Identification of Thyrotropin Receptors in Human Thymus

Masami Murakami,* Yasuhiro Hosoi,* Tetsuo Negishi,* Yuji Kamiya,* Kazuya Miyashita,* Masanobu Yamada,* Tokuji Iriuchijima,* Hideaki Yokoo,† Ichiro Yoshida,‡ Yoshito Tsushima,§ and Masatomo Mori*

*First Department of Internal Medicine, †Department of Pathology, and ‡Second Department of Surgery, Gunma University School of Medicine, Maebashi 371, Japan; and §Department of Radiology, National Defense Medical College, Tokorozawa 359, Japan

Abstract

Thymic size and density were studied in 23 untreated patients with Graves’ disease and 38 control subjects using computed tomography. Both thymic size and density were higher in untreated patients with Graves’ disease than in control subjects in the age-matched group. After treatment with antithyroid drugs, both thymic size and density were significantly reduced, with a concomitant decrease in thyrotropin receptor antibodies. PCR of human thyrotropin receptor amplified a fragment in a size expected for the receptor, and its nucleotide sequence was identical to human thyrotropin receptor cDNA in the thyroid. Northern blot analysis of human thyrotropin receptor mRNA demonstrated the presence of the full length form of thyrotropin receptor mRNA. Western blot analysis of human thyrotropin membrane using anti-thyrotropin receptor peptide antibodies demonstrated a band of 100 kD that was also observed in the thyroid membrane. Immunohistochemistry of thymic tissue using mouse anti-human thyrotropin receptor monoclonal antibodies demonstrated the immunostaining of epithelial cells. These results indicate that hyperplasia is apparently associated with Graves’ disease and suggest that thyrotropin receptor may act as an autoantigen that may be involved in the pathophysiology of development of Graves’ disease. (J. Clin. Invest. 1996. 98:2228–2234.) Key words: computed tomography • polymerase chain reaction • Northern blot analysis • Western blot analysis • immunohistochemistry

Introduction

Graves’ disease results from the development of antibodies for the thyrotropin (TSH) receptor that stimulate thyroid functions and cause thyroid enlargement (1, 2). By analogy with antireceptor antibodies in Graves’ disease, antibodies for the nicotinic acetylcholine receptor exist in patients with myasthenia gravis, in which the thymus plays a pivotal role in the pathogenesis, and thymectomy is frequently found to improve clinical manifestations (3). It is noteworthy that the acetylcholine receptor is present not only at the neuromuscular junction, but in the thymus (4–10). The thyrotropin receptor has been suggested to be involved in initiating or perpetuating the autoimmune response (3) and in developing thyrotropic hyperplasia or thymoma in myasthenia gravis (4). However, limited information has been available concerning the pathophysiological roles of the thymus in Graves’ disease.

In old literature, a hyperplastic thymus was suggested to play an etiological role in Graves’ disease (11), and thyromegaltry was reported in patients with Graves’ disease (12). Thymic enlargement has also been demonstrated as a mediastinal tumor in some cases with Graves’ disease (13–15). Histological examination of the thyromegaltry of patients with Graves’ disease shows a thyromegaltry lymphoid follicle formation with active germinal centers (16), which has been described in only two other clinical settings, myasthenia gravis and systemic lupus erythematosus (3).

Since computed tomography (CT) has reportedly been useful in evaluating the thyromegaltry (17), we employed CT scan in the present study to determine the size and density of the thyromegaltry in Graves’ patients before and after treatment with antithyroid drugs. In addition, an attempt was made to identify TSH receptors in human thyromegaltry. The results described here show the significant hyperplasia of the thyromegaltry in Graves’ patients and demonstrate the possible existence of TSH receptors in human thyromegaltry.

