Carcinoembryonic antigen–related cell adhesion molecule 1 modulates vascular remodeling in vitro and in vivo

Andrea Kristina Horst, Wulf D. Ito, Joachim Dabelstein, Udo Schumacher, Heike Sander, Claire Turbide, Jens Brümmer, Thomas Meinertz, Nicole Beauchemin, and Christoph Wagener

1Department of Clinical Chemistry, Center of Clinical Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 2Department of Medicine II, Angiology and Cardiology, University Medical Center Schleswig-Holstein, Campus Lubeck, Lubeck, Germany. 3Center of Cardiology and Cardiovascular Surgery and 4Department of Anatomy II, Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Carcinoembryonic antigen–related cell adhesion molecule 1 (CEACAM1), a cellular adhesion molecule of the Ig superfamily, is associated with early stages of angiogenesis. In vitro, CEACAM1 regulates proliferation, migration, and differentiation of murine endothelial cells. To prove that CEACAM1 is functionally involved in the regulation of vascular remodeling in vivo, we analyzed 2 different genetic models: in Ceacam1<i>−/−</i> mice, the Ceacam1 gene was deleted systemically, and in CEACAM1<i>endo</i> mice, CEACAM1 was overexpressed under the control of the endothelial cell–specific promoter of the Tie2 receptor tyrosine kinase. In Matrigel plug assays, Ceacam1<i>−/−</i> mice failed to establish new capillaries whereas in CEACAM1<i>endo</i> mice the implants were vascularized extensively. After induction of hind limb ischemia by femoral artery ligation, Ceacam1<i>−/−</i> mice showed significantly reduced growth of arterioles and collateral blood flow compared with their WT littermates. In agreement with a causal role of CEACAM1 in vascular remodeling, CEACAM1<i>endo</i> mice exhibited an increase in revascularization and collateral blood flow after arterial occlusion. Our findings indicate that CEACAM1 expression is important for the establishment of newly formed vessels in vivo. Hence CEACAM1 could be a future target for therapeutic manipulation of angiogenesis in disease.

Introduction

Blood vessel outgrowth and remodeling requires a well-orchestrated network of vascular growth factors and their cognate receptors. Under both physiological and pathological conditions, vascular remodeling is a key event supporting the development and regeneration of organs or the progression of malignant disease (1–3). In adults, vascular growth mainly occurs through angiogenesis, the sprouting of preexisting vessels, and arteriogenesis, the remodeling of preexisting collateral anastomoses (4). In both processes, newly formed vessels enhance nutrient supply, overcome hyoxia produced by rapid cell turnover, and aid entry of circulating accessory cells or attachment of metastatic cells. Whereas proper angiogenesis and arteriogenesis are required for resolution of certain clinical conditions, such as ischemic heart disease or stroke, such processes are far less desirable in other conditions, such as tumor growth or metastasis, and have become targets for therapeutic intervention (3, 5–7).

In addition to growth factors and their receptors, in particular from the VEGF and Tie families, adhesion molecules such as integrins, vascular endothelial cadherin (VE-cadherin), and Ig superfamily (IgSF) members including PECAM1 and endothelial cell–selective adhesion molecule participate in the regulation of vascular remodeling (5, 8–11). We and others reported that the IgSF molecule carcinoembryonic antigen–related cell adhesion molecule 1 (CEACAM1) is associated with early stages of angiogenesis: CEACAM1 is expressed in newly formed blood vessels on the fetal-maternal interface in both rodents and humans; on microvessels of a variety of human tumors and of regenerating tissues, such as endometrium or granuloma tissue after wounding; on endothelial progenitor cells; and in stenotic aortic valve tissue (12–16). Notably, CEACAM1 exhibits a disease-specific expression pattern on tumoral endothelium in vivo, as demonstrated by Oh et al. (17), and appears to be involved in vascular reprogramming in Kaposi sarcoma (18). Cardiac hyoxia results in upregulation of CEACAM1 expression simultaneously with other angiogenic growth factors (19).

