Drug Targeting of a Peptide Radiopharmaceutical through the Primate Blood–Brain Barrier In Vivo with a Monoclonal Antibody to the Human Insulin Receptor

Dafang Wu, Jing Yang, and William M. Pardridge
Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1682

Abstract

Peptide radiopharmaceuticals are potential imaging agents for brain disorders, should these agents be enabled to undergo transport through the blood–brain barrier (BBB) in vivo. Radiolabeled Aβ₁–₄₀ images brain amyloid in tissue sections of Alzheimer’s disease autopsy brain, but this peptide radiopharmaceutical cannot be used to image brain amyloid in vivo owing to negligible transport through the BBB. In these studies, ¹²⁵I-Aβ₁–₄₀ was monobiotinylated (bio) and conjugated to a BBB drug delivery and brain targeting system comprised of a complex of the 83-14 monoclonal antibody (mAb) to the human insulin receptor, which is tagged with streptavidin (SA). A marked increase in rhesus monkey brain uptake of the ¹²⁵I-bio-Aβ₁–₄₀ was observed after conjugation to the 8314-SA delivery system at 3 h after intravenous injection. In contrast, no measurable brain uptake of ¹²⁵I-bio-Aβ₁–₄₀ was observed in the absence of a BBB drug delivery system. The peptide radiopharmaceutical was degraded in brain with export of the iodide radioactivity, and by 48 h after intravenous injection, 90% of the radioactivity was cleared from the brain. In conclusion, these studies describe a methodology for BBB drug delivery and brain targeting of peptide radiopharmaceuticals that could be used for imaging amyloid or other brain disorders. (J. Clin. Invest. 1997, 100:1804–1812.) Key words: Alzheimer’s disease • amyloid • monoclonal antibody • insulin receptor • avidin

Introduction

Peptide radiopharmaceuticals have potential for diagnostic imaging (1). The somatostatin receptor is overexpressed in certain neuroendocrine tumors, as well as brain tumors such as meningiomas or gliomas, and ¹²⁵I- or ¹¹¹In-labeled octreotide, a somatostatin peptide analog, has been used to image these tumors (2, 3). Owing to the small size of the peptide radiopharmaceutical, octreotide readily crosses the porous capillaries perfusing tumors in the periphery, or certain brain tumors such as meningiomas, which lack a blood–brain barrier (BBB).¹ However, well-differentiated gliomas, which also overexpress somatostatin receptors, have an intact BBB; it is not possible to image these tumors with octreotide (3, 4), since this peptide does not cross the BBB in vivo (5).

In addition to tumors, it should also be possible to image other medical disorders with peptide radiopharmaceuticals, such as amyloid. The deposition of amyloid in Alzheimer’s disease correlates with the degree of dementia in this disorder (6, 7). Extracellular amyloid in Alzheimer’s disease is comprised of two types: senile (neuritic) plaque and vascular amyloid (8–12). Both types of amyloid in Alzheimer’s disease are comprised of a 43–amino acid amyloidotic peptide, designated Aβ₁–₄₁. There are as well Aβ₁–₄₂ forms, produced from the abnormal proteolysis of a normal cellular protein, the amyloid peptide precursor (13).

The Aβ amyloid of tissue sections of Alzheimer’s disease autopsy brain can be identified with dyes such as Congo Red, or with antibodies directed against certain epitopes of the Aβ₁–₄₂/₄₃ peptide (14). However, the Aβ amyloid of brain sections may also be identified in vitro by autoradiography with ¹²⁵I-Aβ₁–₄₀, a peptide containing the first 40 amino acids of the Aβ₁–₄₂/₄₃ peptide that deposits with high affinity onto preexisting Aβ amyloid (15). Therefore, radiolabeled Aβ₁–₄₀ is a potential peptide radiopharmaceutical that could be used for neurodiagnostic quantitation of the Aβ amyloid burden in Alzheimer’s disease brain of living subjects using standard external detection methodologies, such as single photon emission computed tomography or positron emission tomography. However, ¹²⁵I-Aβ₁–₄₀ does not cross the BBB in rats unless a vector-mediated BBB drug delivery system is used (16). Aβ amyloid does not deposit in the brain of aged rats, but does form in the brain of New World primates, such as the aged (15–20 yr) squirrel monkey, as vascular amyloid, and is produced in the brain of Old World primates, such as the aged (27–30 yr) rhesus monkey, in neuritic plaque form (17–20).

