Bone Marrow Transplantation Prolongs Life Span and Ameliorates Neurologic Manifestations in Sandhoff Disease Mice

Francine Norflus,* Cynthia J. Tifft,† Michael P. McDonald,§ Gregory Goldstein,‖ Jacqueline N. Crawley,¶ Alexander Hoffmann,† Konrad Sandhoff,§ Kinuko Suzuki,‖ and Richard L. Proia§

*Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; †Department of Medical Genetics, Children’s National Medical Center, Washington, District of Columbia 20010; ‡Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892; §Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, 53121 Bonn, Germany; and ‖Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599

Abstract

The G\textsubscript{M\textsubscript{2}} gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the G\textsubscript{M\textsubscript{2}} activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of β-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed β-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the G\textsubscript{M\textsubscript{2}} gangliosidoses. (J. Clin. Invest. 1998. 101:1881–1888.) Key words: beta-N-acetylhexosaminidase/metabolism • gangliosidoses/phosphatidylglycerol • blood–brain barrier • Tay-Sachs disease/metabolism • disease models, animal

Introduction

The G\textsubscript{M\textsubscript{2}} gangliosidoses are lysosomal storage disorders caused by impaired degradation of G\textsubscript{M\textsubscript{2}} ganglioside (GalNAc\textsubscript{4} (NeuAca\textsubscript{3}→3)Gal\textsubscript{1}→4Glc\textsubscript{1}→1Cer) and related substrates (reviewed in references 1 and 2). This group of disorders includes Tay-Sachs disease, Sandhoff disease, and the G\textsubscript{M\textsubscript{2}} activator deficiency. In each, G\textsubscript{M\textsubscript{2}} ganglioside and related lipids massively accumulate in neuronal lysosomes, triggering a pathologic process that ultimately results in severe central nervous system (CNS) dysfunction. The clinical phenotypes of the diseases are nearly identical. In the most severe forms, the disease begins during the first year of life. Rapidly progressing neurodegeneration results in death usually by 4 yr of age. There is no effective treatment.

Through targeted disruption of the Hex\textsubscript{b} gene (the mouse gene encoding the β-hexosaminidase β subunit), we have established a mouse model for Sandhoff disease that closely recapitulates the human disorder (3). These animals lack β-hexosaminidase A and B activities and, as a consequence, accumulate large amounts of G\textsubscript{M\textsubscript{2}} ganglioside and G\textsubscript{A\textsubscript{2}} glycolipid (GalNAc\textsubscript{4}Gal\textsubscript{1}→4Glc\textsubscript{1}→1Cer) throughout the CNS. They display a variety of neurologic manifestations including spasticity, muscle weakness, tremor, and ataxia. Death occurs between 4 and 4-1/2 mo of age.

Bone marrow transplantation (BMT) has emerged as a potential treatment for some types of lysosomal storage disorders (4–10). It is believed that donor cells, primarily of the mono- cyte-macrophage-microglia lineage, repopulate target organs and provide a source of the missing lysosomal enzyme. In both lysosomal disease patients and corresponding animal models, BMT can produce dramatic improvements in many of the somatic manifestations. However, improvement of CNS function by BMT in lysosomal storage disorders has been more difficult to assess. Dramatically different results have been obtained depending on the disease or model.

The Sandhoff disease mouse model affords an opportunity to investigate the effect of BMT on a prototypical gangliosidosis with severe CNS dysfunction. In this study, we show that BMT of Sandhoff disease mice with wild-type marrow resulted in increased life span and improved neurologic function. Interestingly, the clinical benefit occurred without an apparent biochemical reduction in total brain G\textsubscript{M\textsubscript{2}} and G\textsubscript{A\textsubscript{2}} glycolipid storage or noticeable morphological changes in neurons, suggesting a complex pathogenic disease process. The results may be important in the design of therapeutic regimes for the treatment of Sandhoff disease and related disorders.

