Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells

Kip A. West,1 John Brognard,1 Amy S. Clark,1 Ilona R. Linnoila,2 Xiaowei Yang,1 Sandra M. Swain,1 Curtis Harris,3 Steven Belinsky,4 and Phillip A. Dennis1

1Cancer Therapeutics Branch, 2Cell and Cancer Biology Branch, and 3Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA 4Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA

Tobacco-related diseases such as lung cancer cause over 4.2 million deaths annually, with approximately 400,000 deaths per year occurring in the US. Genotoxic effects of tobacco components have been described, but effects on signaling pathways in normal cells have not been described. Here, we show activation of the serine/threonine kinase Akt in nonimmortalized human airway epithelial cells in vitro by two components of cigarette smoke, nicotine and the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Activation of Akt by nicotine or NNK occurred within minutes at concentrations achievable by smokers and depended upon α3- or α4-containing or α7-containing nicotinic acetylcholine receptors, respectively. Activated Akt increased phosphorylation of downstream substrates such as GSK-3, p70S6K, 4EBP-1, and FKHR. Treatment with nicotine or NNK attenuated apoptosis caused by etoposide, ultraviolet irradiation, or hydrogen peroxide and partially induced a transformed phenotype manifest as loss of contact inhibition and loss of dependence on exogenous growth factors or adherence to ECM. In vivo, active Akt was detected in airway epithelial cells and lung tumors from NNK-treated A/J mice, and in human lung cancers derived from smokers. Redundant Akt activation by nicotine and NNK could contribute to tobacco-related carcinogenesis by regulating two processes critical for tumorigenesis, cell growth and apoptosis.

decision to undergo apoptosis will protect the organism from further carcinogenic events occurring in the damaged cell. In contrast, if adducts persist without the execution of apoptosis, mutations in key genes such as p53, p16, or K-ras can accumulate, culminating in tumor formation. Therefore, identifying mechanisms that promote cellular survival in the setting of DNA damage might elucidate critical steps in carcinogenesis.

In the studies described within, we demonstrate an early biochemical effect of tobacco components in normal human lung epithelial cells: activation of the PI3K/Akt pathway. To test activation of Akt in an in vitro model system, we established two sets of primary human airway epithelial cell cultures: normal human bronchial epithelial cells (NHBEs) derived from large airways, which are the precursor cells for squamous cell carcinomas; and small airway epithelial cells (SAECs), which are the precursor cells for adenocarcinomas. In each cell type, two components of tobacco were tested: nicotine, the addictive component of tobacco and the precursor to many tobacco carcinogens; and NNK, a potent, tobacco-specific carcinogen. Nicotine or NNK activated Akt in NHBEs and SAECs at nanomolar doses within minutes. Multiple α and β subunits of nicotinic acetylcholine receptors (nAChRs), which bind nicotine and NNK, were expressed in NHBEs and SAECs. Using pharmacologic inhibitors, we showed that nicotinic activation of Akt depends upon PI3K and specific nAChRs. Once activated by tobacco components, Akt increased phosphorylation of downstream substrates, increased cellular survival, and conferred some properties of transformed cells. We extended these studies by showing activation of Akt in vivo in NNK-treated A/J mice and in human lung cancers from smokers. Our studies are consistent with the hypothesis that carcinogens promote tumorigenesis through both biochemical and genetic mechanisms.

Methods

Cell culture. Nonimmortalized NHBEs and SAECs (Cambrex Bioscience, Walkersville, Maryland, USA) were maintained in culture with growth supplements (unless otherwise indicated) according to the manufacturer’s recommendations. Lot numbers used for NHBE studies were 1131, 2095, and 1452. The lot number for the SAECs was 0894. All lots were derived from nonsmokers.