These studies use ¹²⁵I-Aβ₁–₄₀ adapted to a BBB drug delivery system that enables the peptide to enter the brain from blood to a high degree, allowing for imaging of the distribution of the peptide radiopharmaceutical in the brain after systemic (intravenous, i.v.) injection. The goal of these studies is fourfold: first, to prepare radiolabeled peptide pharmaceutical conjugated to the BBB delivery system; second, to demonstrate that the deposition of ¹²⁵I-Aβ₁–₄₀ on amyloid plaques in sec-

¹ Abbreviations used in this paper: Aβ₁–₄₀, first 40 amino acids of β-peptide of Alzheimer’s disease; AUC, area under the plasma concentration curve; BBB, blood–brain barrier; bio, biotinylated; HILC, hydrophilic interaction liquid chromatography; HIR, human insulin receptor; OX26, murine mAb to rat transferrin receptor; PS, permeability–surface area product; RHB, Ringer-Hepes buffer; SA, streptavidin; TEAP, triethylamine phosphate; V₀, volume of distribution.
tions of Alzheimer’s disease autopsy brain is not impaired after conjugation to the BBB delivery system; third, to administer the peptide radiopharmaceutical to young rhesus monkeys in order to measure the degree to which the brain uptake of the peptide radiopharmaceutical is enhanced by the use of the BBB drug targeting system; and fourth, to measure brain uptake of the peptide radiopharmaceutical in the brain at various times (3, 24, and 48 h) after i.v. injection in order to determine the approximate half-life of the radioactivity in the brain. The last is a measure of the biotransformation of the peptide radiopharmaceutical in the living brain after initial penetration through the BBB.

The BBB delivery system used in these studies is the 83-14 mAb to the human insulin receptor (HIR). The 83-14 HIR mAb undergoes receptor-mediated transcytosis through the BBB of Old World primates such rhesus monkeys, but not New World primates such as squirrel monkeys (21). This observation is consistent with the greater genetic similarity between humans and Old World primates compared with New World primates (22). The 83-14 HIR mAb has a very high affinity for the human or Old World primate insulin receptor and is both an endocytosing antibody in isolated human brain capillaries and a BBB-transcytosing antibody in anesthetized rhesus monkeys (21). The conjugation of 125I-A$^{1-40}$ to the 83-14 HIR mAb is facilitated by the use of avidin-biotin technology applied to brain drug delivery (23). In this approach, the peptide radiopharmaceutical is monobiotinylated and, in parallel, a conjugate of streptavidin (SA) and the 83-14 mAb is prepared through the formation of stable thio-ether linkage between the SA and the 83-14 mAb (16). The use of avidin-biotin technology applied to drug delivery takes advantage of the extremely high affinity of biotin binding ($K_d = 10^{-15} \text{ M}$; dissociation $t_{1/2} = 89 \text{ d}$) by either avidin or SA. SA is used in lieu of avidin in these studies. Owing to the cationic nature of avidin as opposed to SA, which is slightly acidic, the plasma pharmacokinetics of the mAb/SA analog is optimized compared with the relatively rapid plasma clearance of mAb/avidin conjugates (23).

