbols) and 5 min after a bolus of 60 mg DOX/m² i.v. (open symbols), as described in Methods. (B) The results are expressed as changes of [CD]_{CS}/[CD]_{FA} ratio and compared with base-line values in patients suffering from Wolf-Parkinson-White disease (W-P-W) and mitral valve prolapse (MP) or stenosis (MS), respectively. See also text for explanations.

<table>
<thead>
<tr>
<th>Patient*</th>
<th>mg DOX/m²</th>
<th>Coronary sinus</th>
<th>Femoral artery</th>
<th>[CD]{CS}/[CD]{FA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>—</td>
<td>107.9</td>
<td>94.2</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>—</td>
<td>106.9</td>
<td>84.1</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>573.5</td>
<td>147.3</td>
<td>3.9</td>
</tr>
<tr>
<td>13</td>
<td>—</td>
<td>143.3</td>
<td>133.5</td>
<td>1.1</td>
</tr>
<tr>
<td>47</td>
<td>—</td>
<td>121.7</td>
<td>130.4</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>275.9</td>
<td>304.4</td>
<td>0.9</td>
</tr>
<tr>
<td>13</td>
<td>—</td>
<td>196.6</td>
<td>255.4</td>
<td>0.8</td>
</tr>
<tr>
<td>47</td>
<td>—</td>
<td>221.8</td>
<td>199.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

All blood samples were splitted, processed for plasma separation and analyzed in duplicate, with interassay agreement ≥ 90%. Values are means of the duplicate measurements. *Compare with Table I for clinical data. CD were measured before and 5 min after a single infusion of 25 mg DOX/m². These patients were given two consecutive infusions with an interdose interval of 10 min. CD were measured before treatment and five min after each infusion.

Table III. Dose-dependent Effects of DOX in Patients with Different [CD]_{CS}/[CD]_{FA} Ratios

Dose-dependent effects of DOX in patients with different [CD]_{CS}/[CD]_{FA} ratios. Cardiac lipid peroxidation was studied in three patients undergoing modified DOX treatments. One of these patients had been previously treated with irradiation of mediastinum; hence, he had both clinical and ethical indications for dose restriction and was scheduled to receive infusions of 25 mg/m² in place of the usual 60 mg/m² regimen (Methods and Table I). In the other patients, the standard dose of 60 mg/m² was fractionated in two consecutive 10-min–interval infusions of 13 and 47 mg/m², to evaluate the dose-dependence of DOX effects. As shown in Table III, these three patients exhibited major differences in the basal levels of CD in femoral artery and coronary sinus. Upon appropriate calculations, it turned out that the patient scheduled to receive a single infusion of 25 mg/m² had a [CD]_{CS}/[CD]_{FA} ratio of 1.1, whereas the two patients scheduled to receive consecutive infusions of 13 and 47 mg/m² had [CD]_{CS}/[CD]_{FA} ratios of 0.9 or 3.9. In patients with [CD]_{CS}/[CD]_{FA} ratios around unity, one single infusion of 25 mg/m² or two consecutive infusions of 13 and 47 mg DOX/m² had relatively marginal and simultaneous effects on the CD levels in coronary sinus and femoral artery, leaving the corresponding [CD]_{CS}/[CD]_{FA} ratios virtually unaltered (Table III). Thus, DOX failed to stimulate lipid peroxidation in cardiac tissues that were not spontaneously involved in this process. Table III also shows that the patient with a [CD]_{CS}/[CD]_{FA} ratio of 3.9 responded to the infusion of 13 mg DOX/m² with a 75% decrease of CD in coronary sinus vs a 9% decrease in femoral artery; therefore, the [CD]_{CS}/[CD]_{FA} ratio decreased to 1.1. Subsequent infusion of 47 mg DOX/m² had minor effects on the CD levels in femoral artery or coronary sinus, leaving the [CD]_{CS}/[CD]_{FA} ratio around unity (Table III). In this patient, cardiac lipid peroxidation was also studied by measuring LOOH. Before treatment, LOOH were exceedingly higher in coronary sinus than in femoral artery; however, this difference was nearly abolished by the infusion of 13 mg DOX/m², which decreased LOOH in coronary sinus but not in
samples from the coronary sinus and femoral artery of patient 8, before and after consecutive infusions of 13 and 47 mg DOX/m². All conditions were as described in Methods or Table III, with the exception that LOOH were also measured in additional samples collected 3 min after each infusion.

