The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2–restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2–positive and in 11/24 (46%) HLA-A2–negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2–restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2–transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-γ–producing and fewer tetramer+ cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8+ T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.

Nonstandard abbreviations used: hepatitis C virus (HCV); nonstructural protein 3 (NS3); phenylalanine (F); tyrosine (Y).

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2004;114:250–259 (2004).

doii:10.1172/JCI200420985.

Research article

Hepatitis C virus mutation affects proteasomal epitope processing

Ulrike Seifert,1 Heike Liermann,2 Vito Racanelli,3 Anne Halenius,4 Manfred Wiese,5 Heiner Wedemeyer,3 Thomas Ruppert,1 Kay Rispeuter,6 Peter Henklein,1 Alice Sijts,1 Hartmut Hengel,4 Peter-M. Kloetzel,1 and Barbara Rehermann2,3

1Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany. 2Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover (MHH), Hannover, Germany. 3Liver Diseases Section, Digestive Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Department of Health and Human Services (DHHS), Bethesda, Maryland, USA. 4Robert Koch-Institute, Berlin, Germany. 5II. Klinik für Innere Medizin, Städtisches Klinikum St. Georg, Leipzig, Germany. 6Institute for Virology, Universitätsklinikum, Essen, Germany.

Introduction

Hepatitis C virus (HCV) is a 9.6 kb positive-stranded RNA virus of the flavivirus family and the leading cause of chronic hepatitis worldwide. Whereas recovery from acute HCV infection has been associated with multispecific T cell responses that protect upon reexposure to the virus (1, 2), these responses are either not induced or not maintained in the large number of patients who develop chronic infection (3–5).

We have therefore asked whether HCV interferes with the induction of antigen-specific T cells. Induction of CD8+ T cells depends on the generation of MHC class I ligands by the proteasome, the major cytosolic proteinase. The proteasome cleaves short peptides from longer polypeptide precursors that are then translocated into the endoplasmic reticulum and bind to newly synthesized MHC class I molecules (6). 26S proteasomes contain a 20S catalytic core, arranged as 2 heptamer outer rings with 7 α-subunits each and 2 heptamer inner rings with 7 β-subunits each. Proteasome activity is closely regulated by cytokines that are produced in viral infections (7–12). In response to IFN-γ, for example, the constitutive catalytic subunits β1, β2, and β5 are replaced by low molecular weight protein 2 (LMP2) (iβ1), LMP7 (iβ5), and multicatalytic endopeptidase complex-like-1 (MECL-1) (iβ2) to form immunoproteasomes with altered cleavage properties (13).

HCV circulates in an abundant number of quasispecies because of its high replication rate (14) and its lack of polymerase proof-reading capacity. Individual HCV sequences have been described as abolishing recognition by T cell receptors (TCRs) and antibodies, thus interfering with the effector arms of the cellular (2, 15, 16) and humoral immune responses (17). In contrast, the possibility that HCV mutations affect the induction of T cell responses has not been investigated. Indirect evidence for this hypothesis stems from descriptive reports that HCV isolates from persistently infected patients often encode less immunogenic sequences than prototype peptides used for in vitro analysis (18, 19). Whether the decreased immunogenicity results from viral mutations or from infection with less immunogenic strains has not been analyzed because the sequence of the infecting virus is not known in most human studies and also because the route of infection and inoculum size differ among the studied individuals.

Having studied a cohort of patients accidentally infected by a single-source HCV with known sequence, we here demonstrate that an HCV mutation located in the flanking region of a frequently recognized HCV epitope (4, 20–25) impairs the induction of HCV-specific CD8+ T cells by affecting the sophisticated proteasomal antigen-processing machinery.

Results

The tyrosine/phenylalanine mutation at residue HCV nonstructural protein 3 1082 is common in patients who develop persistent infection after a single-source outbreak of HCV. In order to study viral mutations during the natural course of HCV infection in humans, we analyzed a cohort of patients that had accidentally been infected with HCV in 1978/1979 during a single-source outbreak due to a contaminated anti-D immunoglobulin (26). Because the precise time of infection as well as the genotype and the sequence of the original infectious virus were known and identical for all patients, this cohort was
suitable for studying candidate mechanisms of viral persistence. As previously described for this and other cohorts, the strength of the cellular immune response correlated with the outcome of infection, and HCV nonstructural protein 3 (NS3) peptides were among the most frequently recognized (3, 5, 20, 27, 28).