Pharmacologic treatments. For time-dependent induction of Akt phosphorylation, 100 μM nicotine (Sigma-Aldrich, St. Louis, Missouri, USA) or 1 μM NNK (ChemSyn Laboratories, Lenexa, Kansas, USA) was used. Dose-response curves were generated at 60 minutes for NHBEs and 45 minutes for SAECs. To assess phosphorylation of downstream substrates, 10 μM nicotine was added for 60 minutes or 1 μM NNK was added for 45 minutes. For competition in kinase assays, 10 μM LY294002 (Sigma-Aldrich), 10 μM dihydro-β-erythroidine (DHβE; Sigma-Aldrich), or 100 nM α-bungarotoxin (α-BTX; Sigma-Aldrich) was added 30 minutes before nicotine or NNK. To assess the role of different nAChRs in mediating Akt activity, 10 μM nicotine was added for 60 minutes with or without 30 minutes’ pretreatment with 10 μM LY294002, 1 μM α-BTX, 1 μM methylallylactonine (MLA; Sigma-Aldrich), 50 μM mecamylamine (MCA; Sigma-Aldrich), or 10 μM DHβE. To confirm the role of α, nAChRs in activating Akt, 10 μM α-atoxan (α-ATX; Sigma-Aldrich) was added to NHBEs for 30 minutes with or without 30 minutes’ pretreatment with 10 μM DHβE. Inhibition studies were also performed with 1 μM NNK (45 minutes), except that lower doses of nAChR antagonists were used (100 nM α-BTX, 100 nM MLA, 10 μM MCA). For examination of the effects on apoptosis, NHBEs were pretreated for 45 minutes with 10 μM LY294002, and/or treated for 45 minutes with 10 μM nicotine, and/or treated for 24 hours with 20 μM etoposide (Calbiochem-Novabiochem Corp., La Jolla, California, USA). Cells were harvested for flow cytometry as described previously (4).

Immunoblotting. After the various pharmacologic treatments described above, cell extracts were prepared as described previously (4). Protein yield was quantified using the Bio-Rad DC protein assay kit (Bio-Rad Laboratories Inc., Hercules, California, USA). Equivalent protein was loaded, and the lysates were separated by SDS-PAGE and transferred to nitrocellulose membranes. Equivalent loading was confirmed by staining of membranes with fast green. Membranes were blocked for 1 hour in blocking buffer (1× Tris buffered saline [TBS], 5% milk, 0.20% Tween-20) and placed in primary antibody (1× TBS, 5% milk, 0.10% Tween-20, 1:1,000 antibody) overnight at 4°C. Membranes were washed three times in wash buffer (0.10% NP40, 0.10% Tween-20, 1× TBS). Primary antibody was detected using horseradish peroxidase–linked goat anti-mouse or goat anti-rabbit IgG antibodies and visualized with the enhanced chemiluminescent detection system ECL (Amersham Pharmacia Biotech, Amersham, United Kingdom). All phosphospecific antibodies were from Cell Signaling Technology Inc. (Beverly, Massachusetts, USA) and were used at 1:1,000 dilutions. Immunoblot experiments were performed at least three times.

Akt kinase assays. In vitro kinase assays using Akt kinase assay kits (Cell Signaling Technology Inc.) were performed as described previously (4) after 10 μM nicotine or 1 μM NNK administration. Ten micromolar LY294002, 10 μM DHβE, or 100 nM α-BTX was added 45 minutes before nicotine or NNK, and samples were harvested 45 minutes later.