Figure 3. Effects of two consecutive DOX infusions on LOOH levels in coronary sinus and femoral artery. LOOH were measured in blood samples from the coronary sinus and femoral artery of patient 8, before and after consecutive infusions of 13 and 47 mg DOX/m². All conditions were as described in Methods or Table III, with the exception that LOOH were also measured in additional samples collected 3 min after each infusion.

ADP-Fe(II) as a possible catalyst for cardiac lipid peroxidation. Experiments were performed in vitro to characterize iron source(s) possibly involved in the spontaneous and DOX-inhibitable cardiac lipid peroxidation. For this purpose, myoglobin was reconstituted with H₂O₂ and arachidonic acid, i.e., a major product of the redox cycling of DOX and a predominant substrate of membrane lipid peroxidation (48). As shown in Table IV, neither myoglobin nor H₂O₂ could promote lipid peroxidation. Extensive formation of CD occurred upon incubation of myoglobin with H₂O₂, but LOOH were not formed under these conditions (Table IV). Lipid peroxidation was further investigated by replacing myoglobin with ADP-Fe(II), reportedly a chelate of pathophysiologic relevance (34). As also shown in Table IV, ADP-Fe(II) was found to generate both CD and LOOH by virtue of a direct mechanism that did not require H₂O₂. This effect was unambiguously mediated by a chelator–iron complex, as neither Fe(II) nor ADP yielded LOOH or CD when incubated separately with arachidonic acid. Importantly, the addition of H₂O₂ did not increase, but actually inhibited ADP-Fe(II)-dependent lipid peroxidation, as reflected by the simultaneous decrease of CD and LOOH (Table IV).

Lipid peroxidation was further investigated by measuring TBARS. This assay has its inherent limitations for in vivo studies (21, 28); however, it is suitable for in vitro experiments and measures a variety of compounds, involving byproducts of LOOH decomposition as well as endoperoxides that generate malondialdehyde (24, 35, 49). As shown in Fig. 4, myoglobin effectively converted arachidonic acid into TBARS, provided that H₂O₂ was included to achieve increasing ratios with the heme iron moiety. This finding showed that myoglobin was an effective catalyst of lipid peroxidation, as it could generate CD that converted into oxygenated products with TBA reactivity. In this setting, lack of LOOH detection by the xylenol orange/Fe(II) assay probably reflected that myoglobin decomposed the hydroperoxide moieties too rapidly for them to be measured, or it favored peroxidation pathways involving endoperoxides in place of LOOH. At the same time, these results ruled out the involvement of myoglobin in DOX-inhibitable cardiac lipid peroxidation. In fact, the formation of CD and TBARS required increasing amounts of H₂O₂; hence, this was not the mechanism whereby lipid peroxidation ceased when DOX reduced oxygen to H₂O₂. Fig. 4 also shows that ADP-Fe(II) per se was capable of forming TBARS from arachidonic acid; however, the reaction was inhibited by H₂O₂ and such inhibition became increasingly evident as the H₂O₂/Fe(II) ratio exceeded unity (Fig. 4). It follows that spontaneous and DOX-inhibitable cardiac lipid peroxidation probably involved ADP-Fe(II), as the ability of this complex to generate CD, LOOH, and TBARS was uniformly suppressed when H₂O₂ was included to simulate DOX infusion and redox cycling. Histidine-Fe(II), another complex of pathophysiologic relevance, was similarly tested for its ability to promote lipid peroxidation. Neither CD nor LOOH or TBARS were significantly formed in the absence of H₂O₂ and Fe(II) complexes.

Table IV. Myoglobin vs ADP/Fe(II)-dependent Lipid Peroxidation

<table>
<thead>
<tr>
<th>System</th>
<th>CD</th>
<th>LOOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mb</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Mb + H₂O₂</td>
<td>18.8±2</td>
<td>ND</td>
</tr>
<tr>
<td>ADP</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ADP-Fe(II)</td>
<td>19.7±2.4</td>
<td>7.9±0.3</td>
</tr>
<tr>
<td>ADP-Fe(II) + H₂O₂</td>
<td>8.1±0.7*</td>
<td>1.7±0.8*</td>
</tr>
</tbody>
</table>