When we compared the HCV NS3987–1133 sequence of the infectious source with sequences that we isolated from the sera of persistently infected, HLA-A2–positive patients 18 years after the single-source outbreak, we found the highest ratio of nonsynonymous to synonymous HCV mutations at amino acid position NS31082 (Figure 1). Position NS31082 was located directly adjacent to the carboxyterminus of an HLA-A2–restricted CD8+ T cell epitope recognized by recovered patients of this (20) and other cohorts (4, 20–25). Whereas 54 molecular clones from 3 independent PCRs of the infectious source encoded a tyrosine (Y) in position NS31082, serum isolates from 15 of 21 (71%) HLA-A2–positive, persistently infected patients encoded a phenylalanine (F) at position NS31082 (Table 1). Because the Y/F mutant was also observed in a substantial number of HLA-A2–negative, persistently infected patients (11 of 24 [46%]; \(P = 0.07 \); data not shown), the epidemiological data alone did not indicate whether HLA-A2–restricted T cell selection pressure could have contributed to the viral sequence evolution in this patient cohort. We therefore decided to analyze the molecular and immunological effects of the Y/F mutation in vitro by studying proteasomal processing of antigen and in vivo by studying its effect on T cell priming in an HLA-transgenic mouse model.

The Y/F mutation at residue N31082 impairs carboxyterminal processing of the NS31073–1081 epitope. Most MHC class I–restricted peptides are liberated from antigenic precursor sequences by the 20S core particle of the proteasome. To analyze whether the NS31082 Y/F substitution affected proteasomal processing of the NS31073–1081 epitope, we built on our previous demonstration that proteasome-dependent in vitro processing of epitope-harboring polypeptides reflects the in vivo situation with high fidelity (10, 12, 29, 30) and compared proteasome-dependent in vitro processing of the NS3 wild-type polypeptide, designated NS3(Wt)1062–1095, with processing of the NS3 mutant polypeptide, designated NS3(Mut)1062–1095. For this purpose, immunoproteasomes were purified from IFN-γ–stimulated HepG2 human hepatoma cells and from murine mouse embryonal cells–217 (MEC-217) transfected with the immunoproteasome subunits LMP2, LMP7 and MECL-1 (10). Constitutive proteasomes were purified from unstimulated HepG2 cells and from murine MEC-18 cells.

Synthetic NS3(Wt)1062–1095 and NS3(Mut)1062–1095 polypeptides (Figure 2a) were then incubated with 20S immunoproteasomes. The digestion products were separated and analyzed by reverse phase–HPLC and mass spectrometry. NS3(Wt)1062–1095 and NS3(Mut)1062–1095 polypeptide substrates were digested with the same kinetics with nearly 40–50% turn-over of each substrate within 4–8 hours (Figure 2B). Because longer digestion times resulted in secondary cleavage of processing intermediates, 4-hour and 8-hour digestion times were considered optimal for further biochemical analyses. Processing with constitutive proteasomes yielded the same qualitative results but lower amounts of digest product than processing with immunoproteasomes (not shown).

In contrast to the substrates, the relative abundance of the NS31073–1081 epitope could not be precisely determined because the epitope’s 2 cysteine residues formed aggregates via disulfide bonds. These aggregates interfered with reliable identification of the NS31073–1081 epitope and its immediate precursors by mass spectrometry. As an indirect measure of the generation of the NS31073–1081 epitope, we therefore determined the relative abundance of those cleavage products that flanked its amino- and carboxyterminus. Cleavage product NS31062–1070, for example, flanked the amino-terminus of the NS31073–1081 epitope. Cleavage product

Figure 1
Prevalence of synonymous (open circles) and nonsynonymous (filled circles) HCV mutations within the HCV NS3987–1133 sequence isolated from HLA-A2–positive, persistently infected HCV patients 18 years after a single-source outbreak of hepatitis C. The arrow indicates the amino acid position with the highest rate of nonsynonymous to synonymous mutations.
NS3\textsubscript{1062-1070} was generated from both the NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptide substrates with comparable efficiency (Figure 2C). Generation of cleavage product NS3\textsubscript{1062-1070} was associated with the generation of the complementary cleavage product NS3\textsubscript{1071-1095} (Figure 2D), consistent with a proteasomal cut between amino acid positions 1070 and 1071 in both the NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptide substrates (see dotted line in Figure 2A). This proteasomal cut resulted in an amino-terminal elongation of the NS3\textsubscript{1073-1081} epitope by 2 amino acids.