Methods

Measurement of thyromegaltry size and CT attenuation values. Because it has been reported that the size and density of the normal thyromegaltry decrease with increasing age (17), the ages of patients with Graves’ disease and normal control subjects were classified into four groups (20–29, 30–39, 40–49, and 50–59). Patients with Graves’ disease were diagnosed based on clinical hyperthyroidism showing increased thyroid hormone levels, suppressed TSH levels, positive TSH-receptor antibodies (TRAb), and increased 123I thyroidal uptake. CT scans were performed on 23 untreated patients with Graves’ disease and 38 normal control subjects, using rotate–rotate system CT (SCT-5000T; Shimazu Corp., Kyoto, Japan). None of the control subjects had a history of thyroid disease. All scans were obtained in inspiration at 0.5- or 1-cm intervals. Thyromegaltry size and density were measured at the level where the thyromegaltry appears most prominently, usually at the level of the bifurcation of the trachea. The thyromegaltry was shown at a setting of level 30 and width 750, and the border of the thyromegaltry was traced by the cursor. Thyromegaltry size was then measured as an area (mm2), and thyromegaltry density was measured as averaged CT attenuation value (Hounsfield Unit, HU) using SCT-5000T. A CT scan of the thyromegaltry was performed in 13 patients whose values could be monitored before and after treatment with methimazole or propylthiouracil for 5 to 24 mo.

Received for publication 1 April 1996 and accepted in revised form 10 September 1996.

Address correspondence to Masami Murakami, First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371, Japan. Phone: 272-20-8126; FAX: 272-20-8136; E-mail: mmurakam@sb.gunma-u.ac.jp

1. Abbreviations used in this paper: CT, computed tomography; HU, Hounsfield unit; TRAb, TSH receptor antibody; TSH, thyrotropin.

J. Clin. Invest. © The American Society for Clinical Investigation, Inc. 0021-9738/96/112228/07 $2.00

Volume 98, Number 10, November 1996, 2228–2234

2228 Murakami et al.
Thymic size and CT attenuation values were compared at the same level in those patients before and after treatment.

Measurement of free T4, free T3, TSH, and TRAb. Serum free T4, free T3, and TSH were measured by EIA kit (DAINABOT, Tokyo, Japan). TRAb was measured by a radioreceptor assay kit (Cosmic Corp., Tokyo, Japan).

Preparation of RNA. Thyroid tissue was obtained at the time of thyroideectomy from a patient with Graves’ disease. Histologically examined nonneoplastic thymic tissues were obtained at the time of surgery from three patients with thymoma and a patient with lung carcinoma. Total RNA was isolated from thyroid and thymic tissues by the modified acid guanidinium thiocyanate-phenol-chloroform method according to Chomczynski and Sacchi (18). Normal human thymus total RNA was also obtained from Clontech (Palo Alto, CA).

PCR amplification of the TSH receptor and sequence analysis. Single strand cDNA synthesis was performed on 1 μg of total RNA using a First-Strand cDNA Synthesis kit (Pharmacia LKB Biotechnology, Tokyo, Japan). For PCR, the synthesized sense and antisense primers for human TSH receptor were AGAAATAGCCCGAGTCCCCGTGGGA (nucleotides 26–3) and GGTTCCTTCTGCTGATCTCCCT (518–537) (19, 20). One tenth of the reverse transcription reaction or 1 ng of normal human thymus cDNA (Clontech) was amplified in 100 μl of PCR buffer (TAKARA SHUZO, Otsu, Japan) containing 50 pmol of each oligonucleotide primer. 1 U Taq DNA polymerase (TAKARA SHUZO) was added after the first denaturation (5 min at 95°C). Samples were then subjected to 40 cycles consisting of 2 min at 94°C, 2 min at 55°C, and 3 min at 72°C. The last extension was carried out for 15 min. The reaction products were analyzed by 1% agarose gel electrophoresis, and the resulting bands were visualized by ethidium bromide staining. In some experiments, the electrophoretically separated PCR products were denatured in denaturing solution (1.5 M NaOH, 0.5 M NaCl) for 15 min, and transferred onto a nylon membrane (Hybond N+: Amersham Life Science, Tokyo, Japan) overnight in 0.4 M NaOH. The filter was prehybridized with a hybridization buffer (50% formamide, 5% dextran sulfate, 50 mM Hepes, 5× SSC: 150 mM sodium chloride and 15 mM sodium citrate, 2× Denhardt’s solution and 20 μg/ml denatured salmon sperm DNA) at 42°C for 1 h. Subsequently, the filter was hybridized overnight at 42°C with a labeled human TSH-receptor cRNA probe that was synthesized by in vitro transcription of Xba I linearized pGEM 11zf/human TSH receptor vector. The labeled cRNA probe was hybridized to the nylon membrane at a hybridization temperature of 65°C with a hybridization buffer (50% formamide, 0.2% SDS, 5% dextran sulfate, 50 mM Hepes, 5× SSC, 5× Denhardt’s solution, and 250 μg/ml denatured salmon sperm DNA) at 65°C for 2 h. Subsequently, the filter was hybridized overnight at 65°C with a labeled human TSH-receptor cRNA probe that was synthesized by in vitro transcription of Xba I linearized pGEM 11zf/human TSH receptor vector using T7 polymerase and [32P]UTP. The filter was washed twice in 2× SSC, 0.1% SDS at 35°C for 10 min, and twice in 0.1× SSC, 0.1% SDS at 65°C for 1 h. Autoradiography was attained by exposing the filter for 24 h to x-ray film (Kodak XAR-2) at −70°C with an intensifying screen.

