Localization of Distinct F₂-Isoprostanes in Human Atherosclerotic Lesions

Domenico Praticò,* Luigi Iuliano,‡ Alessandro Mauriello,§ Luigi Spagnoli,∥ John A. Lawson,* Jacques Maclout,¶ Francesco Violi,† and Garret A. FitzGerald*
*The Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; †The Institute of the 1st Clinical Medicine, University “La Sapienza,” Rome, Italy; ‡Department of Pathology, University “Tor Vergata,” Rome, Italy; and ¶INSERM, U 348, IFR Circulation Lariboisière, Paris, France

Abstract

F₂-Isoprostanes are prostaglandin (PG) isomers formed in situ in cell membranes by peroxidation of arachidonic acid. 8-epi PGF₆ₓ and IPF₁ₓ-I are F₂-isoprostanes produced in humans which circulate in plasma and are excreted in urine. Measurement of F₂-isoprostanes may offer a sensitive, specific, and noninvasive method for measuring oxidant stress in clinical settings where reactive oxygen species are putatively involved. We determined whether isoprostanes were present in human atherosclerotic lesions, where lipid peroxidation is thought to occur in vivo. 8-epi PGF₆ₓ ranged from 1.310–3.450 pmol/μmol phospholipid in atherectomy specimens compared with 0.045–0.115 pmol/μmol phospholipid (P < 0.001) in vascular tissue devoid of atherosclerosis. Corresponding values of IPF₁ₓ-I were 5.6–13.8 vs. 0.16–0.44 pmol/μmol phospholipid (P < 0.001). Levels of the two isoprostanes in vascular tissue were highly correlated (r = 0.80, P < 0.0001).

Immunohistochemical studies confirmed that foam cells adjacent to the lipid necrotic core of the plaque were markedly positive for 8-epi PGF₆ₓ. These cells were also reactive with anti-CD68, an epitope specific for human monocyte/macrophages. 8-epi PGF₆ₓ, immunoreactivity was also detected in cells positive for anti–α-smooth muscle actin antibody, which specifically recognizes vascular smooth muscle cells.

Our results indicate that 8-epi PGF₆ₓ and IPF₁ₓ-I, two distinct F₂-isoprostanes and markers of oxidative stress in vivo, are present in human atherosclerotic plaque. Quantitation of these chemically stable products of lipid peroxidation in target tissues, as well as in biological fluids, may aid in the rational development of antioxidant drugs in humans. (J. Clin. Invest. 1997. 100:2028–2034.) Key words: atherosclerosis • oxidative stress • lipid peroxidation • isoprostanes

Introduction

Considerable evidence implicates the oxidative modification of LDL in atherogenesis (1, 2). For example, various biological activities thought relevant to the process are exhibited by oxidatively modified, compared with native LDL (3–8). Modified, but not native, LDL is avidly bound by macrophage scavenger receptors (9, 10) and, recently, a receptor with particular affinity for oxidatively modified LDL has been described (11, 12). Additional to these findings, antibodies directed towards epitopes expressed in LDL oxidized in vitro have been shown to detect antigen in human atherosclerotic plaque (13) and to circulate in patients with advanced atherosclerosis. Despite these observations, there has been little direct evidence of a role for oxidant injury in atherogenesis. Indices of oxidant stress in vivo have been of limited value due to their chemical instability (14) or their nonspecificity (15, 16).

Isoprostanes are free radical–catalyzed products of arachidonic acid (17, 18). They are isomeric forms of the enzymatically generated prostaglandin species (19, 20). They are biochemically stable and, as such, have attraction as potential indices of oxidant stress in vivo. We have focused initially upon one of these compounds, 8-epi PGF₆ₓ, for which we have developed specific and sensitive methods of analysis, using gas chromatography/mass spectrometry (GC/MS).3 We have observed increments in urinary 8-epi PGF₆ₓ in chronic cigarette smokers and during coronary reperfusion with thrombolytic drugs (21, 22), two syndromes putatively associated with oxidant stress (23, 24). We have also demonstrated that coinubation of human monocytes with LDL results in marked, free radical–catalyzed formation of 8-epi PGF₆ₓ (25). More recently, we have established an assay for a second member of the F₂-isoprostane family, IPF₁ₓ-I (26).