Methods

Materials. Four male adult rhesus monkeys (Macaca mulatta) weighing 8.2–10.5 (9.45±1.02) kg were purchased from the National Institutes of Health (Bethesda, MD) and the University of Michigan Medical School (Ann Arbor, MI). Snap-frozen human autopsy Alzheimer’s disease brain, used for preparation of frozen sections, and fresh control autopsy human brain (obtained 24–32 h postmortem), used for the isolation of microvessels, were provided by Prof. Harry Vinters (UCLA Department of Pathology/Neuropathology). Human A$^{1-40}$ was purchased from Bachem, Inc. (Torrance, CA). Biotinylated A$^{1-40}$ (bio-A$^{1-40}$), which is monobiotinylated at the amino terminus, was obtained from Quality Controlled Biochemicals, Inc. (Hopkinton, MA). Immobilized iminobiotin gel, Traut’s reagent, and m-maleimidobenzoyl N-hydroxysuccinimide ester were obtained from Pierce Chemical Co. (Rockford, IL). Cartridges of polyhydroxyethyl aspartamide were obtained from PolyLC, Inc. (Columbia, MD). Iodine-125 was purchased from Amersham Corp. (Arlington Heights, IL). Chloramine T was from MCB Reagents (Cincinnati, OH). TSK-GEL® G2000SWXL HPLC gel filtration column (7.8 × 300 mm) was obtained from Tosohaas (Montgomeryville, PA). Recombinant SA and all other reagents were obtained from Sigma Chemical Co. (St. Louis, MO).

Synthesis and purification of mAb 8314/SA conjugate. The 83-14 hybridoma (24) was provided by Prof. Kenneth Siddle (Cambridge University, UK). The 83-14 mAb was purified from mouse ascites using protein G-Sepharose 4 Fast Flow affinity chromatography as described previously (21). The purified 83-14 mAb was thiolated with a 1:1 molar ratio of Traut’s reagent (25), and Ellman’s reagent was used to demonstrate that this reaction inserted a single thiol group on

Figure 1. Gel filtration (A and B) and immobilized iminobiotin affinity (C and D) chromatography of mAb 8314-SA conjugate. The fraction size of the gel filtration was 3 ml, and the fraction size in the affinity chromatography was 0.5 ml.
the surface of the mAb (26). The SA was activated with a 20:1 molar ratio of m-maleimidobenzon N-hydroxysuccinimide ester (27), and the thiolated 83-14 mAb and activated SA were incubated overnight at room temperature. After addition of 2 μCi of 125I-biotin as a tracer, the sample was loaded on to a 2.6 × 92-cm column of Sephacryl S-300 HR (Pharmacia Biotech, Piscataway, NJ) and eluted with 0.01 M Na2HPO4/0.15 M NaCl/0.05% Tween-20, pH 7.4, at 30 ml/h for 16 h. Fractions (3 ml) were collected and measured for A280 and 125I radioactivity, allowing for separation of the 8314-SA conjugate from the unconjugated SA, which eluted at a larger volume of the column (Fig. 1, A and B).

The 8314-SA A280 peak (Fig. 1 A) was greater than the 8314-SA 125I-biotin binding peak (Fig. 1 B), which indicated that unconjugated 83-14 mAb was also contained in this peak. Owing to the very high affinity (Kd = 0.45 nM) of the 83-14 mAb for the BBB HR (21), unconjugated 83-14 mAb could compete for binding to the BBB of the 8314-SA conjugate. Therefore, unconjugated 83-14 mAb was removed by iminobiotin affinity chromatography. The fractions from the Sephacryl S-300 column were concentrated with a Centricon-30 cartridge, which was preactivated with 5 ml of 90% acetonitrile (2 mCi, 1.0 nmol) and chloramine T (39 nmol) at room temperature for competition. The iodination, the reaction solution was diluted with 1 ml of 20% biotin-binding sites on the 8314-SA conjugate was measured with a thiolated 83-14 mAb and activated SA were incubated overnight at 50% acetonitrile (Fig. 2), and these fractions were pooled and air-dried. These slides were dipped with emulsion (NTB2; Eastman Kodak Co., Rochester, NY) in the darkroom for 5 s followed by air-drying at room temperature for 30 min, and then fixed in 2.5% paraformaldehyde in PBS at 10°C for 60 min. The slides were rehydrated with water, counterstained with methyl green–pyronine, and examined by bright field microscopy (16).

Figure 2. HILC elution (top) and TCA precipitability percentage (bottom) of bio-Aβ1–40 after radiolabeling with iodine-125. The fraction size was 1 ml. The percentage of acetonitrile for each step elution is shown.