Western blot analysis of TSH receptors. Western blot analysis of TSH receptors was performed as previously described (21), with minor modifications. Rabbit polyclonal antibodies against human thyrotropin receptor peptide (amino acid 32–56) (21, 22) were purified by affinity column chromatography using TSH-receptor peptide (amino acid 32–56) coupled with 2-fluoro-1-methylpyridinium toluene-4-sulfonate activated cellulofine (SEIKAKAGU Corp., Tokyo, Japan). Thyroid tissue from a patient with Graves’ disease and nonneoplastic thymic tissue from a patient with thymoma were homogenized using Polytron (United States Biochemical, Cleveland, OH).

Table I. Comparison of Thymic Size (mm2) between Untreated Patients with Graves’ Disease and Control Subjects in Four Age Groups

<table>
<thead>
<tr>
<th>Age group</th>
<th>Patients with Graves’ disease</th>
<th>Control subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–29</td>
<td>7</td>
<td>977.9</td>
</tr>
<tr>
<td>30–39</td>
<td>6</td>
<td>981.8</td>
</tr>
<tr>
<td>40–49</td>
<td>5</td>
<td>751.0</td>
</tr>
<tr>
<td>50–59</td>
<td>5</td>
<td>630.4</td>
</tr>
</tbody>
</table>

Thymic size was measured by means of computed tomography as described in Methods.

Table II. Comparison of Mean Thymic CT Attenuation Values (HU) between Untreated Patients with Graves’ Disease and Control Subjects in Four Age Groups

<table>
<thead>
<tr>
<th>Age group</th>
<th>Patients with Graves’ disease</th>
<th>Control subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–29</td>
<td>7</td>
<td>24.0</td>
</tr>
<tr>
<td>30–39</td>
<td>6</td>
<td>34.5</td>
</tr>
<tr>
<td>40–49</td>
<td>5</td>
<td>−31.1</td>
</tr>
<tr>
<td>50–59</td>
<td>5</td>
<td>−31.3</td>
</tr>
</tbody>
</table>

Mean thymic CT attenuation value was measured as described in Methods.
Immunohistochemistry of TSH receptors. Immunohistochemical studies using mouse mAb were performed as previously described (23), with minor modifications. Briefly, the frozen sections of surgically resected thyroid and nonneoplastic thymic tissues were fixed in cold acetone for 10 min. After incubation with 0.3% H$_2$O$_2$-methanol solution and 10% normal goat serum for 30 min each to block non-specific staining, they were reacted with mouse anti-human TSH-receptor mAb (1:250; TRANSBIO, Boulogne, France), which recognize amino acids 604–764 of human TSH receptor (24), overnight at 4°C, and visualized by a biotin-streptavidin–amplified immunoperoxidase kit (Histofine; Nichirei, Tokyo, Japan). 3,3’-Diaminobenzidine was used as a chromogen. Subsequently, the sections were lightly counterstained by hematoxylin. For thymic tissue, the adjacent sections were immunostained by antibodies against cytokeratin AE1/AE3 (Boehringer Mannheim, Mannheim, Germany). The negative control sections were covered with normal goat serum (diluent of the primary antibody).