A second cleavage product that flanked the amino-terminus of the NS3\textsubscript{1073-1081} epitope was peptide NS3\textsubscript{1082-1092}. As indicated in Figure 2E, cleavage product NS3\textsubscript{1062-1095} was also liberated from both the NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptide substrates in comparable amounts (Figure 2E), indicating that the proteasome cut both the NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptide between amino acid positions 1072 and 1073 as indicated by the dotted line in Figure 2A. This proteasomal cut resulted in the generation of the correct amino-terminus of the NS3\textsubscript{1073-1081} epitope, irrespective of the presence or absence of the NS3\textsubscript{1082} mutation. The demonstration that the NS3\textsubscript{1073-1081} epitope and its amino-terminally elongated forms were generated at the same time is consistent with previous findings for other epitopes (31, 32). In cases of amino-terminally elongated peptides, the precise amino-terminus has been shown to be further defined by postproteasomal trimming by aminopeptidases (31, 32).

In contrast to the amino-terminus, the correct carboxyterminus of the NS3\textsubscript{1073-1081} epitope was generated only from the wild-type polypeptide. Figure 2 (F, G, and H) shows the relative abundance of those cleavage products whose generation defined the epitope's carboxyterminus at amino acid position NS3\textsubscript{1082}. The generation of cleavage product NS3\textsubscript{1082-1095} indicated the correct processing of the epitope's carboxyterminus with a proteasomal cut between amino acid positions 1081 and 1082 (Figure 2F). Importantly, cleavage product NS3\textsubscript{1082-1095} was only liberated from the NS3(Wt)\textsubscript{1062-1095} and not from the NS3(Mut)\textsubscript{1062-1095} polypeptide substrate (Figure 2F). In contrast, cleavage product NS3\textsubscript{1083-1095} was liberated from the NS3(Mut)\textsubscript{1062-1095} more efficiently than from the NS3(Wt)\textsubscript{1062-1095} polypeptide substrate (Figure 2G). This result indicated that, in the presence of the NS3\textsubscript{1082} mutation, the proteasomal cut between amino acid positions 1082 and 1083 rather than between amino acid positions 1081 and 1082 and thus generated

Table 1

<table>
<thead>
<tr>
<th>Experiment/patient</th>
<th>HCV\textsubscript{NS3} 1062-1094 amino acid sequence</th>
<th>Analyzed molecular clones/PCR product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR 1</td>
<td>VSTATQSLATCVNGCVTVYHGAGSKTLAGPKG</td>
<td>16 clones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 clone</td>
</tr>
<tr>
<td>PCR 2</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 clone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 clone</td>
</tr>
<tr>
<td>PCR 3</td>
<td></td>
<td>12 clones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 clones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 clone</td>
</tr>
<tr>
<td>HLA-A2+, persistently infected HCV patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 1</td>
<td>V</td>
<td>17 clones</td>
</tr>
<tr>
<td></td>
<td>STATQSLATCVNGCVTVYHGAGSKTLAGPKG</td>
<td>1 clone</td>
</tr>
<tr>
<td>Patient 2</td>
<td>A</td>
<td>12 clones</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>12 clones</td>
</tr>
<tr>
<td>Patient 3</td>
<td>S</td>
<td>15 clones</td>
</tr>
<tr>
<td>Patient 4</td>
<td></td>
<td>10 clones</td>
</tr>
<tr>
<td>Patient 5</td>
<td></td>
<td>10 clones</td>
</tr>
<tr>
<td>Patient 6</td>
<td></td>
<td>10 clones</td>
</tr>
<tr>
<td>Patient 7</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 8</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 9</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 10</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 11</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 12</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 13</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 14</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 15</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 16</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 17</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 18</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 19</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 20</td>
<td></td>
<td>14 clones</td>
</tr>
<tr>
<td>Patient 21</td>
<td></td>
<td>14 clones</td>
</tr>
</tbody>
</table>

http://www.jci.org Volume 114 Number 2 July 2004
a carboxyterminally elongated NS3 epitope. Finally, cleavage product NS3\textsubscript{1084-1095} was liberated from both the NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptide substrates in comparable amounts (Figure 2H), indicating that the proteasomal cut between amino acid 1083 and 1084 was not affected by the NS3\textsubscript{1082} mutation.

In summary, an incorrect carboxyterminus of the NS3\textsubscript{1073-1081} epitope appeared to be generated from the NS3(Mut)\textsubscript{1062-1095} but not from the NS3(Wt)\textsubscript{1062-1095} polypeptide substrate.