Incubations (0.5 ml final volume) contained arachidonic acid vesicles (0.4 mM) in 0.3 M NaCl, pH 7.0, 37°C. Myoglobin-dependent systems included the heme protein (0.2 mM) and/or H₂O₂ (4 mM). ADP/iron-dependent systems contained FeSO₄ (0.1 mM) and/or the chelator (1 mM). Where indicated, H₂O₂ (2 mM) was also included to achieve the same 20:1 ratio with iron as obtained in the experiments with myoglobin. After a 30-min incubation, catalase (400 U/ml) was included to decompose unreacted H₂O₂, and lipid peroxidation was measured by assaying for CD and LOOH, as described in Methods. Values are means±SD of 3–4 separate determinations. *Significantly different from incubations lacking H₂O₂ (P<0.01). Mb, metmyoglobin; ND, not detectable.

Figure 4. Myoglobin vs ADP/Fe(II)-dependent lipid peroxidation. Incubations (0.5 ml final volume) contained arachidonic acid vesicles (0.4 mM) and either myoglobin (0.2 mM) or ADP-Fe(II) (1 mM chelator–0.1 mM FeSO₄) in 0.3 M NaCl, pH 7.0, 37°C. Increasing amounts of H₂O₂ were also included to achieve molar ratios with iron, as indicated. After 30 min, catalase (400 U/ml) was included to decompose unreacted H₂O₂ and samples were assayed for TBARS as described in Methods. Values are means±SD of 3–5 determinations.
supplemented Cytosolic Fractions from Human Liver or Heart

Table V. Nonheme Nonferritin Iron in Native or ADP/Fe(II)-supplemented Cytosolic Fractions from Human Liver or Heart

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Fe(II)</th>
<th>Fe(III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>+ ADP-Fe(II)</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Liver</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>+ ADP-Fe(II)</td>
<td>1.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Cytosolic fractions from human heart or liver biopsies (8 mg protein/ml) were gel filtered on Sepharose 6B before and after a 30-min incubation at 37°C with ADP-Fe(II) (1 mM chelator–0.1 mM FeSO₄). Nonheme nonferritin iron was identified and measured in chromatographed fractions as described in Methods. Values are taken from a representative experiment.

by this complex within the same H₂O₂/iron ratios used in myoglobin- or ADP/Fe(II)-dependent systems (not shown).

Role of ferritin and nonferritin proteins in cardiac iron sequestration and lipid peroxidation. Having implicated ADP-Fe(II) as a possible catalyst of myocardial lipid peroxidation, we thought it important to evaluate how this complex interacted with iron-storage proteins. As shown in Table V, cytosols contained Fe(II) and Fe(III) ions that were bound to protein(s) other than ferritin, in agreement with an earlier proposal for the existence of nonheme nonferritin iron stores (41). Preincubation of cytosols with ADP-Fe(II) did not modify the size or redox state of nonferritin pools of iron, indicating that the binding protein(s) could not exchange iron with this particular chelate. Similar results were obtained with cytosols from extracardiac tissues, e.g., liver (Table V). The vast majority of cytosolic iron was bound to ferritin. In hepatic samples, greater than 90% of ferritin-bound iron was recovered in a ferric form, whereas in cardiac samples iron ions were almost equally distributed in ferrous and ferric forms (Table VI). This showed that functional differences may exist between cardiac and hepatic isoferritins with respect to the mechanisms of iron incorporation and redox stabilization. Therefore, ferritin-bound Fe(II) and Fe(III) ions were also measured in cytosols that had been incubated with ADP-Fe(II) to simulate a pathologic increase in the availability of this complex. Both cardiac and hepatic cytosols responded to ADP-Fe(II) supplementation by incorporating sizable amounts of iron into ferritin. In particular, we found that: (a) 43 or 92% of iron was partitioned from ADP-Fe(II) and deposited in myocardial or liver isoferritins, respectively; and (b) greater than 90% of iron was incorporated in a ferric form (Table VI). In the absence of cytosols, only 25.2% of ADP-chelated Fe(II) oxidized with oxygen to form Fe(III); therefore, the results with ADP-Fe(II) plus cytosols showed that: (a) cardiac and extracardiac tissues shared a common mechanism, involving the oxidation of Fe(II) and the incorporation of Fe(III) in ferritin; and (b) the overall process of iron sequestration was less effective in cardiac cytosols than in liver samples. Keeping this difference in mind, cytosolic fractions from myocardial or liver biopsies were tested for their ability to prevent arachidonic acid peroxidation by ADP-Fe(II). As shown in Fig. 5, cardiac cytosols inhibited lipid peroxidation less efficiently than did hepatic samples, with an apparent IC₅₀ of 2.2 vs 1.2 mg protein/ml, respectively. After ferritin removal by immunoaffinity chromatography, both tissue samples lost their ability to suppress lipid peroxidation, providing direct evidence that oxidant damage was inhibited by the iron-sequestering activity of this storage protein (Fig. 5). Collectively, the experiments in Table VI and Fig. 5 showed that ferritin content and/or functions limited the ability of cardiac tissues to sequester iron and prevent lipid peroxidation. Cytosolic fractions from myocardial biopsies did contain less ferritin than liver samples (Fig. 6); however, a 29% decrease in ferritin protein could not account for a 53% decrease in iron incorporation (Table VI) or 83% increase in the IC₅₀ for lipid peroxidation (Fig. 5), suggesting that the sequestration of iron and the inhibition of lipid peroxidation were influenced by additional factor(s). In this respect, SDS-PAGE showed that liver ferritin was composed predominantly of M₇ ~ 20,000 light (L) subunits, whereas heart ferritin contained a larger quantity of M₇ ~ 23,000 heavy (H) subunits (Fig. 6, right). Considering that subunit composition modulates ferritin functions (50), we hypothesized that differences in H:L ratios were important and determined tissue-specific