Figure 3. Gel filtration HPLC profile of 125I-bio-Aβ1–40 (top) and 125I-bio-Aβ1–40/8314-SA conjugate (bottom). The salt volume of the gel filtration HPLC column was 14.3 ml, the elution volume of 125I-bio-Aβ1–40 was 12 ml, and that of 125I-bio-Aβ1–40/8314-SA was 6 ml.
Pharmacokinetics and brain drug delivery. After overnight fasting, the rhesus monkeys were sedated with an intramuscular (i.m.) dose of ketamine (10 mg/kg), followed by anesthesia with 1.5% halothane. A 1.0-ml volume of buffered saline (pH 7.4) containing 300 μCi (32 μCi/kg) of either unconjugated [125I]bio-Ab1-40 or [125I]bio-Ap1-40 coupled to 60 μg of the 8314-SA vector was injected i.v., and blood samples were collected at 0.25, 2.5, 5, 15, 30, 60, 120, and 180 min postdose for monkeys 1 (18 yr) and 2 (26 yr). The two monkeys were killed by a lethal injection of sodium pentobarbital (100 mg/kg), and their brains were removed instantly, cut into 5 coronal slabs, frozen in powdered dry ice, and stored at −70°C for subsequent frozen sectioning and phosphorimaging. Gray and white matter of the frontal cortex were separated, and radioactivity was counted using a gamma counter (Beckman Instruments, Inc., Fullerton, CA). For the time course study, the conjugate of [125I]bio-Ab1-40 (300 μCi) and 8314-SA (60 μg) was injected i.v. into monkeys 3 and 4 (both 15 yr) after sedation with 10 mg/kg ketamine i.m. Monkey 3 was killed 24 h postdose, and monkey 4 48 h postdose, for removal of the brain.

Pharmacokinetic parameters were calculated by fitting the plasma radioactivity data of monkeys 1 and 2 to a biexponential equation:

\[A(t) = A_1 e^{-k_1 t} + A_2 e^{-k_2 t} \]

where \(A(t) \) is percent ID per milliliter plasma. The biexponential equation was fit to TCA-precipitable plasma radioactivity data using a derivative-free nonlinear regression analysis (PARBMDP, Biomedical Computer P-Series, developed at UCLA Health Sciences Computing Facilities). The data were weighted using weight 1/(concentration)², where concentration = percent ID per milliliter plasma. The brain volume of distribution (\(V_D \)) and the BBB permeability–surface area (PS) product of [125I]bio-Ab1-40 after i.v. injection, and the pharmacokinetic parameters such as plasma clearance, initial plasma volume, systemic volume of distribution, and steady state area under the plasma concentration curve (AUC) were determined from \(A_1, A_2, k_1, k_2 \), as described previously (21).

PhosphorImager analysis. After the monkey was killed, the brain was rapidly removed from the cranium and sectioned into 5 coronal slabs of ~ 4 mm. Each slab was plunged individually into powdered dry ice for rapid freezing over 30 min. Embedding medium was placed between the brain slab and circular slabs of laboratory cork (35-mm diameter, 1/8-inch thickness), and this was placed back in the powdered dry ice for additional freezing over a 2-h period. These preparations were then stored at −70°C in 35-mm petri dishes. For frozen sectioning, the brain was thawed to −20°C, the cork was mounted on a cryostat orientable object holder with additional embedding medium and placed on a universal holder, and 20-μm sections were cut on a Bright cryostat at −20°C. Sections were mounted on precleaned microscope slides (75 × 50 × 1 mm; Fisher Scientific Co., Pittsburgh, PA) and air-dried at room temperature for 60 min. The slides were then glued to a paper grid, which was wrapped in transparent film, and placed in a large cassette with a 35 × 43-cm PhosphorImager screen (Molecular Dynamics, Sunnyvale, CA). The cassette was developed at room temperature for 45 d, and the screen was read using a PhosphorImager scanner (Molecular Dynamics) under high resolution mode. The images were transferred electronically as a TIFF file with Fetch-FTP for Macintosh 2.1.2. (Dartmouth College, Hanover, NH) to the laboratory Power Macintosh 7100/66 microcomputer, and were opened as PICT files in Adobe Photoshop, colorized with NIH Image software, and prints were obtained with a digital printer (Fujix Pictography 3000; Fuji Photo Film Co., Tokyo, Japan).