To explore further their potential as indices of oxidative stress, we decided to investigate whether 8-epi PGF₆ₓ and IPF₁ₓ-I were present in human atherosclerotic plaques. Consistent with the hypothesis that their production may reflect lipid peroxidation in the vessel wall, we have found a marked elevation of both 8-epi PGF₆ₓ and IPF₁ₓ-I content in atherosclerotic plaque obtained at endarterectomy. 8-epi PGF₆ₓ was also detected immunohistochemically in lipid-rich atherosclerotic lesions, predominantly associated with macrophages and smooth muscle cells. These observations support the hypothesis that measurement of these isoprostanes may provide a quantitative index of oxidant stress in human atherosclerotic disease in vivo.

Methods

Sample acquisition and tissue processing. Human atherosclerotic plaques were obtained from 12 patients undergoing carotid endarterectomy. Informed consent was obtained from all patients before surgery. All procedures were approved by the local human ethics committee.

1. Abbreviations used in this paper: GC/MS, gas chromatography/mass spectrometry; IPF₁ₓ-I, isoprostane F₁ₓ class I.
Healthy tissue is not removed during endarterectomy, so comparison of diseased tissue with apparently uninvolved carotid vasculature obtained at endarterectomy is not possible. Vascular tissue, apparently devoid of plaque, was obtained from patients undergoing heart transplantation for dilated cardiomyopathy (aged 43–56; all males, n = 8). These were materials obtained incidentally during the course of the transplant, but were only studied in subjects who gave informed consent. The area of the control vessels analyzed always included both the intima and the media. The patients undergoing endarterectomy were older (aged 54–76; all males) than the controls. Their clinical characteristics are summarized in Table I. We also studied carotid artery specimens obtained at autopsy performed within 4–8 h of death (three males who died in traffic accidents, aged 52–67; no disease or medication was noted in their medical records). Specimens were divided into normal intima and atherosclerotic lesions, based on macroscopic inspection. Both types of material were collected from each subject. The samples of normal intima (plus inner media) were obtained from regions which were free of all visible lesions. Although fatty streaks were not visible, there remains the possibility that they contained some isolated foam cells. Freshly excised tissue was immediately placed into 0.15 NaCl (pH 7.0) containing 1 mM EDTA, 0.1 mM butylated hydroxytoluene, 100 U penicillin, 100 μg streptomycin, and rinsed three times to remove any loosely adherent blood components. The presence of butylated hydroxytoluene and EDTA is important to prevent ex vivo formation of isoprostanes during the procedure. 10 μg of [3H]arachidonic acid was also added to the samples, at the time of the acquisition, to detect any artifactual formation of 8-epi PGF\(_{2\alpha}\) or IPF\(_{2\alpha}\)-I that might occur during sample extraction and processing. After homogenization with a blade homogenizer (four cycles for 30 s), total lipids were extracted with 20 ml ice-cold Folch solution, chloroform/methanol (2:1, vol/vol) (27). The solution was then vortexed and centrifuged at 800 g for 10 min at 4°C. An aliquot was taken to measure the total phospholipid content in the tissue, as previously described (28). The organic phase, containing the extracted lipids, was dried under nitrogen, then 5 ml of aqueous KOH (15%) was added and the mixture incubated at 45°C for 1 h to effect hydrolysis and release of total 8-epi PGF\(_{2\alpha}\) and IPF\(_{2\alpha}\)-I. Total levels of each isoprostane were measured as described below.

Biochemical analysis. 8-epi PGF\(_{2\alpha}\) and IPF\(_{2\alpha}\)-I were assayed by GC/MS, as previously described (21, 26). The intraassay and the interassay variability is ±3% and ±4% for 8-epi PGF\(_{2\alpha}\) and ±4% and ±5% for IPF\(_{2\alpha}\)-I, respectively. In brief, a known amount of the internal standards \([3H]8\text{-epi PGF}\(_{2\alpha}\) and \([3H]IPF\(_{2\alpha}\)-I was added to each sample. After solid phase extraction, the samples were derivatized and purified by two thin layer chromatography steps. Each sample was analyzed on a Fisons MD-800 (Fisons Instruments, Milan, Italy) GC/MS. Quantification was performed using peak area ratios.