RT-PCR. Total-RNA extraction and PCR reaction mixtures were as described previously (4). Subunit-specific primers for nAChRs were synthesized by Sigma-Genosys (The Woodlands, Texas, USA) with the following sequences: α5: 5'-CGTCTGGTGGCAAAGCT-3' (sense), 5'-CCGCTCTCCATGAGT-3' (antisense); α5: 5'-CCGGTG- GTCTTCTGATGA-3' (sense), 5'-CCGCTCTCCATGAGT-3' (antisense) (5); α5: 5'-CCATGCTCCAGCTAGG-3' (antisense) (5), 5'-GTCCTGAGGTCTCAG-3' (antisense) (6); α5: 5'-CTCTGAAACCCACTC-3' (sense), 5'-AGCAGGCTCCTCGG-
Nicotine and NNK induce Akt phosphorylation. To investigate whether components of tobacco could activate Akt, we chose to test nicotine and NNK, a nicotine-derived, tobacco-specific nitrosamine with high carcinogenic potential (14), from over 3,500 compounds in the particulate fraction of tobacco smoke. When added to NHBEs or SAECs in vitro, nicotine increased Akt phosphorylation at S473 and T308 in a time- and dose-dependent manner (Figure 1, a and b). Although stimulation of Akt phosphorylation by nicotine in each cell type was evident within 5 minutes, the patterns of S473 and T308 phosphorylation were different over time (Figure 1a, upper panels). Nicotine maximally increased S473 phosphorylation at 60 minutes in NHBEs and 30 minutes in SAECs, and increased S473 phosphorylation was maintained for 24 hours (see Figure 4a, inset). Phosphorylation of T308 by nicotine was more transient, reaching a maximum at 30 minutes in NHBEs and 15 minutes in SAECs, with decreases observed at subsequent time points. In experiments designed to test dose-dependent responses to nicotine, nicotine increased Akt phosphorylation in both cell types with doses as low as 10–100 nM, but maximum phosphorylation was observed at 1–10 µM (Figure 1b). These concentrations are achievable in smokers, since average steady-state serum concentrations of nicotine have been reported at 200 nM, and acute increases to 100–100 µM in serum or to 1 mM at the mucosal surface immediately after smoking have been reported (15–17).
The tobacco-specific carcinogen NNK stimulated Akt phosphorylation with different kinetics and was more potent (Figure 1, c and d). The time course of NNK-induced Akt phosphorylation was similar for NHBEs and SAECs and for both sites of phosphorylation (Figure 1c). For the first 10–15 minutes, we observed decreased S473 and T308 phosphorylation after NNK administration, followed by increased S473 and T308 phosphorylation that was maximal at 60 minutes. Unlike nicotine induction of S473 phosphorylation, which was maintained for at least 24 hours, NNK-induced S473 phosphorylation was maintained for 8 hours (data not shown). NNK dose-dependence was also similar for NHBEs and SAECs. Increased phosphorylation of both sites was observed with doses as low as 1 nM (Figure 1d), with maximal induction at 100 nM for NHBEs and 10 nM for SAECs. Although these data showed that nicotine or NNK could induce Akt activation in NHBEs and SAECs, the differences in dose- and time-dependence of nicotine- and NNK-induced Akt phosphorylation raised the possibility that these compounds might use different mechanisms to activate Akt.

Effects of nicotine or NNK on Akt kinase activity and phosphorylation of downstream substrates. To confirm that increased Akt phosphorylation at S473 and T308 was indicative of increased kinase activity, we measured the phosphorylation of an exogenous peptide substrate, glycogen synthase kinase-3α/β (GSK-3α/β), after nicotine or NNK administration (Figure 2a). Nicotine or NNK increased Akt kinase activity in a PI3K-dependent manner, since the PI3K inhibitor LY294002 (18) inhibited induction of Akt activity by nicotine or NNK. To demonstrate that Akt activation propagated signaling cascades within NHBEs, and to identify substrates or cellular processes that might be affected by nicotine- or NNK-mediated Akt activation, we assessed phosphorylation of five proteins previously identified to be downstream of Akt at the time of maximal nicotinic Akt induction: a member of the forkhead transcription factor family (FKHR), GSK-3α and -3β, a ribosomal kinase (p70S6K), and a binding protein for eukaryotic translation initiation factor 4E (4EBP-1) (Figure 2b). We observed different patterns of phosphorylation induced by nicotine or NNK. Nicotine increased the phosphorylation of all downstream substrates, but phosphorylation of GSK-3α and FKHR was induced most. NNK increased phosphorylation of all downstream substrates except FKHR and had the greatest effects on phospho-
Table 1
RT-PCR expression of nAchR subunits

<table>
<thead>
<tr>
<th>nAchR</th>
<th>SAEC</th>
<th>NHBE</th>
<th>H157</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α2</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α3</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>α4</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α6</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β2</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>β3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

**Table 1.** SAECs selectively express α2 and α3 subunits, and NHBEs selectively express α1 and α3 subunits. Both cell types express α3-α10, β2, and β4 subunits. These results imply that SAECs and NHBEs express similar homopentamer nAchRs containing α3-α10 subunits but likely express a different repertoire of heteropentamers: namely α3β4, α3β3α5, or α3β2 nAchRs in NHBEs, and α3β2, α3β3, α3β5, or α3β3 nAchRs in SAECs.