Results

The affinity of the 83-14 mAb for the human brain insulin receptor was unaffected by conjugation of the 50,000-D SA to the antibody, as demonstrated by the radioreceptor data shown in Fig. 4. In this study, [3H]-biotin was bound to the 8314-SA conjugate and incubated with human brain capillaries with or without 10 μg/ml unconjugated 83-14 mAb. The binding of the [3H]-biotin/8314-SA to isolated human brain capillaries reached 16% at 60 min of incubation at room temperature (Fig. 4), which is comparable with the binding to human brain capillaries of unconjugated [125I]-labeled 83-14 mAb (21). Next, we tested the binding of [125I]-bio-Ab1-40 to human brain capillaries in the presence of either no vector or the 8314-SA vector, with or without 10 μg/ml unconjugated 83-14 mAb (Fig. 5). These studies showed avid binding of the [125I]-bio-Ab1-40/8314-SA conjugate to the human brain capillaries that was suppressed to the background level by the inclusion of 10 μg/ml unconjugated 83-14 mAb (Fig. 5). This background level is defined by the capillary uptake of [125I]-bio-Ab1-40 without any antibody added (plot designated as control in Fig. 5). The binding of the [125I]-bio-Ab1-40/8314-SA conjugate to the neuritic plaques of tissue sections of autopsy Alzheimer’s disease brain was demonstrated in the emulsion autoradiography studies shown in Fig. 6. In these experiments, [125I]-bio-Ab1-40 was applied to tissue sections either in the absence or presence of 8314-SA conjugate. When [125I]-bio-Ab1-40 was applied to tissue sections in the form of the conjugate, it was preincubated for 45 min at room temperature with the 8314-SA conjugate before application to the Alzheimer’s disease brain tissue sections. Binding of [125I]-Ab1-40 either alone or in the presence of 8314-SA conjugate to the neuritic plaques of Alzheimer’s disease sections was abolished by coincubation with 10 μM unlabeled Ab1-40.
I-bio-A\(^{1-40}\)/H9252 was removed rapidly from plasma after i.v. injection in the rhesus monkey (Fig. 7). This rate of removal was further enhanced by attachment of the peptide to the 8314-SA conjugate (Fig. 7). The peptide was relatively metabolically labile, as the percentage of plasma radioactivity precipitable by TCA was decreased to 40 and 25% at 180 min after administration of either unconjugated \(^{125}\)I-bio-A\(^{1-40}\) or \(^{125}\)I-bio-A\(^{1-40}\)/8314-SA, respectively (Fig. 7). The brain TCA-precipitable radioactivity at 3 h after injection of \(^{125}\)I-bio-A\(^{1-40}\)/8314-SA conjugate, 82.8 \pm 0.9%, was much higher than the corresponding TCA-precipitable radioactivity in serum at this time point, 26.3 \pm 0.6%. The plasma TCA-precipitable radioactivity data was subjected to biexponential analysis (see Methods) to compute the pharmacokinetic parameters shown in Table I. The frontal cortex was counted for total Iodine-125 radioactivity, and \(V_{\text{D}}\) was computed for A\(^{1-40}\) with or without conjugation to 8314-SA vector (Table I). The gray matter BBB PS for the free peptide or for the conjugate was computed from \(V_{\text{D}}\) and AUC (see Methods), and was \(< 0.25\) and 1.74 \(\mu\)l/min-g, respectively. The brain \(V_{\text{D}}\) of bio-A\(^{1-40}\) conjugated to the 8314-SA delivery system was more than 10-fold greater than the brain \(V_{\text{D}}\) of the unconjugated peptide (Table I). This difference is seen also in the images obtained with the PhosphorImager (Fig. 8). There is no discernible brain uptake when the peptide was administered without the brain delivery system (Fig. 8, left). However, when the peptide pharmaceuti-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(^{125})I-bio-A(^{1-40})</th>
<th>(^{125})I-bio-A(^{1-40})/8314-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1) (% ID/ml)</td>
<td>0.137</td>
<td>0.150</td>
</tr>
<tr>
<td>(A_2) (% ID/ml)</td>
<td>0.0502</td>
<td>0.0183</td>
</tr>
<tr>
<td>(k_1) (min(^{-1}))</td>
<td>0.206</td>
<td>0.0948</td>
</tr>
<tr>
<td>(k_2) (min(^{-1}))</td>
<td>0.00649</td>
<td>0.00635</td>
</tr>
<tr>
<td>(t_{1/2}^1) (min)</td>
<td>3.37</td>
<td>7.31</td>
</tr>
<tr>
<td>(t_{1/2}^2) (min)</td>
<td>107</td>
<td>109</td>
</tr>
<tr>
<td>(AUC_{0-180}') (% ID min/ml)</td>
<td>6.00</td>
<td>3.54</td>
</tr>
<tr>
<td>(AUC_{0-\infty}) (% ID min/ml)</td>
<td>8.40</td>
<td>4.45</td>
</tr>
<tr>
<td>(V_{\text{c}}) (ml/kg)</td>
<td>65.0</td>
<td>68.5</td>
</tr>
<tr>
<td>(V_{\text{SS}}) (ml/kg)</td>
<td>207</td>
<td>272</td>
</tr>
<tr>
<td>(Cl) (ml/min/kg)</td>
<td>1.45</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Parameters derived from the data in Fig. 7. \(V_{\text{c}}, V_{\text{SS}},\) and \(Cl\) refer to kilogram body weight. \(A_n\) and \(k_n\) refer to intercepts and slopes of the biexponential curve fit to the plasma data in Fig. 7. The \(t_{1/2}^n\) were calculated from \(k_n\). \(V_{\text{c}}, V_{\text{SS}},\) and \(Cl\) are plasma central volume, whole body volume of distribution, and systemic clearance, respectively.