Methods

Experimental animals. The procedures were approved by the National Institute of Diabetes and Digestive and Kidney Diseases and National Institute of Mental Health Animal Care and Use Commit-

1. Abbreviations used in this paper: BMT, bone marrow transplantation; CNS, central nervous system; FACE, fluorophore-assisted carbohydrate electrophoresis; PAS, periodic acid-Schiff; X-Hex, 5-bromo-4-chloro-3-indolyl N-acetyl-β-D-glucosaminide.
cells and four untreated Hexb−/− mice, 4 mo of age. Two 6-mo-old Hexb−/− mice that received wild-type bone marrow cells, their wild-type littermates, and a 4-mo-old untreated Hexb−/− mouse were used for histochemical demonstration of β-hexosaminidase with 5-bromo-4-chloro-3-indolyl N-acetyl-b-D-glucosaminide (X-Hex). Also used for X-Hex histochemistry were selected sections of the brain and spinal cord of untreated Hexb−/− mice and Hexb−/− mice that received wild-type bone marrow cells (50 d and 4 mo old).

All mice were anesthetized and perfused with 4% paraformaldehyde. The brains of the 50-d-old mice were cut sagittally at the midline. The right half of the brain and portions of the liver, spleen, kidney, heart, lung, and rib cartilage were processed for paraffin embedding. One coronal section of the left cerebral hemisphere at the level of the optic chiasm and one sagittal section of the cerebellar vermis, cerebral spinal cord, and cerebral dorsal root ganglion, left trigeminal nerve and ganglion, portions of the liver, spleen, and kidney were processed for plastic resin embedding for semi-thin light microscopic and electron microscopic studies. The remains of the left cerebral and cerebellar hemispheres were processed as serial frozen sections. Frozen sections were also prepared from the cervical spinal cord, left trigeminal nerve and ganglion, portions of liver, spleen, kidney, and rib. The brains of the two 4-mo-old Hexb−/− and the two 7-mo-old BMT-treated Hexb−/− mice were sectioned sagittally and the right half of cerebrum, cerebellum, brainstem, spinal cord at cervical, thoracic, and lumbar levels, eye, optic, trigeminal, and sciatic nerves, bone, skin, liver, spleen, rectum, and kidney were processed for plastic resin embedding for semi-thin section light and electron microscope studies. The same tissues from the right half of the brain and eye, spinal cord, and visceral organs were processed for light microscopic studies. The entire cerebrum, cerebellum, and brainstem of two Hexb−/− mice and two Hexb−/− transplanted with wild-type bone marrow were processed by frozen, semi-sectional serialing. Frozen sections were also prepared from the cervical spinal cord, liver, kidney, and spleen. Paraffin sections were stained with Solochrome and eosin, colloidal iron, Luxol-fast blue and periodic acid-Schiff (PAS) for the nervous system and hematoxylin and eosin, colloidal iron, and PAS for the visceral organs. The brain and tissues from visceral organs for frozen sections were immersed in fixative overnight. After cryoprotection by immersion in 0.1 M phosphate buffer (pH 7.4) containing 20% sucrose, the tissues were snap frozen and sections were stained either by PAS or processed for X-Hex histochemistry for detection of β-hexosaminidase. The procedures for enzyme detection were essentially the same as described (13).

Statistical analysis. Two-group comparisons were made using unpaired *t* tests. Three-group comparisons were made using analysis of variance. Analyses of performance over time were made using repeated-measures ANOVA (RMANOVA). Post-hoc comparisons were made using Bonferroni-corrected *t* tests. ANOVAs (F-ratio, *F*) and *t* tests (*t*) are used to calculate the ratio of between-groups variance to within-group variance. Larger *F* and *t* values indicate greater variability between groups than within groups and thus larger differences between group means. Degrees of freedom (df) for the F-ratio numerator equals the number of groups minus one and, for the denominator, the number of subjects minus the number of groups. Degrees of freedom on RMANOVAS were corrected for sphericity using the Greenhouse-Geisser epsilon: df (corrected) = df * epsilon.

Results

Life span. Sandhoff disease (Hexb−/−) mice, 10–16 d old, were transplanted with bone marrow cells from wild-type 129/SvEv mice. Untreated Hexb−/− animals became moribund from 101 to 139 d after birth, following a rapidly progressive neurodegenerative course (Fig. 1) (3). Hexb−/− mice treated by BMT lived significantly longer (203–254 d after birth) than the untreated mice (*P* < 0.0001). None of the wild-type mice...
Bone Marrow Transplantation in Sandhoff Disease Mice

1883
died during this period. The therapy resulted in a strikingly improved clinical appearance of the mice at a time when the untreated mice were severely affected with disease manifestations. In Fig. 2, a comparison of littermates at 135 d of age illustrates the extremely grave condition of untreated mice. At this terminal stage in the disease, they exhibit muscle wasting, rigidity, and a nearly complete inability to ambulate. In contrast, the littermates receiving BMT were active and mobile and had a normal appearance with the exception of a lighter coat color due to the radiation received as part of the transplant procedure.