**Effects of nicotinic antagonists on Akt phosphorylation.** To determine which nAchRs might facilitate nicotinic activation of Akt, we treated NHBEs and SAECs with pharmacologic inhibitors directed against specific α subunit–containing nAchRs and measured Akt activation after treatment with nicotine or NNK. (LY294002 served as a positive control in these studies and inhibited both basal and nicotine-induced S473 phosphorylation.) In NHBEs and SAECs (Figure 3a, upper left and lower panels), the α7 antagonist α7-BTX (25), the α7 antagonist MLA, or the nonspecific nAchR antagonist MCA did not attenuate nicotine-induced Akt phosphorylation, either at lower doses where specificity is greatest (data not shown) or at the higher doses shown. In contrast, the α3/α4 antagonist DHβE (26, 27) inhibited nicotine-induced Akt phosphorylation (Figure 3a) and activity (Figure 2a, left panels), suggesting that nAchRs containing α3 or α4 subunits (in NHBEs or SAECs, respectively) mediate Akt induction by nicotine. Increased Akt phosphorylation was occasionally observed with addition of nicotinic antagonists alone, and this may be related to the observation that nicotinic antagonists such DHβE and MLA can cause a compensatory increase in expression and activation of other, nontargeted nAchRs (28). The role of α3-containing nAchRs in nicotine-induced Akt phosphorylation in NHBEs was further supported by the observation that a specific α3 nicotinic agonist, α-ATX (29), increased Akt phosphorylation in NHBEs, and that this effect was inhibited by DHβE (Figure 3a, upper right panels).

**Figure 3**
Effect of nAchR antagonists on nicotinic activation of Akt in NHBEs and SAECs. (a) Nicotine. Only LY294002 or the α3/α4 antagonist DHβE inhibited nicotine-induced Akt phosphorylation in NHBEs (upper left panels) and SAECs (lower panels). To confirm the role of α3 nAchRs in activating Akt in NHBEs, α-ATX (an α3 agonist) was added to NHBEs with or without DHβE (upper right panels). (b) NNK. In contrast to nicotine-mediated Akt phosphorylation, NNK-induced phosphorylation in NHBEs was inhibited by LY294002, the α3 antagonists α-BTX and MLA, and the nonspecific inhibitor MCA. DHβE was ineffective.
In contrast to nicotine-mediated activation of Akt, NNK-induced Akt phosphorylation was inhibited by the α7-specific antagonists α-BTX and MLA, as well as by MCA. DHβE was ineffective, suggesting that NNK activates Akt through α7-containing nAchRs but not through α3- or α4-containing nAchRs (Figure 3b). Further support for the role of α7 nAchRs in mediating NNK-induced Akt activation is suggested by the dose and kinetic similarities of NNK-induced Akt phosphorylation in NHBEs and SAECs, the fact that α7 is a shared functional α subunit between NHBEs and SAECs, and the fact that α7 antagonists inhibited NNK-induced Akt phosphorylation and kinase activity (Figure 2a, right panels) at low doses (100 nM) that are specific for α7 inhibition. Thus, nicotine and NNK likely use separate nAchRs to activate Akt.