Table VI. Ferritin Iron in Native or ADP/Fe(II)-supplemented Cytosolic Fractions from Human Liver or Heart

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Fe(II)</th>
<th>Fe(III)</th>
<th>Net iron incorporation [Fe(II) + Fe(III)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>10.4</td>
<td>15.2</td>
<td>43.2</td>
</tr>
<tr>
<td>+ ADP-Fe(II)</td>
<td>8.8</td>
<td>60.0</td>
<td>43.2</td>
</tr>
<tr>
<td>Liver</td>
<td>4.0</td>
<td>38.4</td>
<td>92.0</td>
</tr>
<tr>
<td>+ ADP-Fe(II)</td>
<td>12.8</td>
<td>121.6</td>
<td>92.0</td>
</tr>
</tbody>
</table>

All experimental conditions were as described in Table V, except that chromatographed fractions were assayed for ferritin iron. Values are taken from a representative experiment.

Figure 5. Inhibition of ADP/Fe(II)-dependent lipid peroxidation by cardiac or hepatic cytosols. Incubations (1 ml final volume) contained arachidonic acid vesicles (0.4 mM), ADP-Fe(II) (1 mM chelator–0.1 mM FeSO₄) and increasing amounts of cytosolic fractions from hepatic or cardiac biopsies in 0.3 M NaCl, pH 7.0, 37°C. After 30 min, the incubations were assayed for lipid peroxidation by measuring TBARS. Where indicated, cytosols had been previously subjected to immunoaffinity chromatography to remove ferritin, as described in Methods. Values are means of two separate determinations with 80% experimental agreement.
responses to the availability of ADP-Fe(II). This hypothesis was tested by reconstituting arachidonic acid and ADP-Fe(II) with heart or liver ferritins that had been purified by immunoaffinity chromatography of the corresponding cytosolic fractions. As shown in Fig. 7, heart ferritin was less effective than liver ferritin in inhibiting lipid peroxidation, with an apparent IC_{50} of 4.4 vs 2.1 μg, respectively. Thus, ferritin subunit composition limited the ability of cardiac tissues to partition iron from ADP before it catalyzed lipid peroxidation, possibly explaining how cancer patients often exhibited a spontaneous release of CD and LOOH in the coronary sinus.