FIGURE 6. Emulsion autoradiography showing the binding of \(^{125}\)I-bio-A\(^{1-40}\) (A) or \(^{125}\)I-bio-A\(^{1-40}\)/8314-SA conjugate (B) to amyloid plaques of frozen sections of human Alzheimer’s disease brain under bright field microscopy. Magnification bar is 23 \(\mu\)m.

FIGURE 7. (A) Plasma profile of either unconjugated \(^{125}\)I-bio-A\(^{1-40}\) (open circles) or \(^{125}\)I-bio-A\(^{1-40}\)/8314-SA conjugate (filled circles) after an i.v. dose of 30 \(\mu\)Ci per monkey. (B) Time course of the percentage of plasma radioactivity precipitable with TCA after the i.v. injection.
cal was administered conjugated to the BBB delivery system, there was robust uptake of the peptide radiopharmaceutical (Fig. 8, right), and the differential uptake between white and gray matter tracts is clearly illuminated with the PhosphorImager analysis (Fig. 8). The peptide radiopharmaceutical conjugated to the 8314-SA delivery system was also injected into rhesus monkeys sacrificed at 24 and 48 h after administration in order to determine the rate of decline of brain radioactivity after administration of the peptide radiopharmaceutical conjugated to the BBB delivery system. The brain V_D in either white or gray matter at 3, 24, and 48 h are shown in Fig. 9, and the brain images at 3, 24, 48 h after administration of the peptide radiopharmaceutical conjugated to the BBB delivery system are shown in Fig. 10. These studies indicate that nearly 90% of the brain radioactivity is cleared by 48 h after i.v. administration. Plotting the brain V_D (Fig. 9) on a semi-log plot versus time (hours) indicates that the $t_{1/2}$ of brain radioactivity is 16.0 h ($r = 0.99$).