Table I. Clinical Characteristics of the Study Populations

<table>
<thead>
<tr>
<th>Patients (12)</th>
<th>Controls (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>T 54-76 (68 yr)</td>
</tr>
<tr>
<td>Sex</td>
<td>T Male (12/12)</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>5/12</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6/12</td>
</tr>
<tr>
<td>Diabetes</td>
<td>5/12</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>8/12</td>
</tr>
<tr>
<td>Carotid stenosis</td>
<td>60-90%</td>
</tr>
<tr>
<td>Clinical history</td>
<td>Transient ischemic attacks in the last 6-12 mo</td>
</tr>
</tbody>
</table>

Results

8-epi PGF\(_{2\alpha}\) in human atherosclerotic plaque. All of the atherosclerotic plaque samples analyzed contained higher levels of 8-epi PGF\(_{2\alpha}\) and IPF\(_{2\alpha}\)-I than the healthy vessels. Preoperatively, all of the specimens had the appearance of fibrocalcific plaques on carotid ultrasound. The levels of 8-epi PGF\(_{2\alpha}\) in atherosclerotic plaque obtained at endarterectomy ranged from 1.310 to 3.450 pmol/μmol phospholipid, with a median of 2.25 pmol/μmol phospholipid. The corresponding values in the normal vessels ranged from 0.045 to 0.115 pmol/μmol phospholipid with a median of 0.090 pmol/μmol phospholipid (P < 0.001) (Fig. 1). Levels of 8-epi PGF\(_{2\alpha}\) in specimens obtained at
autopsy ranged from 1.85 to 3.60 in the atherosclerotic segments and from 0.060 to 0.150 pmol/μmol phospholipid in the corresponding normal intimal segments. The levels of IPF2α-I in atherosclerotic plaques obtained at endarterectomy were higher than those of 8-epi PGF2α and ranged from 5.6 to 13.8 pmol/μmol phospholipid, with a median of 9.00 pmol/μmol phospholipid. The corresponding values in the normal vessels ranged from 0.16 to 0.44 pmol/μmol phospholipid with a median of 0.28 pmol/μmol phospholipid (P < 0.001) (Fig. 2). IPF2α-I levels in the autopsy specimens ranged from 6.50 to 10.30 in the atherosclerotic segments and 0.10 to 0.72 pmol/μmol phospholipid in the corresponding normal intimal segments. A direct correlation was found between the levels of the two isoprostanes in the atherosclerotic plaques (r = 0.80, P < 0.0001) obtained at atherectomy (Fig. 3). The clinical characteristics of the patients undergoing endarterectomy are represented in Table I. No correlation was observed between the levels of 8-epi PGF2α in plaque and fasting plasma concentrations of cholesterol or triglycerides (Table II). No association was evident between the increment in 8-epi PGF2α and IPF2α-I in the plaque and history of smoking habit, diabetes, or high blood pressure (Table II). 5 out 12 patients undergoing endarterectomy were taking aspirin. No significant difference in 8-epi PGF2α levels was observed between patients taking aspirin [median(range), 2.30(1.31–3.45)] and those who did not [2.25(1.54–3.01) pmol/μmol phospholipid, P =

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (yr)</th>
<th>Total cholesterol (mg/dl)</th>
<th>Total triglycerides (mg/dl)</th>
<th>High blood pressure</th>
<th>NIDD</th>
<th>Smokers</th>
<th>Carotid stenosis (%)</th>
<th>8-epi PGF2α (pmol/μmol phospholipid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>213</td>
<td>179</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>70%</td>
<td>2.950</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>248</td>
<td>200</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>60%</td>
<td>1.540</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>191</td>
<td>121</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>90%</td>
<td>3.450</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>200</td>
<td>69</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>80%</td>
<td>1.850</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>230</td>
<td>191</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>75%</td>
<td>2.110</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>264</td>
<td>220</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>95%</td>
<td>2.250</td>
</tr>
<tr>
<td>7*</td>
<td>76</td>
<td>210</td>
<td>180</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>70%</td>
<td>2.700</td>
</tr>
<tr>
<td>8*</td>
<td>70</td>
<td>205</td>
<td>190</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>80%</td>
<td>1.310</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>195</td>
<td>170</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>75%</td>
<td>1.850</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>220</td>
<td>135</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>70%</td>
<td>2.250</td>
</tr>
<tr>
<td>11</td>
<td>58</td>
<td>185</td>
<td>210</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>80%</td>
<td>3.010</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>205</td>
<td>200</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>90%</td>
<td>2.850</td>
</tr>
</tbody>
</table>