In a final set of experiments, we addressed the hypothesis that DOX treatment and H_{2}O_{2} formation might have inhibited cardiac lipid peroxidation by increasing the oxidation of Fe(II), which is coupled with the incorporation of Fe(III). Therefore, ADP-Fe(II) oxidation and Fe(III) incorporation were studied in native or H_{2}O_{2}-supplemented cardiac cytosols. In native cytosols, ADP-Fe(II) oxidation was rather tightly coupled with the incorporation of Fe(III) in ferritin, as evidenced by a stoichiometry of Fe(II) oxidation vs Fe(III) incorporation of 1.4 (Table VII). These experiments were repeated after the addition of H_{2}O_{2}, yielding the 20:1 ratio to Fe(II), which had previously been shown to suppress lipid peroxidation (Table IV and Fig. 4). Under these conditions, H_{2}O_{2} did increase the oxidation of Fe(II) but simultaneously abolished the incorporation of Fe(III), raising the stoichiometry of (Fe(II) oxidation vs Fe(III)) incorporation from 1.4 to 14.9 (Table VII). These results showed that ferritin could not acquire Fe(III) from the reaction of Fe(II) with H_{2}O_{2}. Therefore, DOX treatments and H_{2}O_{2} formation inhibited cardiac lipid peroxidation not by decreasing the availability of iron, but rather by affecting the mechanism(s) whereby ADP-Fe(II) reacted with lipids (Table IV and Fig. 4). Importantly, immunoaffinity chromatography and ferritin removal made cytosols ineffective not only with respect to the incorporation of Fe(III), but also with respect to the oxidation of Fe(II) (Table VII). This showed that the “ferredoxase” activity of cytosols was entirely contingent on the availability of ferritin.

Discussion

Membrane lipid peroxidation proceeds via hydrogen abstraction from a bis-allylic bond of polyunsaturated phospholipids, yielding an alkyl radical and causing rearrangement of double bonds in the form typical of a conjugated diene. Subsequent

Table VII. Effects of H_{2}O_{2} Addition or Ferritin Removal on ADP-Fe(II) Oxidation and Fe(III) Incorporation in Cardiac Cytosols

<table>
<thead>
<tr>
<th>System</th>
<th>Fe(II) oxidation</th>
<th>Fe(III) incorporation</th>
<th>Fe(III) oxidation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP-Fe(II)</td>
<td>25.2</td>
<td>84.0</td>
<td>14.9</td>
</tr>
<tr>
<td>+ cytosol</td>
<td>84.0</td>
<td>42</td>
<td>ND</td>
</tr>
<tr>
<td>+ H_{2}O_{2}</td>
<td>100</td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td>+ cytosol + H_{2}O_{2}</td>
<td>27.2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>− ferritin</td>
<td>27.2</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Cytosolic fractions from myocardial biopsies (8 mg protein/ml) were incubated with ADP-Fe(II) and assayed for Fe(II) oxidation and Fe(III) incorporation in ferritin fractions, as described in Methods. In the experiments with H_{2}O_{2} (2 mM), cytosols were first treated with sodium azide (0.1 mM) to inhibit trace catalase, and then dialyzed against 0.3 M NaCl just before use. Where indicated, cytosols had been subjected to immunoaffinity chromatography to remove ferritin. Values are taken from representative experiments.