Neurologic function. Rotorod performance, a measure of balance and mobility, was determined in the transplanted mice from 13 to 17 wk of age (Fig. 3a). The performance of the wild-type, untreated Hexb−/− and the Hexb−/− mice given BMT differed between the three groups \(F_{2,30} = 111.62, P < 0.0001 \). Post-hoc analysis showed that the rotorod performance of the transplanted mice was significantly better than that of the untransplanted Hexb−/− mice \(t_{19} = 3.48, P = 0.0025 \). The performance of the untreated Hexb−/− mice and the transplanted mice deteriorated significantly over the course of the testing period \(F_{2,10} = 16.68, P = 0.0008 \) for the untreated mice. The ability of the wild-type mice to stay on the rotorod did not change significantly \(F_{2,32} = 0.52, P = 0.668 \) over the testing period, and they performed significantly better than both the Hexb−/− \(t_{18} = 14.98, P < 0.0001 \) and the BMT-treated mice \(t_{23} = 10.44, P < 0.0001 \). To determine whether the radiation received as part of the transplant procedure might have had a detrimental effect on performance, irradiated wild-type mice were transplanted with wild-type bone marrow cells. These mice performed normally on the rotorod, indicating that the radiation does not impair performance (data not shown).

The mice were tested to measure horizontal locomotor activity in a Digiscan automated open field (Fig. 3b). There were significant differences in horizontal activity among the wild-type, untreated Hexb−/−, and the transplanted Hexb−/− mice \(F_{2,30} = 9.40, P = 0.0007 \), and a significant overall decrease in the activity of the mice over the 5-wk testing period \(F_{2,86} = 44.04, P < 0.0001 \), which usually represents habituation to the novelty of the open field. Post-hoc analysis showed that the wild-type mice were significantly more active in the horizontal plane than both the untreated Hexb−/− \(t_{18} = 4.43, P = 0.0003 \) and the transplanted mice \(t_{23} = 2.68, P = 0.013 \). There was no significant difference in aggregate horizontal activity between the transplanted and untreated Hexb−/− mice \(t_{19} = 1.74, P = 0.097 \) over the 5-wk testing period. However, at 16 \(t_{19} = 2.65, P = 0.0157 \) and 17 \(t_{19} = 3.38, P = 0.0032 \) wk

![Figure 1](image1.png)

Figure 1. Survival of Hexb−/− mice after BMT. Hexb−/− mice (n = 10), 10–16 d of age, were transplanted with bone marrow cells from wild-type 129/SvEv mice. These and untreated Hexb−/− mice (n = 10) were monitored daily. They were killed when they were unable to feed or stand.

![Figure 2](image2.png)

Figure 2. Clinical appearance of untreated Hexb−/− mice and Hexb−/− after BMT. Hexb−/− littermates, two untreated and two treated by BMT, were photographed at 135 d of age.
of age, the transplanted mice were significantly more active in the horizontal plane than the untreated Hexb−/− mice. In the radiation control experiment, horizontal activity of the irradiated wild-type mice transplanted with wild-type bone marrow was normal, indicating that the transplant procedure itself did not impair horizontal activity (data not shown).

The righting reflex was measured by turning the mice on their backs and determining the latency for turning themselves upright (Fig. 3c). There were significant differences in the righting reflex across groups measured at 18 wk of age ($F_{2,25} = 35.23, P < 0.0001$). Post-hoc analysis showed that the untreated Hexb−/− mice had a significantly impaired righting reflex compared with both the wild-type ($t_{15} = 6.51, P < 0.0001$) and the Hexb−/− mice receiving BMT ($t_{14} = 5.63, P < 0.0001$). The Hexb−/− mice given BMT were not significantly different from wild-type mice ($t_{13} = 1.01, P = 0.307$). The wild-type and seven of the Hexb−/− mice receiving BMT were retested at 24 wk of age. Although the BMT-treated mice appeared to be more impaired, the difference between the two groups ($t_{17} = 4.20, P = 0.0561$) was not statistically significant. The untreated Hexb−/− mice did not survive to 24 wk of age.