All patients were males and had suffered transient ischemic attacks. Total cholesterol and triglycerides were measured after 12 h of fasting. High blood pressure was defined as a resting, supine systolic blood pressure > 150 mmHg and a diastolic blood pressure > 95 mmHg. All the endarterectomy specimens had evidence consistent with fibrocalcific plaques on a carotid duplex scan. The extent of atherosclerosis was assessed from medical records, clinical symptoms, and by echo-Doppler technique. *These patients also suffered from clinically evident peripheral vascular disease (II degree, La Fontaine). NIDD, non–insulin-dependent diabetes.
0.9]. The same was true for IPF_{2α}-I (data not shown). To determine if postexcision procedures artifactually produced 8-epi PGF_{2α} or IPF_{2α}-I from arachidonyl-containing phospholipids in the tissue, we incubated [H₃]arachidonic acid (10 µg) with the plaque at the time of the acquisition. No formation of [H₃]8-epi PGF_{2α} or [H₃]IPF_{2α}-I during processing was detected (data not shown).

Immunohistochemistry. Plaques examined were character-

Figure 4. (A–F) Immunostaining for 8-epi PGF_{2α} and cell phenotype in human carotid atherosclerotic plaque. Sections were prepared as described in Methods, and stained with the avidin-biotin-peroxidase complex. The presence of the antigen recognized by the primary antibody is indicated by a brown substrate. (A) Marked cytoplasmic positivity for anti–8-epi PGF_{2α} is observed particularly in the foam cells near the lipid necrotic core (asterisk) and adjacent to cholesterol crystals (arrows) (×50). (B) Negative control, with a rabbit preimmune serum, in the area of the plaque near the lipid necrotic core (×100). (C) Higher power view of A that represents the area of the plaque near the cholesterol crystals in which macrophages, foam cells, and a multinucleated giant cell were positive for the anti–8-epi PGF_{2α} antibody (×200). (D) Foam cells strongly positive for the anti–8-epi PGF_{2α} antibody (×200). (E) Serial section of A near the necrotic lipid core (asterisk) and cholesterol crystals (arrow) stained with the anti–human monocyte/macrophage CD68 antibody. Some of the cells that were positive for the anti–8-epi PGF_{2α} antibody are positive for CD68 antibody (×60). (F) A view of E at higher magnification (×200). The cells are positive for CD68 antibody (×200). (G–L) Immunoreactivity for 8-epi PGF_{2α} in the fibrous cap of the human atherosclerotic plaque. (G) A positive reaction for the anti–8-epi PGF_{2α} antibody is detected in smooth muscle cells as well as in elongated and roundish foam cells (×200). (H) A serial section of G stained with anti–CD68 antibody, specific for human monocyte/macrophage. Some of the cells positive for anti–8-epi PGF_{2α} antibody are positive for anti–CD68 antibody (×200). (I) A serial section of G stained with the anti–α-smooth muscle actin antibody. Some of the cells positive for anti–8-epi PGF_{2α} antibody are positive for anti–α-smooth muscle actin antibody (×200). (L) Immunostaining for the anti–8-epi PGF_{2α} antibody is less evident in the smooth muscle cells of the tunica media (×200). Sections G–I are obtained serially at slightly different levels from the same area.
ized by the presence of an atheromatous core of variable size with cholesterol clefts and lipid droplets. The core was covered by a fibrous cap, consisting of smooth muscle cells and interstitial tissue, often infiltrated by a variable number of macrophage-like foam cells. Such foam cells were clustered close to the lipid necrotic core, together with lymphocytes and newly formed blood vessels. Immunohistochemical studies with the anti–8-epi PGF$_{2\alpha}$ antibody revealed immunoreactivity in all of the plaques analyzed. Marked cytoplasmatic positivity for 8-epi PGF$_{2\alpha}$ was observed in the cells near the lipid necrotic core (Fig. 4 A, asterisk) and in approximation to cholesterol crystals (Fig. 4 A, arrows). No immunostaining was detected when a preimmune rabbit serum was used as a control (Fig. 4 B). No immunoreactivity was detected when the primary antibody was omitted (data not shown). Foam cells and macrophage-like cells were strongly positive for the anti–8-epi PGF$_{2\alpha}$ antibody (Fig. 4, C and D). Serial sections stained with CD68 antibody, specific for a larger family of monocytes/macrophages, demonstrated that some of the cells positive for anti–8-epi PGF$_{2\alpha}$ antibody were also positive for CD68 antibody (Fig. 4, E and F). 8-epi PGF$_{2\alpha}$ immunostaining was also detected in the fibrous cap of the atherosclerotic plaques (Fig. 4, G–L). A positive reaction to the anti–8-epi PGF$_{2\alpha}$ antibody was detected in what appeared to be smooth muscle cells as well as in elongated and roundish foam cells (Fig. 4 G). Sections close to the fibrous cap stained with anti-CD68 or anti-α-smooth muscle actin antibodies, confirming that some of the cells positive for anti–8-epi PGF$_{2\alpha}$ were either macrophages or smooth muscle cells (Fig. 4, H and I). Immunostaining for the anti–8-epi PGF$_{2\alpha}$ antibody was less commonly observed in the smooth muscle cells of the intima media (Fig. 4 L).