*For the calculation of this ratio, net values of Fe(II) oxidation were obtained by correction for the spontaneous loss of bathophenanthroline-chelatable Fe(II) in cytosol-free incubations, or for the increase in ferritin-bound Fe(II) at the end of incubation (Table VI). ND, not detectable.
reaction of alkyl radicals with molecular oxygen generates peroxyl radicals that abstract hydrogen from a neighboring allylic bond, yielding LOOH and new CD. Once formed in membranes, free radical–oxidized lipids can be released into extracellular fluids, presumably by the action of phospholipase A₂ (51, 52). In keeping with this general mechanism, the circulating levels of CD and LOOH have been found to increase under clinical conditions characterized by free radical formation and membrane lipid peroxidation (53–55). With regard to cancer patients, there have been reports of a possible increase of plasma TBARS (56); however, this phenomenon does not always approach statistical significance (57). While the methodologic aspects and pathophysiologic significance of plasma TBARS remain a matter of controversy (21, 28, 56, 57), studies with nuclear magnetic resonance techniques have confirmed that human malignancies often accompany with high plasma levels of oxidized lipids, which have been interpreted as biochemical evidence for LDL damage (58). Our present studies modify and extend those reports, showing that cancer patients have circulating levels of CD and LOOH that reflect membrane lipid peroxidation rather than LDL oxidation or free radical–independent modifications of dietary lipids (Results, Table II, and Fig. 1, A–C). Cancer-associated nutritional disturbances (59) and deficiencies in α-tocopherol, selenium and other antioxidant factors (60, 61) probably contribute to the maintenance of one such condition of systemic lipid peroxidation. In our study, CD and LOOH have also been measured, for the first time, in blood plasma samples collected from the coronary sinus of cancer patients before and after intravenous treatments with DOX, a chemotherapeutic agent that is thought to stimulate cardiac lipid peroxidation by overwhelming the local defences against oxygen free radicals. These measurements have shown that: (a) cancer patients may have a spontaneous exacerbation of cardiac lipid peroxidation, as evidenced by the increase of CD and LOOH in coronary sinus vs femoral artery or antecubital veins; and (b) cardiac lipid peroxidation is inhibited by DOX infusion, with such inhibition becoming evident in response to as little as 13 mg DOX/m², i.e., less than one fourth of the dose usually recommended for single infusions (Table III and Figs. 2 and 3). In principle, drugs affecting the circulating levels of CD and LOOH may act by protecting membranes from lipid oxidants and/or by interfering with phospholipases. In this respect, previous studies in laboratory animals have shown that DOX does not inhibit myocardial phospholipases A₁ or A₂, nor does it affect lysophospholipases or acylCoA: lysophosphatidil choline acyltransferases that participate in the physiologic turnover of membrane lipids (62). In vitro, DOX would actually stimulate phospholipase A₂ (63). Keeping these premises in mind, we cannot escape the conclusion that DOX may decrease the cardiac release of CD and LOOH by “protecting” membranes from free radical reactions, thus behaving as a sort of antioxidant rather than an oxidant. Myocardium sampling and in situ measurements of CD or LOOH would be much needed to corroborate this conclusion and rule out the possibility that an oxidant burden has occurred within inaccessible intracellular environments. While such invasive measurements are precluded by ethical and practical constraints, our indirect determinations in coronary sinus provide a rationale to discuss alternative mechanism(s) of anthracycline cardiotoxicity.

Studies in vitro with various sources of heme and nonheme iron have led us to implicate ADP-Fe(II) as a possible catalyst of spontaneous and DOX-inhibitable cardiac lipid peroxidation, mostly because the ability of this complex to generate CD, LOOH, and TBARS decreases in the presence of H₂O₂, i.e., under conditions resembling the redox cycling of DOX and the accumulation of H₂O₂ in catalase- and glutathione peroxidase-deficient cardiomyocytes (Fig. 4 and Table IV). These observations indicate that cardiac lipid peroxidation proceeds via reactive intermediates that must be different from hydroxyl radical, as the formation of this species would be favored, rather than inhibited, by H₂O₂ (8). In this setting, Minotti and Aust (32, 33, 64) and several other research groups (65–70) have proposed that the hydroxyl radical cannot promote lipid peroxidation, inasmuch as it exhibits a diffusion-limited reactivity and cannot migrate from the site(s) of generation to the hydrophobic membrane phases where the bis-allylic bonds are buried. Lipid peroxidation would occur anytime iron oxidizes incompletely to the ferric form, yielding perferryl ions [Fe(II)O₂–Fe(III)O₂⁺] or oxygen-bridged Fe(II)–Fe(III) complexes that are more stable and can substitute for hydroxyl radical (33, 64–67). This process is favored when iron is chelated by ADP and oxygen serves as the oxidant (31, 32, 67). Once initiated by iron-oxyn complexes, lipid peroxidation “propagates” through the decomposition of LOOH to highly reactive alkoxyl radicals which reinitiate hydrogen abstraction (8). The formation of Fe(II):Fe(III) ratios is important also for propagation; in fact, some Fe(II) is needed for the decomposition of LOOH, but excess Fe(II) or Fe(III) would terminate propagation by reducing alkoxyl radicals to hydroxy compounds or by converting LOOH into unreactive carboxyls, respectively (8). One obvious implication of these mechanisms is that H₂O₂ can paradoxically inhibit lipid peroxidation by oxidizing too much Fe(II) to Fe(III), thus precluding initiation and propagation reactions that involve Fe(II)=Fe(III) equilibrium (8, 33, 64, 65). Viewed in this context, our in vitro and in vivo studies would therefore suggest that: (a) cardiomyocytes have endogenous levels of ADP-Fe(II), which promotes lipid peroxidation by oxidizing incompletely with oxygen; and (b) lipid peroxidation ceases at the time when DOX is infused and the excessive formation of H₂O₂ drives a complete oxidation of iron from Fe(II) to Fe(III). According to previous studies, Fe(II)=Fe(III) equilibrium and lipid peroxidation might also be affected by the formation of a DOX-Fe(II) complex that is highly unstable and tends to oxidize completely with oxygen (3, 8, 71). This may not occur with preexisting iron complexes; in fact, control experiments showed that DOX could not compete with ADP for Fe(II), nor did it form spectrally or chromatographically evident iron complexes under these conditions (not shown). Thus, semiquinone formation and H₂O₂ formation emerge as the predominant factors inhibiting cardiac lipid peroxidation by preformed ADP-iron complexes.