NS3\textsubscript{1073-1081}-specific CD8+ T cells recognize aminoterminally, but not carboxyterminally elongated forms of the minimal optimal epitope. To study recognition of the processing products by CD8+ T cells, we generated NS3\textsubscript{1073-1081}-specific CD8+ T cell lines from the blood of HCV-recovered patients. These T cell lines recognized target cells pulsed with the minimal optimal NS3\textsubscript{1073-1081} epitope in a standard cytotoxicity assay (Figure 3). Epitope-specific T cell lines also recognized the corresponding aminoterminally elongated peptides, but not the carboxyterminally elongated mutant and wild-type peptides (Figure 3), thereby confirming that correct carboxyterminal cleavage by the proteasome was indispensable (33, 34).

Direct biochemical and immunological detection of the NS3\textsubscript{1073-1081} epitope in proteasomal digests. To directly assess and quantitate the in vitro generation of the NS3\textsubscript{1073-1081} epitope, it was necessary to prevent the formation of disulfide bonds between the cysteine residues. We therefore synthesized a serine variant of the epitope with a cysteine to serine exchange at position NS3\textsubscript{1073}. This NS3\textsubscript{1073-1081}S epitope was equally well recognized by cytotoxic T cells as the original NS3\textsubscript{1073-1081} epitope (Figure 4A).

When the corresponding NS3(Wt)\textsubscript{1062-1095} and NS3(Mut)\textsubscript{1062-1095} polypeptides with a serine in position NS3\textsubscript{1073} were subjected to digestion by constitutive proteasomes, the production of the NS3\textsubscript{1073-1081}S epitope could be directly assessed by mass spectrometry. As demonstrated in Figure 4B, a significantly larger amount of the NS3\textsubscript{1073-1081}S epitope was generated from the NS3(Wt)\textsubscript{1062-1095} polypeptide than from the NS3(Mut)\textsubscript{1062-1095} polypeptide. For immunological analysis, the complete 8-hour proteasomal digests were then loaded onto transporter associated with antigen processing–deficient (TAP-deficient), T2-target cells and tested for recognition by NS3\textsubscript{1073-1081}-specific, cytotoxic T cell
lines. Only the wild-type and not the mutant polypeptide digests were recognized by NS3\textsubscript{1073–1081}-specific cytotoxic T cells (Figure 4D), thus confirming the biochemical data in Figure 2.

The same qualitative results were obtained when NS3(Wt)\textsubscript{1062–1095} and NS3(Mut)\textsubscript{1062–1095} polypeptides were digested with immunoproteasome instead of constitutive proteasome. Again, a significantly larger amount of the NS3\textsubscript{1073–1081} SVNGVCWTV epitope was generated from NS3(Wt)\textsubscript{1062–1095} than from NS3(Mut)\textsubscript{1062–1095} polypeptide (Figure 4, C and E). Overall, the immunoproteasome appeared to digest the wild-type polypeptide more rapidly than the constitutive proteasome did, as indicated by a plateau-phase of epitope liberation from the wild-type polypeptide in the biochemical analysis (Figure 4C) and by the higher cytotoxicity in the immunological analysis (Figure 4E).

The HCV NS3\textsubscript{1082} Y/F mutant reduces the induction of HCV NS3\textsubscript{1073–1081}-specific CD8+ T cells in HLA-A2 transgenic mice. To analyze whether the altered proteasomal cleavage of the NS3\textsubscript{1082} Y/F mutant affected the generation of the NS3\textsubscript{1073–1081} epitope in vivo, we employed a humanized mouse model. Specifically, we used transgenic mice that expressed the α\textsubscript{1} and α\textsubscript{2} chains of the human HLA-A2 molecule and the α\textsubscript{3} chain of the murine Kd molecule (35). Upon immunization, these mice generate T cells against the same HLA-
A2–restricted epitopes as HLA-A2–positive humans (36). In contrast to what occurs in human studies, however, this mouse model allows the induction of T cells in the context of a single, defined HLA molecule and a single, defined viral sequence. Therefore, the HLA-A2–transgenic mouse model is not subject to the influences of additional factors such as selection pressure in the context of other HLA molecules and epitopes and/or preservation of viral replication fitness as may be operating in vivo in infected humans.