Discussion

8-epi PGF$_{2\alpha}$ and IPF$_{2\alpha}$-I are prostaglandin F$_{2\alpha}$ isomers formed in a free radical-catalyzed manner. F$_{2\alpha}$-isoprostanes are members of a larger family of cicosanoid isomers produced from arachidonic acid in this way (17, 18). 8-epi PGF$_{2\alpha}$, at least, exhibits biological activity in vitro. It is a potent vasoconstrictor, it induces platelet shape change, and is a mitogen (32–35), although enzymatic formation is probably a trivial contributor to overall 8-epi PGF$_{2\alpha}$ levels (25, 37, 38), although enzymatic formation is probably a trivial contributor to overall 8-epi PGF$_{2\alpha}$ levels. Artificial formation of these isoprostanes in vascular tissue ex vivo during sample preparation was excluded, since deuterated isoprostane species were not formed despite addition of [H$_4$]arachidonic acid to the samples at initiation of the preparation procedure. Although healthy carotid tissue is unavailable to compare with the endarterectomy specimens, we performed a comparative analysis of “atherosclerotic” and “normal” regions of carotid arteries obtained at autopsy. Both F$_{2\alpha}$-isoprostanes were significantly higher in the atherosclerotic segments than in uninvolved areas. The possibility of postmortem changes in the autopsy specimens cannot be excluded. However, major artifacts are unlikely, as the isoprostane levels in the “uninvolved” postmortem samples were similar to those obtained from apparently healthy vessels obtained at the time of heart transplant.

We confirmed the presence of 8-epi PGF$_{2\alpha}$ by immunocalizing this isoprostane in histological sections of endarterectomy specimens. Previous studies have demonstrated that macrophage rich–lesions from hypercholesterolemic rabbits exhibit predominantly cell-associated immunostaining with antibodies that recognize protein-bound lipid products (49, 50). Indeed, we found intense intracellular immunostaining for 8-epi PGF$_{2\alpha}$ in the region of the plaque close to the lipid necrotic core. This colocalized with immunostaining for an antibody directed against the specific monocyte/macrophage epitope, CD68 (30). This region of the atherosclerotic lesion is a specific representative of this class of compounds. We have observed increased excretion of 8-epi PGF$_{2\alpha}$ in a variety of clinically distinct settings, which are thought to be associated with oxidant stress (21, 22, 45–47).