Spontaneous exacerbation of myocardial lipid peroxidation cannot be seen in cancer-free patients undergoing cardia
catheterization for the evaluation of valvular or arrhyth
mogenic diseases (Fig 2B). Thus, it is the presence of cancer that influences cardiac lipid peroxidation, perhaps by favoring the formation of an intracellular pool of low mol wt iron. In this respect, studies in tumor-bearing rodents have shown that cancer growth may accompany with systemic induction of heme oxygenase, the enzyme that cleaves the porphyrin ring of heme proteins and liberates iron that is coordinated therein (72). In principle, cancer development and host-defense reactions might also result in the formation of cytokines, such as in-
terleukin-2, that selectively upregulate the synthesis of transferrin receptor, but not of ferritin, thus creating a potential imbalance between cellular iron uptake and sequestration (75). These limited examples suggest that cancer growth may be linked to systemic processes increasing the formation of an intracellular pool of low mol wt iron. Irrespective of the precise mechanism(s) affecting iron homeostasis, more severe consequences should be anticipated in cardiomyocytes than in other cell types. In fact, ferritin sequesters iron more efficiently when the oxidation of Fe(II) is catalyzed by a limited number of H subunits and the accommodation of Fe(III) is made sterically favorable by a larger number of L subunits (50). This is not the case for cardiac ferritin, having more H than L subunits as compared with extracardiac samples; e.g., liver isoferritins (Fig. 6 and reference 44). Accordingly, comparative experiments have shown that cytosolic fractions or purified ferritins from cardiac tissues are less effective than liver samples in sequestering iron from ADP and preventing lipid peroxidation (Table VI and Figs. 5 and 7), possibly explaining how the peroxidative tone of cancer patients is selectively enhanced at the myocardial level. From a mechanistic viewpoint, previous studies have raised the possibility that iron homeostasis may also be governed by protein(s) and function(s) other than ferritin and its ferroxidase activity. In particular, some research groups have characterized the existence of “nonferritin” storage proteins (74, 75), whereas others have proposed that ferritin would acquire Fe(III) through the ferroxidase activity of ceruloplasmin (76). We have addressed these possibilities, but our data indicate that ADP-Fe(II) behaves as a rather unique iron complex, in the sense that it cannot be oxidized or incorporated by proteins other than ferritin (Tables V and VII). Having shown this, we have also been able to demonstrate that H2O2 does not assist the oxidative incorporation of iron and actually uncouples the formation of Fe(III) from its deposition in ferritin (Table VII). These observations lend support to our proposal that DOX treatments and H2O2 formation would inhibit cardiac lipid peroxidation by solely affecting the Fe(II)–Fe(III) equilibrium of iron–oxygen complexes. While inhibiting cardiac lipid peroxidation in patients with [CD]k/H[CD]Fe ratios > 1, DOX may also fail to promote lipid damage in those few subjects with [CD]k/H[CD]Fe ratios ~ 1 (Table III). This implies that DOX cannot promote the peroxidation of cardiac tissues in which iron homeostasis is most probably conserved. Again, the involvement of lipid oxidants other than hydroxyl radical may shed light on these otherwise unexplainable findings. In fact, we have previously shown in vitro that DOX metabolism and semiquinone formation reductively release iron from ferritin or other newly identified microsomal proteins; however, lipid peroxidation is precluded by simultaneous formation of a stoichiometric excess of H2O2, causing the oxidation of too much Fe(II) to Fe(III) (71, 77). This dual process of iron delocalization vs re-DOX-inactivation may very well occur in cardiac tissues with impaired H2O2 disposition, explaining the ineffectiveness of DOX infusions in patients with base-line [CD]k/H[CD]Fe ratios ~ 1.