To take advantage of this model, we immunized HLA-A2–transgenic mice with vaccinia viruses that encoded full-length HCV NS3 sequences with either the Y wild type or the F mutant at amino acid position NS31082. Two weeks after immunization, spleen cells were isolated, and the frequency of NS3 1073–1081–specific T cells was assessed by ex vivo intracellular IFN-γ–staining and by tetramer analysis. As shown in Figure 5A for individual mice and in Figure 5, B and C, for all mice, the frequency of NS3 1073–1081–specific T cells was significantly higher in mice infected with wild-type than in mice infected with mutant NS3 encoding vaccinia virus. In contrast, the response against the vaccinia virus H3L (VVH3L) epitope and the HCV NS3 1066–1414 epitope did not differ between both groups of mice. (A) Dot plots from individual mice tested in the same experiment. (B) Mean and standard deviation of the results of all 8 mice per group. (C) Frequency of NS3 1073–1081–tetramer–specific T cells is higher in mice immunized with wild-type than in mice immunized with mutant HCV NS3 sequences. Mean and standard deviation of the results of 8 mice per group are shown. (D) NS3 1073–1081–specific T cell lines from mice immunized with wild-type HCV NS3 sequences (WT) display greater cytotoxicity than those derived from mice immunized with mutant HCV NS3 (Mut). Mean and standard deviation of the results of 11 mice per group are shown.

In separate experiments, additional immunizations with recombinant DNA-expression vectors were performed to increase the number of NS3 1073–1081–specific T cells and to establish T cell lines suitable for cytotoxicity analyses. At all effector/target ratios, cytotoxic T cell responses of mice that had been immunized with wild-type NS3 sequences were significantly stronger than cytotoxic T cell responses of mice immunized with mutant NS3 sequences (Figure 5D). Collectively, these results demonstrate that the NS3 1082 Y/F substitution reduced the generation of the NS3 1073–1081 epitope in vitro when polypeptides were digested with purified 20S proteasomes. In addition, the NS3 1082 substitution impaired the induction of epitope-specific T cells in vivo when full-length NS3 protein was endogenously expressed, ubiquitinylated, and processed by the 26S proteasome in the presence of additional cytosolic proteases.

Discussion

Most MHC class I ligands are liberated from strings of polypeptides and ubiquitinylated proteins by the proteasome, the main cytosolic protease (13). Whereas the amino-terminus of each epitope can be further defined by postproteasomal aminopeptidases (31, 32, 37), the carboxy-terminus needs to be defined precisely with the first
cut (33, 34). Studying a single source outbreak of HCV, we identified an HCV mutation that interfered with the correct carboxyterminal cleavage of an immunodominant, HLA-A2 restricted HCV epitope from its mutated polypeptide precursor.

The emergence of viral mutations in immunogenic sequences has long been discussed as a potential immune escape mechanism. As regards HCV, sequences that do not bind to the MHC and/or the T cell receptor and thus are not recognized by HCV-specific CD8+ T cells have been observed in chimpanzees and in humans (15, 16, 18). In addition, mutations that generate partial agonists or antagonists to the T cell receptor and downregulate wild-type–specific T cell responses have been described in HCV (18) as well as in hepatitis B virus (HBV) (38) and HIV infections (39). Perhaps even more efficient mechanisms of viral escape are mutations in epitope-flanking residues that interfere with antigen processing and presentation of MHC class I–restricted epitopes because, in these cases, the induction phase rather than the effector phase of HCV-specific T cell responses can be impaired. Indeed, the literature provides several examples showing that amino acid residues in the flanking regions of T cell epitopes impair proteosomal processing of those epitopes (40–43). On the other hand, there are also examples showing that extensive sequence changes in the flanking regions of other immunodominant CD8+ T cell epitopes do not influence antigen processing (44). In our study, we observed impairment of antigen processing by an exchange of two very similar amino acids. Although the Y/F substitution is a conservative one, it impaired correct carboxyterminal cleavage of the NS31073–1081 epitope not only by constitutive proteasomes, but also by immunoproteasomes. Importantly, the same effects were observed in vitro when polypeptides were digested with purified 20S proteasomes and in vivo when full length HCV NS3 protein was endogenously expressed in an animal model, ubiquitinylated, and processed by the 26S proteasome in the presence of additional cytosolic proteases. Thus, the data demonstrate a mechanism by which a conservative HCV mutation can interfere with the induction of epitope-specific CD8+ T cells.