Discussion

The results of these studies are consistent with the following conclusions. First, a peptide radiopharmaceutical may be specially formulated for BBB drug delivery, and this formulation requires (a) synthesis and purification of the 8314-SA conjugate (Fig. 1) and (b) synthesis and purification of radiolabeled monobiotinylated $\beta\alpha^{1-40}$ using HILC (Fig. 2). Second, the bi-functionality of the 8314-SA conjugate is retained, as this molecule binds both $\beta\alpha^{1-40}$ (Fig. 3) and the human brain capillary or BBB insulin receptor (Figs. 4 and 5). Third, the biologic activity of the $\beta\alpha^{1-40}$ peptide radiopharmaceutical is retained despite conjugation to the 8314-SA vector, as the complex still binds the neuritic plaques in sections of Alzheimer's disease brain to a degree comparable to that of the unconjugated $\beta\alpha^{1-40}$ (Fig. 6). Fourth, the pharmacokinetics of the peptide radiopharmaceutical (Fig. 7 and Table I) demonstrate a relatively rapid decline in the plasma concentration and metabolic stability of the conjugate. Finally, the brain uptake of the peptide radiopharmaceutical without conjugation to the BBB delivery system is negligible (Figs. 8 and 9), but the brain uptake of the peptide radiopharmaceutical conjugated to the 8314-SA BBB delivery system is very high (Figs. 8 and 9). This brain uptake of radioactivity is nearly 90% cleared by 48 h after i.v. injection (Figs. 8 and 10).

Sephacryl S-300 gel filtration (Fig. 1) removes unconjugated SA, and iminobiotin affinity chromatography (Fig. 2) removes unconjugated 83-14 mAb. Use of iminobiotin affinity chromatography is a novel procedure that allows for elution of the 8314-SA conjugate from the iminobiotin column under relatively mild conditions. It is important to remove all unconjugated 83-14 mAb, because the affinity of this antibody for BBB insulin receptor is extremely high, with a K_D of 0.45 ± 0.10 nM.

![Figure 8](image8.png) PhosphorImager scans for left or right cerebral hemisphere in two different rhesus monkeys. (A) Brain uptake 3 h after i.v. injection of 300 µCi of unconjugated $\beta\alpha^{1-40}$. (B) Brain uptake 3 h after i.v. injection of $\beta\alpha^{1-40}$ conjugated to 8314-SA. Images for the left and right occipital lobes are shown.

![Figure 9](image9.png) Brain V_D of either $\beta\alpha^{1-40}$ or $\beta\alpha^{1-40}$/8314-SA conjugate at 3, 24, or 48 h after i.v. injection to rhesus monkeys. **Filled bars**, V_D values of gray matter of the monkey brains. **Open bars**, V_D values of white matter. Data are mean±SE ($n = 3$).

![Figure 10](image10.png) PhosphorImages representing the brain uptake of $\beta\alpha^{1-40}$ conjugated to the 8314-SA delivery system at 3 (A), 24 (B), and 48 h (C) after i.v. injection of 300 µCi per rhesus monkey. Three different monkeys were used for these studies, one each for the measurements at 3, 24, and 48 h, respectively. **Left column**, Brain uptake in the left occipital lobe. **Right column**, Brain uptake in the right occipital lobe.
The work demonstrates that biotinylated Aβ1-40 conjugated to the BBB insulin receptor is effective for BBB delivery. The conjugate has been shown to bind to the BBB receptor and to be internalized into the brain, as evidenced by radiolabeling studies using Indium-111 or Technetium-99m (34).

Despite the relatively rapid rate of plasma clearance of conjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9). There is no measurable brain uptake of unconjugated bio-Aβ1-40 from plasma (Fig. 7) and the relative reduction in plasma AUC (Table I), there is still robust brain uptake of the radiopharmaceutical after attachment to 8314-SA. This greater abundance of receptor is due to the approximately three- to fourfold greater vascular density in gray matter versus white matter (Figs. 8 and 9).
binding of 125I-bio-Aβ$^{1–40}$ without vector (plot designated as buffer in Fig. 5) is much greater than the nonspecific binding of 3H-biotin/8314-SA in the presence of 10 μg/ml 83-14 mAb (Fig. 4). The absorption of Aβ$^{1–40}$ to meningeal vascular surfaces has also been demonstrated in vivo in the rat (36). The nonspecific absorption of Aβ$^{1–40}$ to the luminal surface of the brain capillary endothelium after in vivo administration would not allow for imaging brain amyloid in Alzheimer’s disease. This amyloid is on the brain side of the microvasculature and is separated from labeled Aβ$^{1–40}$ absorbed to the luminal surface of the brain capillary endothelium by the endothelial membranes that constitute the BBB in vivo. Since Aβ$^{1–40}$ does not cross the BBB, systemically infused 125I-Aβ$^{1–40}$ cannot label the Aβ amyloid in the brain unless there is BBB disruption. However, the BBB is intact in Alzheimer’s disease (37). Recent studies performed common carotid arterial infusion of relatively high doses (80–165 μCi/kg) of 125I-Aβ$^{1–40}$ into aged anesthetized squirrel monkeys (38). However, the only vessels labeled in this report appear to be meningeal vessels in brain, which are extracerebral vessels that lack a BBB.