Nicotinic activation of Akt increases epithelial cell survival. Because tobacco carcinogens promote tumor formation through damage to DNA in normal cells by forming DNA adducts and causing oxidative damage, we tested whether nicotinic activation of Akt would protect airway epithelial cells against modalities that cause DNA damage and induce apoptosis. When NHBEs were exposed to a topoisomerase II inhibitor, etoposide, apoptosis increased from 2% to 44%, as measured by the formation of subgenomic DNA detected by flow cytometry (Figure 4a). In the presence of nicotine, etoposide-induced apoptosis was decreased by 61%. LY294002 attenuated the protective effects of nicotine, and the effects of nicotine and/or LY294002 on apoptosis correlated well with changes in Akt phosphorylation detected at 24 hours (Figure 4a, inset). NNK also attenuated etoposide-induced apoptosis, but protection was only evident at time points at which Akt activation was maintained (up to 8 hours; data not shown). To test UV radiation (Figure 4b), we used an apoptosis assay that measures histone release from apoptotic cells and is more sensitive than measures of subgenomic...
exhibit phosphorylated Akt (Figure 6a). In contrast, A/J-embedded tissues. A/J mice treated with PBS did not show phosphorylation in vivo. (a) Lung tissue, including epithelial lining of airway lumen (Lu), from A/J mice given PBS orally was harvested and processed for immunohistochemistry with phosphospecific S473 antibodies as described. No staining is detectable. (b) Lung tumor (Tu) and epithelial lining of airway lumen (Lu) from A/J mice given NNK orally exhibit staining with phosphospecific S473 antibodies against S473 in immunohistochemical experiments on formalin-fixed, paraffin-embedded tissues. A/J mice treated with PBS did not exhibit phosphorylated Akt (Figure 6a). In contrast, A/J mice treated with NNK showed phosphorylated Akt in airway epithelial cells, as well as in NNK-induced tumors (Figure 6b). When protein extracts were prepared from lung tissue derived from PBS-treated or NNK-treated mice and immunoblotting was performed for phosphorylated and total Akt levels, NNK-treated mice showed a 5.5-fold increase in the ratio of phosphorylated Akt to total Akt compared with PBS-treated mice (Figure 6c). These data show that exposure to NNK induces Akt activity in vivo.

We extended these studies by evaluating Akt phosphorylation in human lung cancer specimens derived from smokers. Akt phosphorylation was detected in ten of ten specimens. Staining varied from low to high levels in tumor tissues, but virtually none was detected in surrounding stroma (see representative specimen, Figure 6d). Because we were unable to obtain lung tissues from nonsmokers, we were unable to compare the levels of phosphorylated Akt in smokers versus nonsmokers. Staining with the phosphospecific S473 antibodies was completely abrogated by the inclusion of competing phosphopeptide (data not shown), indicating specificity of the phosphospecific Akt antibodies. These data are consistent with the detection of active Akt in lung tissues from NNK-treated A/J mice and show that active Akt can be detected in lung cancers derived from smokers.

Akt phosphorylation in NNK-treated A/J mice and in human lung cancer. To determine whether nicotinic activation of Akt was observable in vivo, we assessed lung tissue derived from the A/J strain of mice, which is prone to develop lung tumors but which, with administration of NNK, will develop them at earlier time points with more aggressive histologies (32). We used phosphospecific antibodies against S473 in immunohistochemical experiments on formalin-fixed, paraffin-embedded tissues. A/J mice treated with PBS did not exhibit phosphorylated Akt (Figure 6a). In contrast, A/J mice treated with NNK showed phosphorylated Akt in airway epithelial cells, as well as in NNK-induced tumors (Figure 6b). When protein extracts were prepared from lung tissue derived from PBS-treated or NNK-treated mice and immunoblotting was performed for phosphorylated and total Akt levels, NNK-treated mice showed a 5.5-fold increase in the ratio of phosphorylated Akt to total Akt compared with PBS-treated mice (Figure 6c). These data show that exposure to NNK induces Akt activity in vivo.

We extended these studies by evaluating Akt phosphorylation in human lung cancer specimens derived from smokers. Akt phosphorylation was detected in ten of ten specimens. Staining varied from low to high levels in tumor tissues, but virtually none was detected in surrounding stroma (see representative specimen, Figure 6d). Because we were unable to obtain lung tissues from nonsmokers, we were unable to compare the levels of phosphorylated Akt in smokers versus nonsmokers. Staining with the phosphospecific S473 antibodies was completely abrogated by the inclusion of competing phosphopeptide (data not shown), indicating specificity of the phosphospecific Akt antibodies. These data are consistent with the detection of active Akt in lung tissues from NNK-treated A/J mice and show that active Akt can be detected in lung cancers derived from smokers.