Biochemistry. Sandhoff disease patients excrete oligosaccharides in the urine as a result of an impaired ability to degrade oligosaccharides terminating in N-acetylglucosamine (1, 2). Through FACE analysis (11) of urinary oligosaccharides, we observed that high molecular weight oligosaccharides were abnormally increased in urine of the untreated Hexb−/− mice (Fig. 4). The level of these oligosaccharides was reduced to near normal by BMT treatment.

The BMT-treated mice had dramatically higher levels of β-hexosaminidase in the spleen and liver compared with untreated mice (Fig. 5). Small but statistically significant increases in the level of enzyme in the kidney, brain, and spinal cord were also observed.

Levels of G_{M2} ganglioside and G_{A2} glycolipid were examined in livers and brains of Hexb−/− mice treated by BMT (Fig. 6). A substantial reduction in the storage of these glycolipids was found in the liver of mice treated by BMT when compared with untreated Hexb−/− mice. However, in these

Figure 3. Behavioral testing of the Hexb−/− mice after BMT. (a) Mean (±SEM) time to fall off the rotorod. Wild-type ($n = 12$), Hexb−/− ($n = 8$), and Hexb−/− mice transplanted with wild-type bone marrow cells ($n = 13$) were tested. (b) Mean (±SEM) horizontal activity (measured by the number of photocell beam breaks). The same groups of mice were tested in a and b. (c) The righting reflex was tested at 18 wk of age for wild-type ($n = 12$), Hexb−/− ($n = 5$), and Hexb−/− mice transplanted with wild-type bone marrow cells ($n = 11$) and at 24 wk of age for wild-type ($n = 12$), and Hexb−/− mice transplanted with wild-type bone marrow cells ($n = 7$). The untreated Hexb−/− mice did not live to 24 wk of age.

Figure 4. Excretion of urinary oligosaccharides after BMT. Urine was collected from wild-type, untreated Hexb−/−, and Hexb−/− mice 48 d after BMT. FACE was performed to analyze urinary oligosaccharides. The arrows shown indicate the high molecular weight oligosaccharides present in the Hexb−/− control urine but greatly reduced in the BMT-treated mice. High molecular weight oligosaccharides are those larger than the tetrasaccharide standard (G4). The size standards consist of glucose polymers.
Pathology. To determine if there was pathologic improvement mediated by BMT,
Hexb−/− mice, transplanted with either wild-type or Hexb−/− bone marrow cells,
were evaluated without prior knowledge of treatment. In both types of mice,
storage was diffusely and variably present in the cerebrum, cerebellum,
brainstem, and spinal cord. From semi-serial frozen sections, comparisons
were made in specific regions: cerebral cortex, hippocampus, septal nuclei,amygdala, striatum, hypothalamus, cerebellum, facial nuclei, and hypoglossal
nuclei. There was no discernible difference in the degree of storage
in the brain in these regions irrespective of the source of bone marrow.
The only histologic difference identified between the brains of the mice was the presence of colloidal iron-
stained macrophages. Colloidal iron staining generally indicates
the storage of glycosaminoglycans, and positive cells
have been noted previously in this model (14). In untreated
Hexb−/− mice and in Hexb−/− mice transplanted with
Hexb−/− marrow, colloidal iron-positive cells were identified in
the leptomeninges, in perivascular locations, and within the
brain parenchyma. These colloidal iron-positive cells were
nearly absent in Hexb−/− mice transplanted with wild-type
marrow (Fig. 7, a and b). In a sagittal section (5-μm thick) of
the entire brain of an untreated Hexb−/− mouse and a
Hexb−/− mouse transplanted with Hexb−/− marrow, 15–20
colloidal iron-positive cells were identified. While comparable
sections of two Hexb−/− mice transplanted with wild-type
marrow showed either two or no colloidal iron-positive cells.
7-mo-old Hexb−/− mice transplanted with wild-type marrow
showed extensive neuronal storage that appeared even greater
than in untreated 4-mo-old Hexb−/− mice. However, there
were many fewer colloidal iron-positive macrophages in the
brain of the 7-mo-old transplanted mouse compared with the
untreated 4-mo-old mouse.