Statistics. Results are expressed as mean±SD. Statistical differences were calculated by Student’s t test or paired t test.

Results

Thymic size and CT attenuation values in untreated patients with Graves’ disease and control subjects. Table I summarizes the comparison of thymic size in untreated patients with Graves’ disease and control subjects who were divided into four age-matched groups. In both Graves’ patients and control subjects, thymic size decreased with increasing age. Thymic size was greater in untreated patients with Graves’ disease than in control subjects in all age groups. Table II summarizes

Figure 1. Changes in the size (A) and mean CT attenuation value (B) of the thymus in patients with Graves’ disease during treatment with antithyroid drugs.

All the treated patients exhibited euthyroid state, and decreased TRAb (38.1±17.5% before and 5.2±5.8% after treatment, $P<0.001$). Thymic size and mean CT attenuation values were measured as described in Methods. Closed circles represent individual cases and open circles represent mean values before and after treatment. Error bars indicate SD.

Figure 2. Representative CT scans of the thymus of a control subject (A), and untreated (B) and treated (C) state of a patient with Graves’ disease. The control subject was a 30-yr-old female, and the patient with Graves’ disease was a 30-yr-old female treated with methimazole for 1 yr.
the comparison of thymic CT attenuation values in untreated patients with Graves' disease and control subjects. Thymic CT attenuation values also decreased with increasing age, and thymic CT attenuation values were greater in Graves' patients than in control subjects in all age groups.

Changes in thymic size and density during antithyroid drug therapy. The changes in thymic size and CT attenuation values were studied in 13 patients with Graves' disease before and after treatment with antithyroid drugs for 5 to 24 mo. After treatment, all patients exhibited euthyroid state, and TRAb significantly decreased (38.1±17.5% before and 5.2±5.8% after treatment, \(P < 0.001 \), by paired \(t \) test). As shown in Fig. 1A, thymic size significantly decreased after treatment (852±245 mm\(^2\) before and 402±280 mm\(^2\) after treatment, \(P < 0.001 \), by paired \(t \) test). The values of thymic CT attenuation also significantly decreased after treatment (9.1±50.7 HU before and

Figure 3. (A) PCR amplification of human thymus cDNA using oligonucleotide primers specific for human TSH receptor. Ethidium bromide staining (lane 1) and Southern blot analysis using cDNA probe for human TSH receptor (lane 2) are shown. Normal human thymus cDNA was obtained from Clontech Laboratories, and 1 ng of cDNA was used for PCR. (B) Reverse transcription PCR of thyroid (lane 1) and thymus (lanes 2 and 3) RNA using oligonucleotide primers specific for human TSH receptor. Thyroid tissue was obtained from a patient with Graves' disease, and nonneoplastic thymic tissues were obtained from patients with thymoma. 1 \(\mu \)g of total RNA was used for reverse transcription, and one tenth of the reverse transcription reaction was used for PCR. (C) Northern blot analysis of thyroid (lane 1) and thymus (lanes 2 and 3) poly(A)\(^+\) RNA using cRNA probe for human TSH receptor. Thymic RNA was obtained from a patient with Graves' disease, and thymus RNA was obtained from Clontech Laboratories (lane 2) and a patient with lung carcinoma (lane 3). 1 \(\mu \)g of poly(A)\(^+\) RNA was used for Northern blot analysis. Analyses were performed as described in Methods.