The observation that this specific HCV mutation was also found in a substantial number of HLA-A2–negative patients is consistent with a recent report on an HCV mutation in an HLA-B51–restricted epitope, which was also less frequent in HLA-B*51-negative patients, but not completely absent in HLA-B*51-negative persons. Overall, 29% of HLA-B*51-negative persons carried the HIV mutation as compared to 98% of HLA-B*51-positive persons (43). Notably, with more than 400 patients enrolled, the HIV study was much larger than our study, and differences in the prevalence of the HIV mutation between patient subgroups were remarkable and statistically significant (43). In the HIV study as well as in our study, however, the presence of the mutation in a subpopulation of patients without the relevant HLA haplotype is consistent with the influence of multiple selection forces that drive the evolution of viral sequences in humans. These selection forces include pressure on additional, overlapping, or adjacent T cell epitopes that are presented in the context of other MHC class I and II alleles as well as selection pressure to preserve viral replication fitness (45). Because the HCV NS31073-1082 sequence is located directly downstream of the HCV protease domain, it is, for example, possible that the Y/F mutation affects HCV replication and was therefore also found in HLA-A2–negative patients. For these reasons, the HLA-A2–transgenic mouse model provides a valuable tool for analyzing the effect of a single mutation on the induction of epitope-specific CD8+ cells in the context of a single, defined HLA molecule.

Although this study demonstrated a mechanism of altered antigen processing and impaired induction of HCV-specific T cells, significantly larger, population-based studies will be required to analyze the contribution of this mechanism to the overall selection pressure that drives HCV sequence evolution in infected patients. As a starting point for these studies, mutations in the flanking region of this particular HCV NS31073–1081 epitope are intriguing for several reasons. In addition to being the single most vigorously recognized CD8+ T cell epitope in all published studies (4, 20–25), the NS31073–1081 epitope is one of only a few described epitopes that are recognized by circulating T cells as well as by nonspecifically expanded intrahepatic T cells (46). Moreover, it is also one of only two epitopes for which a TCR antagonist based on an intraepitope mutation has been described in persistently infected patients (18). The Y/F mutation in the flanking region of the epitope described here should, however, not be regarded as a main cause of HCV persistence. Rather, it should be regarded as an example of a viral escape mechanism that might also occur in the flanking regions of other CD4+ and CD8+ T cell epitopes. If many of these mutations occur throughout the HCV polyprotein, they may collectively contribute to the evolution of HCV quasi-species in persistently infected patients and to the characteristic weakness of the HCV-specific immune response.

Methods

Clinical samples. Sera of patients with persistent HCV infection were analyzed 18 years after an accidental single-source outbreak (genotype 1b, AJ32996) due to a contaminated anti-D immunoglobulin (20, 26). The patients gave informed consent to this analysis. Patient samples were analyzed at Medizinische Hochschule Hannover (MHSH) under a protocol approved by the MHH Ethics Committee. At the time of analysis, none of the patients had developed liver cirrhosis. HCV persistence was defined by detection of serum HCV RNA by RT-PCR, and by detection of HCV antibodies by enzyme immunoassay (HCV Version 3.0; Abbott Diagnostika GmbH, Wiesbaden, Germany). HLA typing was performed with Terasaki HLA-typing trays (One Lambda Inc., Canoga Park, California, USA).

Peptides. The wild-type NS3(Wt)1082–1093 VSTATQS-FLATCVNGCWTYHGAGSKTLAGPKG polypeptide, the mutant NS3(Mut)1082–1093 VSTATQSFLATCVNGCWTYHGAGSKTLAGPKG, and VSTATQSFLATCVNGCWTYHGAGSKTLAGPKG, the NS31073–1081 epitope CNGCVCTVT and the corresponding carboxyterminally and/or amino-terminally elongated peptides, the NS31073–1081 serine variants VSTATQSFLATCVNGCVCTYHGAGSKTLAGPKG, and VSTATQSFLATCVNGCVCTYHGAGSKTLAGPKG, the NS31073–1081 and VSTATQSFLATCVNGCVCTYHGAGSKTLAGPKG, and the NS31073–1081 serine variants VNGCVCTVT, and the control peptides vaccinia virusS154, SLSAYIRV (47) and HCV NS31406–1415 KLVGLINAV synthesized using standard Fmoc methodology on an Applied Biosystems 433A automated synthesizer at >90% purity (Applied Biosystems, Darmstadt, Germany).