Figure 6
Detection of Akt phosphorylation in vivo. (a) Lung tissue, including epithelial lining of airway lumen (Lu), from A/J mice given PBS orally was harvested and processed for immunohistochemistry with phosphospecific S473 antibodies as described. No staining is detectable. (b) Lung tumor (Tu) and epithelial lining of airway lumen (Lu) from A/J mice given NNK orally exhibit staining with phosphospecific S473 antibodies. (c) Quantification of phosphorylated Akt/total Akt in protein extracts derived from lung tissue from PBS- or NNK-injected mice. Quantification of immunoblots was performed using NIH Image software. (d) Phosphorylated Akt in a human lung adenocarcinoma derived from a smoker with a 48-pack-per-year smoking history.
Discussion

Through activation of separate α subunit-containing nAchRs, two components of tobacco, nicotine and NNK, activate one of the best-characterized signaling pathways that promotes cellular survival, the PI3K/Akt pathway. Activation of Akt by nicotine or NNK occurred within minutes but peaked at 45–60 minutes and was maintained for hours. Although the time course of nicotine-induced Akt phosphorylation was brisk, the time course of NNK-induced Akt activation revealed an early decrease in Akt phosphorylation followed by an increase at 45–60 minutes. The mechanism of the transient decrease is unclear, but it raises the possibility that NNK-induced Akt phosphorylation might be a consequence of DNA adduct formation. Previous studies have shown that formation of DNA adducts by a purified α hydroxylation derivative of NNK required 2 hours of incubation with intact cells, which is longer than the time required for Akt activation in our system (33). Thus, Akt activation might precede DNA adduct formation; this would facilitate cellular survival.

The fact that two tobacco components use different nAchRs to activate the same signaling pathway raises mechanistic questions. What is the mechanism of coupling of nAchRs to the PI3K/Akt pathway? Do different nAchRs use the same mechanism to activate Akt? Although there is no precedent for activation of Akt by nAchRs use the same mechanism to activate Akt? 

Although nAchR subunit expression is different depending on whether the cells were derived from proximal airways (NHBEs) or distal airways (SAECs). To our knowledge, this is the most extensive analysis of nAchR subunits in non-neuronal cells, and assembly of multiple nAchR subunits into functional nAchRs explains the responsiveness of normal human airway epithelial cells to nicotine and NNK. It is unclear whether expression of multiple nAchRs confers increased sensitivity of airway epithelial cells to tobacco components, and whether nAchR-dependent, increased sensitivity of airway epithelial cells to tobacco components might be related to tobacco-related carcinogenesis. Interestingly, the only difference in expression of nAchR subunits between normal airway epithelial cells and lung cancer cells was observed with selective expression of α3, an nAchR subunit heretofore only described in inner ear neuromast epithelium (38, 39), in normal airway epithelial cells.

Multiple lines of evidence support our hypothesis that nicotinic activation of Akt plays a role in lung tumorigenesis. First, activation of Akt through either α3/α4 or α7-containing nAchRs increased normal airway epithelial cell survival under conditions where cell death is a normal physiologic response. Inappropriate epithelial cell survival might foster increased accumulation of DNA adducts, thereby increasing mutational rates in genes such as p53 and Kras that appear critical for lung cancer formation. Second, in addition to enhancing survival, nicotine also partially induced a transformed phenotype in normal airway epithelial cells by decreasing contact inhibition and dependence on exogenous growth factors and adherence to ECM. Third, our ability to detect phosphorylated Akt in NNK-induced murine lung tumors as well as human lung cancers from smokers demonstrates that nicotinic activation of Akt is not limited to cultured primary cells. Interestingly, other studies have shown that nicotine can also affect lung cancer cells in vitro. Nicotine can stimulate the growth of lung cancer cells, suppress apoptosis, and increase phosphorylation of ERK (40–42).