Figure 4. Western blot analysis of TSH receptors in thyroid and thymic tissue. Thyroid tissue was obtained from a patient with Graves' disease and nonneoplastic thymic tissue was obtained from a patient with thymoma. Western blotting using anti-human TSH receptor peptide antibodies demonstrated an apparent band of \(\sim 100 \) kD in both thyroid (lane 1) and thymic (lane 2) tissue. Analyses were performed as described in Methods.
Figure 5. Immunohistochemistry of TSH receptors in thyroid and nonneoplastic thymic tissue using mouse anti–human TSH-receptor mAb. Thyroid tissue was obtained from a patient with Graves’ disease and nonneoplastic thymic tissue was obtained from a patient with thymoma. (A) Immunohistochemistry of the thyroid gland (200×). Follicular epithelial cells were stained by mouse anti–human TSH-receptor mAb. (B and C) Immunohistochemistry of the medulla of the thymus (400×). The Hassall’s corpuscles and their surrounding epithelial cells were immunostained by mouse anti–human TSH receptor mAb. (D) Immunohistochemistry of the cortex of the thymus (400×). Cells with ramified processes were immunostained by mouse anti–human TSH-receptor mAb. Immunohistochemistry was performed as described in Methods.
Northern blot analysis of thyroid poly(A)+ RNA using the cRNA probe for human TSH receptor revealed three major bands of ~4.3, 1.7, and 1.3 kb, as shown in Fig. 3 C, lane 1, as has been reported previously (26). A band of 4.3 kb, corresponding to the full length form of human TSH receptor mRNA, was detected in thymic poly(A)+ RNA from Clontech Laboratories and from a patient with lung carcinoma, as shown in Fig. 3 C, lanes 2 and 3, respectively.

Western blot analysis of thyroid and thymic tissues using purified anti–TSH-receptor peptide (amino acid 32–56) antibodies demonstrated an apparent band of ~100 kD in both tissues (Fig. 4, lanes 1 and 2, respectively). In both tissues, a band of 50–55 kD, presumably degraded forms of the TSH receptor (27, 28), was also observed.

Immunohistochemistry of TSH receptors. Immunohistochemistry of thyroid and thymic tissues using mouse anti–human TSH-receptor mAb, which has been verified to be suitable for immunohistochemical study of the TSH receptor (24), is shown in Fig. 5. In thyroid tissue, follicular epithelial cells were immunostained by mouse anti–human TSH receptor mAb as reported previously (24), as shown in Fig. 5 A. In nonepithelial thymic tissue, the Hassall’s corpuscles and their surrounding epithelial cells were significantly immunostained, as shown in Fig. 5, B and C. Process-bearing cells with meshwork arrangement, putative epithelial cells, were also stained as shown in Fig. 5 D. The same cells were also immunostained by antibodies against cytokeratin, a marker of epithelial cells, in the adjacent sections (data not shown). In contrast, the thymocytes were not immunostained in these sections. No positive reaction was demonstrated in the negative control sections.

Discussion

The present study demonstrates that thymic size and CT attenuation values significantly increased in untreated patients with Graves’ disease in comparison with control subjects in all age groups examined. Thymic size and CT attenuation values significantly decreased after treatment with antithyroid drugs, with a concomitant decrease in thyrotropin receptor antibodies. The increase in thymic size in untreated patients with Graves’ disease is in general agreement with the past observations showing thymic enlargement in patients with Graves’ disease by means of pneumomediastinography (12). The precise CT scan results showing the increase in the thymic size and density in untreated patients with Graves’ disease suggest that a thymic hyperplasia is highly associated with Graves’ disease, presumably reflecting a thymic medullary lymphoid–follicle formation (16). The decrease in thymic size and density by treatment with antithyroid drugs could be produced, at least in part, by an indirect action by lowering circulating thyroid hormone levels, since it has been reported that exogenous thyroid hormone administration to experimental animals resulted in enlargement of both cortical and medullary components of the thymus (29, 30), while thyroidectomy induced a reduction of thymic size (31). It has also been suggested that antithyroid drugs not only cause a block of thyroid hormone synthesis, but also have immunosuppressive effects, including lowering TSH-receptor antibody levels (32). Thus, antithyroid drugs might also induce thymic atrophy by mechanisms related to their immunosuppressive effects. These possible mechanisms by which antithyroid drugs decrease the size and density of the thymus remain to be elucidated.