Previous in vitro evidence for the involvement of iron and free radicals in DOX toxicity has provided a rationale for pharmacologic interventions with antioxidants or chelators. Unfortunately, the results of clinical studies have remained a matter of controversy. In a limited trial, the progressive decline of cardiac functions was not prevented by supplementing patients with a major lipid-soluble antioxidant such as α-tocoph-
erol (78). Likewise, no significant cardioprotection was observed in a randomized controlled trial assessing the effects of N-acetylcysteine, which contributes to the antioxidant repertoire of the cell by maintaining adequate levels of reduced glutathione (79). Our present studies clarify the molecular basis of these negative reports, showing that DOX fails to aggravate cardiac lipid peroxidation and probably inhibits it in a paradoxic manner. It follows that cardiac damage might not be caused by lipid peroxidation, nor should antioxidants be expected to afford protection. Cardioprotection has nevertheless been observed with dexrazoxane, a bispiperazinedione that hydrolyzes intracellularly and liberates a diacid diamide that chelates iron (80). These findings have provided evidence for the involvement of iron in the clinical manifestations of cardiac damage. However, recent in vitro studies have also shown that a complex of iron with the diacid diamide generates hydroxyl radical (81), thus implying that cardioprotection is achieved in the face of a persistent generation of this oxidant. In the present study, we did not address the molecular mechanism(s) whereby iron chelation would mitigate cardiac damage. Our arguments against the involvement of hydroxyl radical in oxidative injury would nevertheless explain how dexrazoxane can afford protection in spite of the redox activity of diacid diamide–iron complexes.

While providing a mechanism to reconcile previous diverging evidence, our results set the stage to direct future research and therapeutic interventions toward molecular target(s) possibly different from lipid peroxidation. Thus, cardiac damage might very well originate from free radical–independent processes that involve unmetabolized DOX or drug metabolites other than semiquinones. The latter possibility should not be neglected, as we have recently shown in vitro that secondary alcohol metabolites of the side chain of DOX delocalize nonferritin sources of iron via reaction mechanisms precluding to the dysfunction of iron-requiring enzymes, rather than to the initiation of iron-catalyzed free radical damage (41). This and other mechanisms of toxicity will have to be validated directly in cancer patients rather than in animal models, provided that ethically acceptable and well-tolerable procedures are designed and respected. In fact, our observations on the different nature and levels of CD in cancer patients vs healthy subjects, or other diseased individuals, suggest that neoplasia causes or accompanies with systemic and heart-specific modifications that can be important in determining the individual response to DOX treatments. The entire spectrum of cancer-related modifications is probably impossible to reproduce in any given model of tumor-transplanted animal. In fact, the quality and intensity of metabolic or immunologic adaptations to cancer development may unpredictably depend on the animal species and strain. It should also be noted that studies in small-size tumor-bearing rodents often require that DOX be given intraperitoneally (13, 14), thus creating a “first-pass” hepatic metabolism that alters drug availability and generates additional differences from clinical conditions of intravenous treatments. Studies in cancer patients will therefore remain crucial to elucidate the molecular mechanism(s) of cardiotoxicity and characterize the action of dexrazoxane or other cardioprotectants.

References

11. Rajagopalan, S., P.M. Politi, B.K. Sinha, and C.E. Myers. 1988. Adria-
mycin-induced free radical formation in the perfused rat heart: implications for cardio toxicity. Cancer Res. 48:4766–4769.
12. Tesorieri, L., M. Ciaccio, M. Valenza, A. Bongiorno, E. Maresi, R. Al-
biero, and M.A. Livrea. 1994. Effect of vitamin A administration on resistance of rat heart against doxorubicin-induced cardiotoxicity and lethality. J. Pharma-
tol protects against adriamycin cardiomyopathy without interfering with its an-
sai, F.N. Engineer. 1992. Effects of verapamil on the acute toxicity of doxorubi-
aldehyde in mouse heart following acute dosing with adriamycin is strain spe-
on of alkalines and malondialdehyde by peroxidizing rat liver microsomes. Bio-
22. Slater, T.F. 1984. An overview of methods used for detecting lipid per-
tients. J. Trauma. 31:32–35.
ing damage in patients with liver cirrhosis and different daily alcohol intake. Gut. 35:1637–1643.
65. Lipid Peroxidation and Doxorubicin Cardiotoxicity