Detection and sequencing of HCV. Total RNA was extracted from 140 µl sera using QIAamp Viral RNA Kit (QIAGEN GmbH, Hilden, Germany), and reverse transcription was performed with Superscript II Reverse Transcriptase (Gibco BRL, Grand Island, New York, USA) and random hexamers (48, 49). HCV sequences from the highly conserved 5′ untranslated region were amplified with Taq Polymerase (Gibco BRL) in a nested PCR with prim-
T cells were isolated from HepG2 human hepatoma cells and murine MEC-18 cells. Immunoproteasomes were isolated from HepG2 that had been cultured with 200 U/I human IFN-γ (Roche Diagnostics GmbH, Mannheim, Germany) for 72 hours and from MEC-18 cells that had been transfected with LMP2, LMP7, and MEC-1 under a tetracycline-regulated promoter (10). The purity of isolated proteasomes was greater than 90% (11). Twenty micrograms of wild-type and mutant NS31062–1095 peptides were incubated with 2 μg purified proteasomes in 150 μl assay buffer (20 mM Heps/KOH, pH 7.8, 2 mM MgAc2, 1 mM diithiothreitol) at 37°C. The reaction was terminated by the addition of 0.1% trifluoroacetic acid (TFA). Forty microliters of the digests were separated by reversed-phase chromatography on a µRPC C2/C18 2.1/10 column (Pharmacia Biotech, Freiburg, Germany) and analyzed online with an ion trap mass spectrometer (LCQ; Electron Corp., Dreieich, Germany) with an electrospray ion source. Peptides were identified by tandem mass spectrometry (MS/MS) experiments and the amount of generated NS31073–1081 peptide was calculated by comparison to a defined amount of synthetic NS31073–1081 peptide.

In vivo induction of HCV-specific CD8+ T cells in HLA-A2–transgenic mice. AAD mice, which express the α1 and α2 domains of the HLA-A2.1 molecule and the β3 domain of the murine H-2D4 molecule (35), were used to test the in vivo effect of the HCV mutation on the induction of NS31073–1081-specific T cells. The animal protocol was approved by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) Animal Care and Use Committee.

For ex vivo analysis of NS31073–1081-specific T cells, 6- to 8-week-old AAD mice were intraperitoneally injected with 107 PFU recombinant vaccinia virus (VVNS3-Wt and VVNS3-Mut respectively) in 200 μl PBS. Spleens were isolated two weeks after immunization, injected with 400 μg/ml of Liberase CI (Roche Diagnostics, Indianapolis, Indiana, USA), incubated at 37°C for 30 min and forced through a cell strainer (Falcon; BD Biosciences, Franklin Lakes, New Jersey). Single-cell suspensions were subsequently incubated with purified anti-mouse CD16/CD32 (FcγII/III; BD Pharmingen, San Diego, California, USA) for 72 hours at 4°C, then washed with PBS/2% FBS and stained with the HLA-A2/ HCV NS31073 tetramer (NIAID Tetramer Facility, Atlanta, Georgia, USA) for 30 minutes at room temperature. After two washes, cells were stained with FITC-conjugated anti-CD8 for an additional 30 minutes at 4°C, washed again, and resuspended in 500 l PBS/0.5% paraformaldehyde (PFA) for flow cytometry.