In the present study, TSH receptors were clearly demonstrated in nonneoplastic thymic tissues by PCR amplification, Northern and Western blot analysis, and immunohistochemistry. PCR amplified a TSH receptor fragment, and the nucleotide sequence of its PCR-amplified product was identical to the human TSH receptor existing in the thyroid gland. Northern blot analysis demonstrated thymic mRNA for the TSH receptor in a size identical to the full length form of the receptor. To our knowledge, the present report is the first demonstration by Northern blot analysis of the full length form of TSH-receptor transcripts in human tissues other than the thyroid gland. Smaller bands corresponding to the truncated forms of TSH receptor were not detected in thymic tissue, while they were clearly demonstrated in thyroid tissue. Since the TSH receptor message level in thymic tissue was less than that of thyroid tissue, the failure of demonstrating smaller bands in thymic tissue may result from the sensitivity of Northern blot analysis in this study. Western blot analysis of thyroid and thymic tissues using anti–human TSH receptor peptide antibodies demonstrated the protein, presumably the TSH receptor, with a molecular weight of ~100 kD in both tissues. Its molecular weight is in general agreement with that of human TSH receptor proteins reported by other investigators (27, 28). TSH receptors were demonstrated in follicular epithelial cells in the thyroid by immunohistochemistry using mouse anti–human TSH-receptor mAb, which confirmed the previous observation using the same mAb (24). Immunohistochemistry of thymic tissue using the mouse anti–human TSH-receptor mAb also demonstrated the presence of immunostained cells in the thymus in the present study. The positive reaction was revealed, at least on a population of the epithelial cells, which was confirmed by immunostaining using antibodies against cytokeratin. These results suggest that TSH receptors are expressed in the epithelial cells of human thymus. The primary antibody used in this study has not been suitable on formalin-fixed, paraffin-embedded tissue sections (data not shown), that generally give fine morphology. Our immunohistochemical study was therefore restricted on frozen sections of a surgically resected thyroid and thymic tissue, as reported previously (24). Since detailed analyses could not be performed in this study, the possibility of the presence of TSH receptors in other thymic stromal cells, such as dendritic cells, was not totally excluded. The mouse anti–human TSH-receptor mAb did not stain thymocytes in the present study. However, it has been reported that immunoglobulins of a patient with Graves’ disease who had thymus enlargement bound thymocytes and caused thymocyte proliferation (33), which might indicate the presence of TSH receptors in thymocytes. It is therefore possible that the failure to demonstrate the presence of TSH-receptor protein in thymocytes may have resulted from the sensitivity or the characteristics of the antibody used in this study.

The nicotinic acetylcholine receptor has been demonstrated not only at the neuromuscular junctions, but in thymic tissues (4–10). Thymic acetylcholine receptor has been suggested to be involved in developing thymic hyperplasia or thymoma in myasthenia gravis (4). By analogy with thymic acetylcholine receptor, thymic TSH receptor may also be suggested to participate in developing thymic hyperplasia in patients with Graves’ disease, as demonstrated in the present study. In addition, thymic acetylcholine receptor has been postulated to be responsible for the initiation or perpetuation of the autoimmune response (3–5), and has been suggested to be involved in
the aberrant positive selection of the T cell repertoire that contributes to the development of autoreactive T cells in myasthenia gravis (8). In view of these observations, it is of interest to speculate that TSH receptors in thymic epithelial cells may also be involved in the initiation or perpetuation of the autoimmune response, and in the selection of the T cell repertoire that may contribute to the development of autoreactive T cells in Graves’ disease. To support this hypothesis, it must be elucidated whether TSH receptor-reactive T cells are present in the thymus in patients with Graves’ disease in further studies.

The present study opens a novel perspective on investigation of the relationship between thymic hyperplasia and the pathogenesis of Graves’ disease.

Acknowledgments

The authors thank Dr. Gilbert Vassart for kindly providing human TSH-receptor cDNA. The authors also thank Mr. Toshimoto Kuwabara for his technical assistance.

This work was supported in part by a grant-in-aid (05670836) to M. Murakami for scientific research from the Ministry of Education, Science and Culture, Japan.

References