The present studies extend these observations by demonstrating the presence of F$_{2\alpha}$-isoprostanes in a human tissue in which oxidative modification of LDL is presumed to occur, the atherosclerotic plaque. Directional atherectomy has afforded the opportunity to study constituents of atherosclerotic plaque (48). Given the expression of epitopes reflective of oxidative modification of LDL in human carotid plaques (13), we sought evidence for F$_{2\alpha}$-isoprostanes. The results presented here show for the first time that two distinct isoprostanes, 8-epi PGF$_{2\alpha}$ and IPF$_{2\alpha}$-I, are present in human atherosclerotic lesions. Both isoprostanes were abundant in all plaques analyzed, even though interindividual variability was apparent. By contrast, little was found in macroscopically uninvolved vascular tissue obtained from patients undergoing heart transplantation or from uninvolved segments of carotid artery obtained at autopsy. Although the transplant patients and autopsy cases were somewhat younger (43–67 yr) than those undergoing endarterectomy (54–76 yr), no age-dependent variation in 8-epi PGF$_{2\alpha}$ levels or IPF$_{2\alpha}$-I was observed. Similarly, despite the theoretical contribution from COX activation to 8-epi PGF$_{2\alpha}$, no difference in the plaque content of this isoprostane was observed between patients who were taking aspirin and those who were not.

These observations, together with the close correlation between plaque content of 8-epi PGF$_{2\alpha}$ and IPF$_{2\alpha}$-I, strongly suggest that lipid peroxidation largely, if not completely, accounts for the 8-epi PGF$_{2\alpha}$ content of plaque tissue.

The presence of 8-epi PGF$_{2\alpha}$ and IPF$_{2\alpha}$-I in human plaque is consistent with the time-dependent formation of F$_{2\alpha}$-isoprostanes in LDL which is oxidized in vitro (20). Indeed, we have demonstrated recently that coincubation of zymosan-stimulated human monocytes with LDL in vitro results in marked, free radical–catalyzed formation of 8-epi PGF$_{2\alpha}$ (25). Artifactual formation of these isoprostanes in vascular tissue ex vivo during sample preparation was excluded, since deuterated isoprostane species were not formed despite addition of [H$_4$]arachidonic acid to the samples at initiation of the preparation procedure. Although healthy carotid tissue is unavailable to compare with the endarterectomy specimens, we performed a comparative analysis of “atherosclerotic” and “normal” regions of carotid arteries obtained at autopsy. Both F$_{2\alpha}$-isoprostanes were significantly higher in the atherosclerotic segments than in uninvolved areas. The possibility of postmortem changes in the autopsy specimens cannot be excluded. However, major artifacts are unlikely, as the isoprostane levels in the “uninvolved” postmortem samples were similar to those obtained from apparently healthy vessels obtained at the time of heart transplant.
thought to be a locus for monocyte recruitment (50, 51) and degradation of the extracellular matrix by metalloproteinases released from these cells has been thought to contribute to plaque instability (52). 8-epi PGF\(_2\alpha\) was also detected in the tunica intima and tunica media, but not in the adventitia. Immunoreactivity was not detected in the intima associated with the endothelial cells. Rather, it was specifically localized in the subendothelium, associated with roundish and elongated foam cells. Immunohistochemical staining of these cells indicated that they were macrophages and vascular smooth muscle cells. Consistent with the likelihood that immunolocalization of 8-epi PGF\(_2\alpha\) would reflect an intracellular oxidative process, we failed to detect its formation extracellularly. Both smooth muscle cells and monocyte/macrophages may take up LDL and oxidize it (53, 54) in vitro. This process is associated with considerable generation of isoprostanes (25). These ex vivo findings suggest that similar events are likely to persist in vivo. It is unknown if this, or other isoprostanes, may contribute to the evolution of plaque morphology, although as 8-epi PGF\(_2\alpha\) is a mitogen and a vasoconstrictrior, this possibility might be investigated. Irrespective of their functional importance in atherogenesis, quantitation of isoprostanes in urine, plasma, and now in tissue may be used to guide rational dose selection of antioxidant therapy in humans.

Acknowledgments

This work was supported by grants from the National Institutes of Health (HL-54500 to G.A. FitzGerald) and the Consiglio Nazionale delle Ricerche (0615295.022984.04 to L. Juliano). Dr. FitzGerald is the Robbinate Foundation Professor of Cardiovascular Medicine.

References

dependent formation of the isoprostane, 8-epi PGF$_{2\alpha}$, J. Biol. Chem. 270:9800–9808.