Colloidal iron-stained macrophages were found in the liver
and kidney of untreated Hexb−/− mice and in Hexb−/− mice
transplanted with Hexb−/− bone marrow cells. None of these
storage cells could be detected in animals transplanted with
wild-type bone marrow cells. In Hexb−/− mice, untreated or
transplanted with Hexb−/− bone marrow cells, renal tubular
epithelial cells showed a vacuolated appearance and stained
positively with colloidal iron. This abnormal pathology in
kidney was absent in all ages of Hexb−/− mice transplanted
with wild-type marrow.

Histochemical staining with X-Hex enabled the detection
of β-hexosaminidase-containing cells. Strong X-Hex staining
was detected within neurons and glial cells in wild-type mice.
The stain was particularly strong in cells located in perivascular
regions in the brain and in the leptomeninges. No X-Hex-
positive reaction was noted in any tissues of Hexb−/− mice
nor in Hexb−/− mice transplanted with Hexb−/− bone
marrow cells. In Hexb−/− mice transplanted with wild-type bone
marrow cells, many positive cells were identified in the spleen
with fewer in liver and kidney. Positive cells were also noted in
the brain and spinal cord of Hexb−/− mice transplanted with
wild-type bone marrow cells (Fig. 7, c–e). In some cases, the
positive cells appeared to be in association with blood vessels
(Fig. 7 d). With the increasing age of the Hexb−/− mice trans-
planted with wild-type bone marrow cells, the numbers of
X-Hex positive cells in brain appeared to increase.

Figure 6. Glycolipid accumulation in the brain and liver of Hexb−/− mice treated with BMT. The sphingolipid fraction of brain and liver
was isolated and separated by thin layer chromatography. The amounts of Gm2, ganglioside and Gm2 glycolipid were quantitated
by scanning the plates. The results are expressed as glycolipid storage relative to Hexb−/− control mice of the same age (±SEM). The
background level of Gm2 ganglioside in wild-type liver was subtracted
from the liver values. Analysis was performed on three 50-d-old and
one 114-d-old Hexb−/− mice treated by BMT.
BMT has been used, with varying degrees of success, to treat disorders caused by lysosomal enzyme deficiencies in humans and in laboratory animals. There are several examples showing that BMT can be effective at supplying enzyme to visceral organs and in eliminating somatic disease manifestations (5, 6, 9, 15–17). In contrast, the effectiveness of BMT for the correction of CNS manifestations in lysosomal disorders has been much more difficult to evaluate. This is particularly true in human disorders where, in addition to the inherent difficulties of human experimentation, there may be wide variability in clinical manifestations of a given disease.

Perhaps the most striking example of successful BMT treatment of CNS disease was in the α-mannosidosis cat model (13). BMT was highly effective in preserving the neurologic function and lengthening the life span. Neurons of the treated animals exhibited histochemical evidence of α-mannosidase activity and a reduction in storage. A second clear example of CNS improvement after BMT was in the Twitcher mouse, an animal model of globoid cell leukodystrophy (Krabbe disease) (4, 18, 19). BMT resulted in increased life span and increased galactosylceramidase levels in the central nervous system. Krabbe disease is an exceptional “storage” disease because the major natural substrate of the missing enzyme does not accumulate. Instead, increased levels of a cytotoxic metabolite,
galactocerebrosidase (galactosylceramidase), mediates the disease pathology. Its levels are decreased after BMT. In both the α-mannosidosis and the Krabbe disease models, it appeared the therapeutic effect of BMT was mediated by donor derived macrophages/microglia crossing the blood–brain barrier to supply the missing enzyme. Improvement in the neurologic function of canine models of MPS I and fucosidosis has also been reported (15, 20). Prolonged survival with somatic improvement was shown with the murine model of MPS VII after BMT (5). Although a decrease in neuronal storage was noted after treatment (16), improvement in neurologic function could not be documented (21).