Nicotinic alteration of other cell types may also contribute to lung tumorigenesis. In addition to increasing epithelial cell survival as described in this report, nicotine can stimulate endothelial cell growth and angiogenesis (43). This is relevant because a lung cancer precursor lesion, angiogenic squamous dysplasia (44), was recently described that recapitulates the growth-promoting effects of nicotine on epithelial and endothelial cells in vivo. Whether the angiogenic properties of nicotine require Akt activation is unclear, but multiple angiogenic factors induced by nicotine, including VEGF and angiopoietin (45, 46), require activation of Akt for biologic activity.

Finally, these studies might have therapeutic implications for the 169,000 Americans that will be diagnosed with lung cancer this year and the 90,000,000 Americans who are current or former smokers and are thus at permanent increased risk of developing lung cancer (47). Activation of the PI3K/Akt pathway through nAchRs could be targeted for lung cancer prevention. The fact that phosphorylated Akt was detectable in ten of ten human lung cancers derived from smokers suggests that Akt activation is maintained throughout tumorigenesis and might possibly be necessary for tumor maintenance. Although it is
possible that Akt activation is a late event that is not causally involved in tumor progression, our in vitro data support the contention that it is an early event. Definitive proof will require analysis of lung cancer precursor lesions in smokers. If active Akt can be detected in smokers’ lung cancer precursor lesions, then targeting specific nAChRs or components of the PI3K/Akt pathway might attenuate the various cellular effects of nicotine or NNK, and this could be exploited as a strategy to prevent lung cancer tumorigenesis in high-risk populations. Large clinical trials will soon open to compare the chemopreventive efficacy of two types of drugs that indirectly inhibit Akt activity, farnesyltransferase inhibitors and EGF-R antagonists, in patients at high risk for lung cancer. Changes in phosphorylation of Akt will be measured as a molecular endpoint in these trials. Interestingly, cigarette smoking causes chronic obstructive pulmonary disease (COPD), a risk factor for the development of lung cancer, more often than it causes lung cancer. If Akt activation is an early event in lung tumorigenesis, then it is possible that preventative approaches targeting the PI3K/Akt pathway might affect COPD as well.

Regardless of the timing of Akt activation in the development of lung cancer, the presence of active Akt in human lung cancers suggests that Akt might be a valid target for therapeutic approaches in patients with established NSCLC. Previously, we had demonstrated that inhibition of the PI3K/Akt pathway in NSCLC cells that had high levels of active Akt increased apoptosis (4). Greater-than-additive effects on apoptosis were observed when a small-molecule inhibitor of the PI3K/Akt pathway was combined with traditional forms of chemotherapy. A similar situation might exist in vivo. For lung cancer patients whose tumors have detectable phosphorylated Akt, drugs that inhibit the PI3K/Akt pathway might have clinical utility when used singly or in combination with traditional therapy. The fact that current therapy does not prevent most lung cancer patients from dying of their disease highlights the need for better targets and newer therapies.

Our studies might also have implications for smoking cessation. Nicotine supplementation through patches, nasal sprays, chewing gum, etc., is now widely used to assist in smoking cessation. The steady-state serum concentrations of nicotine achieved with these modalities vary, but transdermal delivery of nicotine is virtually complete and can result in serum concentrations of nicotine that approximate those observed in active smokers (48). Although nicotine per se is not thought to be carcinogenic, the risks of long-term nicotine supplementation are unknown. Our data and those of Heeschen et al. (43) suggest that sustained exposure to nicotine might alter the phenotype of endothelial and/or epithelial cells in undetectable, pre-malignant lesions. Finally, our study focused on the roles of nAChRs and Akt activation in altering airway epithelial cell phenotype as it relates to lung cancer, which is only one of many tobacco-related cancers.

Given that 15% of all cancers worldwide are tobacco-related, nicotinic activation of the PI3K/Akt pathway may contribute to the biology of these cancers as well.

Acknowledgments
The authors would like to thank Elise Bowman, Michael Jung, Theresa Spitzer, and Samantha Streicher for technical assistance, and K. Kellar, L. Neckers, and T. Fojo for helpful discussions and/or review of the manuscript.