The avid brain uptake of the peptide pharmaceutical formulated as a conjugate with the BBB delivery system (Fig. 8) demonstrates that brain structures can be imaged readily with this approach, as the quality of the image is comparable to a standard 2-deoxyglucose image seen with PET scans in humans or quantitative autoradiography in rats. The clear image of peptide radiopharmaceutical distribution in the brain (Fig. 8) is due to the high activity of the 83-14 mAb as a BBB delivery system, whereas there is negligible brain uptake of the peptide radiopharmaceutical when no BBB delivery system is used. The time course studies in Fig. 10 indicate that nearly 90% of the peptide radiopharmaceutical initially extracted by the brain is subject to metabolic transformation and clearance from the brain by 48 h after i.v. administration. However, it is anticipated that the 48-h signal in subjects with Aβ amyloid will be increased considerably above the background level shown in Fig. 10 for subjects that have no brain amyloid. This is because once the peptide radiopharmaceutical traverses the BBB, the imaging agent will come in contact with extracellular amyloid, and soluble Aβ$^{1–40}$ deposits immediately on the surface of preexisting Aβ amyloid plaque (40). The Aβ plaque may constitute up to 15% of the brain volume in Alzheimer’s disease (41). This deposition will effectively increase organ residence time of radioactivity in the brain. In the absence of extracellular amyloid, the imaging agent will undergo receptor-mediated endocytosis into cells in brain-bearing insulin receptor on the cell membrane surface; this endocytosis is followed by degradation within the lysosomal compartment and release of iodide radioactivity (Fig. 10). However, susceptibility of Aβ$^{1–40}$ to protease attack is greatly reduced after deposition onto preexisting Aβ amyloid (42).

The formulation of the amyloid imaging agent described in Fig. 11 may appear to be relatively complex from the point of view of manufacturing this agent as an amyloid imaging agent for use in human subjects suspected of having Alzheimer’s disease. However, the formulation of the amyloid imaging agent is simplified with the use of avidin-biotin technology, and the use of a two-vial formulation. One vial contains the mAb/avidin fusion protein, and the second contains the radiolabeled, biotinylated Aβ$^{1–40}$ peptide. The two vials may be mixed immediately before administration to the subject, which takes advantage of the rapid capture of biotin analogs by mAb/avidin fusion proteins. Recently, an mAb/avidin fusion gene and fusion protein have been synthesized and expressed, and demonstrated to have optimal pharmacokinetics (43). The immunogenicity of the mAb portion of the delivery vector may be minimized by humanization of the murine framework sequences of the mAb (44). The immunogenicity of the avidin component may be minimized owing to oral antigen tolerance (45) induced by the presence of egg products in the diet. Indeed, relatively large (10 mg) quantities of avidin have been administered i.v. to humans without significant immunologic sequelae (46).

In summary, these experiments demonstrate that peptide radiopharmaceuticals may be specially formulated to enable these molecules to undergo receptor-mediated transport through the BBB. The use of the brain drug delivery approach may allow for imaging brain amyloid or other structures using specific peptide radiopharmaceuticals that are intended to image a specialized function or property of the brain.

Acknowledgments

This work was supported by the American Health Assistance Foundation, and by National Institutes of Health grant NS-34698.

References