Sandhoff disease mice exhibit the prototypical features of a sphingolipidosis: massive neuronal storage of glycolipid and a fulminating neurodegenerative course. Ultimately, the pathogenic process leads to apoptosis of neurons (22). BMT treatment was shown to ameliorate the disease process by extending the life span of the mice by up to 4 mo and delaying the onset of severe neurologic manifestations. Enhanced performance on behavioral tests assessing motor function was additional evidence that CNS function was preserved by BMT. Eventually, the BMT-treated mice underwent a disease process similar to the untreated Sandhoff disease mice, indicating that only a partial correction was effected.

A small increase of β-hexosaminidase activity and enzyme-positive cells was detected in the brain and spinal cord of BMT-treated animals. By analogy with previous BMT experiments in the α-mannosidosis cat and Krabbe disease mouse, these enzyme-positive cells likely represent brain macrophages or microglia of donor origin that provided a means of enzyme introduction into the CNS (13, 19). The reduction of colloidal iron-positive cells in the brain after BMT treatment is consistent with a systemic repopulation by normal, donor-derived macrophages/microglia. The therapeutic mechanism mediated by these donor cells is not readily apparent since we could not find clear evidence of a decrease in glycolipid storage in the brain either through biochemical or pathologic analysis. These results suggest that the pathogenesis of the disease is not totally dominated by bulk Gb₂ and Ga₂ glycolipid storage in the brain.

The neurologic improvement could be due to a very localized correction of neuronal storage that is not detectable by quantitation of bulk glycolipid. However, a number of specific CNS locations were compared on PAS-stained, frozen sections in BMT-treated and control mice, but regional differences in storage were not readily evident. The apparent lack of appreciable differences in pathology between BMT-treated and control mice could also be due to difficulty in discriminating subtle quantitative differences morphologically. Alternatively, the BMT may selectively reduce the levels of a minor toxic metabolite such as lyso-Gb₂ that may mediate neuropathogenesis in this disorder. Lyso-Ga₂ has been detected in the brains of Tay-Sachs and Sandhoff patients but at levels much below the main storage products (1, 23). The occurrence of such a compound may elicit a cytotoxic pathogenic mechanism analogous to psychosine in Krabbe disease. It is also conceivable that these slightly water-soluble lysogangliosides were released from brain and visceral organs and were eliminated by the large amount of β-hexosaminidase activity present in somatic tissues and blood due to BMT.

An interesting possibility for the disease amelioration by BMT may be related to the observation that colloidal iron-positive macrophages, present in untreated mice, were virtually absent in the brains of Sandhoff mice treated by BMT. Other studies have shown that microglia/macrophages can be activated by neurodegeneration to secrete toxic factors such as cytokines and initiate an inflammatory cascade (24–26). In the Sandhoff mouse, initial neuronal degeneration and storage by macrophages may trigger an activation of macrophages that, in turn, promote tissue damage through an inflammatory process. Replacement of the enzyme-deficient macrophage population with normal macrophages by BMT may temporarily delay or remove this pathogenic component of the disease process.

In contrast to the apparent inability of BMT treatment to reduce glycolipid storage in the brain, glycolipid storage in liver and spleen (not shown) was greatly reduced. BMT was also effective in lowering the excretion of oligosaccharides in urine and in reducing kidney pathology. The correction of these somatic manifestations after BMT is readily explained by the large amounts of β-hexosaminidase activity in visceral organs and the systemic normalization of the macrophage population as suggested by the disappearance of colloidal iron-positive cells.

The ultimate demise of the BMT-treated Sandhoff disease mice and the very small amount of enzyme introduced into the CNS indicates that this treatment alone may not be highly effective for infantile forms of the Gb₂ gangliosidoses where virtually no degradative capacity exists. Increased efficacy might be possible by genetically engineering donor cells to hypersecrete enzyme or by combining BMT with glycolipid synthesis inhibitors (27) in an attempt to more closely balance the synthesis and degradation of substrate. In the late-onset forms of the disorder, however, where residual enzyme is already present, a small increase in CNS enzyme activity (if possible by BMT) might greatly improve the clinical course of the disease (28).

Acknowledgments

We thank Paul Plotz for comments on the manuscript. This work is submitted by F. Norflus in partial fulfillment of the Ph.D. requirements in the Graduate Genetics Program at the George Washington University.

This work was supported in part by United States Public Health Service grants RO1-NS 24453 and P30-HD 03110 to Ki. Suzuki and the Deutsche Forschungsgemeinschaft (SFB 284) to Ko. Sandhoff.

References