For analysis of cytokine production, CD8+ T cells were isolated from spleen cells using MACS CD8+ T Cell Isolation Kit and Columns (Miltenyi Biotec, Auburn, California, USA), according to the manufacturer’s instructions. C1R-AAD cells (10) (35) that had been pulsed overnight with 10 μg/ml of either HCV NS31073–1081, VV H3L35–43, or HCV NS31406–1415 peptide were used to stimulate 2×104 purified CD8+ T cells for 12 hours in 1 ml RPMI1640 containing 10% fetal bovine serum (BioWhittaker, Walkersville, Maryland, USA), 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 50 μM 2-mercaptoethanol (standard medium), additionally supplemented with 50 U/ml IL-2, 10 μg/ml brefeldin A (BD Pharmingen), 2 μg/ml brefeldin A (BD Pharmingen), 2 l anti-CD28, and 2 l anti-CD49d. Cells were then pelleted, washed with PBS/2% FBS, and stained at 4°C for 30 minutes with FITC-conjugated anti-CD8 (BD Pharmingen). After two washes in PBS, cells were fixed with Cytofix/Cytoperm (BD Pharmingen) at 4°C for 30 minutes. Thereafter, cells were washed twice with 1× Perm/Wash buffer (BD Pharmingen) and stained at 4°C for 30 minutes with PE-conjugated anti-IFN-γ or
For the generation of T cell lines and for in vitro analysis of cytotoxicity, mice were immunized twice with 10^5 PFU recombinant vaccinia virus (VV NS3-Wt or VV NS3-Mut) in 0.2 µl PBS at 4-week intervals. An additional intramuscular immunization with NS3-Wt and NS3-Mut encoding pEF1/myc-His plasmids (Invitrogen) was performed prior to the vaccinia virus immunization in some experiments, but did not further enhance the NS3_{1073-1081}-specific T cell response. Spleen cells were harvested 7 days after the last immunization and stimulated in T-25 flasks (3 × 10^6 cells/flask) in standard medium containing 50 µg/ml synthetic NS3_{1073-1081} peptide. On day 2 of culture, 10% Rat-T-Stim (Collaborative Biomedical Products, Bedford, Massachusetts, USA) was added. On day 7, a standard 51Cr release assay was performed using NS3_{1073-1081}-peptide-pulsed, ^{51}Cr-labeled CIR-AAD cells as target cells, and a 40-fold excess of unlabeled CIR-AAD as previously described (36). Percent specific lysis was calculated as (experimental release – spontaneous release) / (maximum release – spontaneous release), in which spontaneous and maximum release reflect target cell lysis in the absence of effector cells and in the presence of 10% Triton X-100 (Sigma-Aldrich, St. Louis, Missouri, USA), respectively. Nonspecific lysis in the absence of peptide was less than 10% in all assays.

Cytotoxicity assay using human T cell lines

HCV NS3_{1073-1081}-specific T cell lines were used to detect the NS3_{1073-1081} epitope in the proteasome digests. For this purpose, HCV NS3_{1073-1081}-specific, cytokotic CD8^+ T cell lines were established by repetitive NS3_{1073-1081} peptide stimulation (20) from PBMCs of HCV-recovered patients. HCV-recovered patients were followed in the Liver Diseases Section, NIDDK, NIH, and gave informed consent according to a protocol approved by the NIDDK Institutional Review Board. HCV-specific T cell lines were tested in a serum-free ^{51}Cr-release assay (20) against TAP-deficient T2 target cells that had either been loaded with 1 M peptide overnight or incubated with 8-hour-proteasome digest for 12 hours in serum-free RPMI 1640 medium prior to labeling with 50 Ci ^{51}Cr. Only NS3_{1073-1081}-specific T cell lines with a sensitivity level of at least 0.1 M peptide were tested against target cells loaded with the proteasomal digests.

Statistical analysis

Student’s t test (two-tailed) was used to compare the frequency of NS3_{1073-1081}-specific cells with their CTL activity in mice immunized with recombinant vaccinia virus expressing wild-type or mutant NS3, respectively. The Fisher exact probability test (two-tailed) was used to compare the frequency of the V/F mutation in HLA-A2−positive and −negative patients.

Acknowledgments

The authors thank L. Müller and S. Bigl (Landesuntersuchungsanstalt, Chemnitz, Germany) for patient samples; M. Roggendorf (Universitätsklinikum Essen, Germany) for PCR products of the infectious source; and A. Elstner for expert technical assistance. The HLA-A2 tetramer was produced at the National Institute of Allergy and Infectious Diseases Tetramer Facility of the NIH AIDS Research and Reference Reagent Program. This study was supported by grant Se885/1-1 of the Deutsche Forschungsgemeinschaft, Bonn, Germany, to U. Seifert; grant 1297/01K1 9659 (5 Pathogenesis of HCV infection) of the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) to B. Rehermann; Sonderforschungsbereich 421 to P. Kloetzel and H. Hengel; and by the NIDDK, NIH, Department of Health and Human Services (DHHS) intramural research program.

Received for publication January 5, 2004, and accepted in revised form May 18, 2004.

Address correspondence to: Barbara Rehermann, Liver Diseases Section, NIDDK, NIH, DHH5, 10 Center Drive, Room 9B16, Bethesda, Maryland 20892, USA. Phone: (301) 402-7144; Fax: (301) 402-0491; E-mail: Rehermann@nih.gov.

Heiner Wedemeyer’s present address is: Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover (MHU), Hannover, Germany.

Thomas Ruppert’s present address is: Zentrum für Molekulare Biologie Heidelberg, University of Heidelberg, Heidelberg, Germany.

Alice Sijs’s present address is: David H. Smith Center for Vaccine Biology and Immunology, Aib Institute for Biomedical Sciences, University of Rochester Medical Center, Rochester, New York, USA.