In primary endothelial cell culture, human CEACAM1 enhances endothelial cell sprouting and migration, acting synergistically with VEGF (13). VEGF treatment induces upregulation of CEACAM1 on both protein and mRNA levels, suggesting that CEACAM1 may be a target of VEGF-induced signal transduction (13, 20–22). Also, CEACAM1-induced migration and invasion of human endothelial cells are abolished by anti-CEACAM1–specific antibodies or by silencing CEACAM1 expression via siRNA (13, 16).

Despite considerable in vitro evidence for a role of CEACAM1 in the regulation of angiogenesis, little is currently known about angiogenic functions of CEACAM1 in vivo. The present study was designed to elucidate the in vivo function of CEACAM1 in vascular growth. For this purpose, we investigated the function of murine CEACAM1 in angiogenesis and arteriogenesis in different genetically altered mouse strains. In our models we report that (a) expression of intact CEACAM1 in murine endothelial cells was required for the regulation of endothelial proliferation and invasion; (b) additional endothelial expression of CEACAM1...
enhanced vascular remodeling in vivo; (c) specific blocking of CEACAM1 by a monoclonal anti-CEACAM1 antibody led to regression and destabilization of endothelial cell networks; and (d) lack of endothelial CEACAM1 expression in Ceacam1−/− mice led to defective vascular remodeling in vivo, whereas endothelial overexpression of CEACAM1 in Ceacam1endos−/− mice induced extensive vascular growth. Together, these results suggest that CEACAM1 plays a significant role in angiogenesis and arteriogenesis in vivo.

Results

CEACAM1 regulates endothelial cell motility and invasion. Based on our in vitro data that human CEACAM1 acts as an angiogenic molecule (12, 13, 15, 16, 20–22), we established an in vitro model to show that CEACAM1 affects endothelial cell behavior in the mouse. Our particular interest was set on endothelial cell proliferation and invasion, since CEACAM1 signaling has significant impact on invasive and proliferative properties in different cellular contexts: CEACAM1 regulates tumor cell growth in vitro and in vivo, regulates epithelial lumen formation, colocalizes with integrin αvβ3 at the invasive front of the extravillous trophoblast and malignant melanomas, and forms a coreceptor complex with the insulin and EGF receptors (23–27). Most of these processes are dependent on tyrosine and serine phosphorylation within conserved signaling motifs in the major CEACAM1 isoform, CEACAM1 with a long cytoplasmic domain (CEACAM1-L).

To show a functional implication for signal transduction through CEACAM1-L in murine endothelia, we used the murine endothelial cell line SVEC4-10, which expresses CEACAM1-L only in very low amounts. We generated SVEC4-10 transfectants overexpressing either WT CEACAM1-L or different mutants of CEACAM1-L with mutations in one of its cytoplasmic tyrosine (Tyr488) or serine (Ser503) residues. In 2- and 3-dimensional ECM assays, we analyzed the contribution of CEACAM1-L to endothelial cell differentiation, migration, and invasion using Matrigel and fibrin as ECM components. Quantitative analyses of the effects of CEACAM1 overexpression in SVEC4-10 cells are summarized in Figure 1A: CEACAM1 overexpression led to increased migration through a 2-dimensional ECM, whereas conversion of Tyr488 to phenylalanine (Y488F) led to a marked reduction of the motile capacities of transfected SVEC4-10 cells. In addition, conversion of Ser503 to alanine (S503A) abrogated cellular invasion, similar to the effects observed after replacement of both Tyr488 by phenylalanine and Ser503 by alanine. In a 3-dimensional fibrin culture, CEACAM1-L–infected SVEC4-10 cells showed enhanced invasion and differentiation into tube-like structures compared with untransfected cells (Figure 1B). Similar to the data obtained in the 2-dimensional Matrigel transmigration assay, SVEC4-10 cells expressing mutant forms of CEACAM1-L with mutations in their cytoplasmic Tyr488 or Ser503 residues were defective in their ability to invade a 3-dimensional ECM matrix (Figure 1C).
Ser503 residues — or both — were no longer capable of invading a 3-dimensional ECM and differentiating into capillary-like networks. Instead, they formed single-cell clusters or colonies (Figure 1B). In agreement with previously published reports, these data provide further evidence that expression of CEACAM1 with an intact long cytoplasmic domain regulates cellular motility, invasion, and differentiation (24, 25, 28).

Generation of an animal model for CEACAM1 function in angiogenesis. For evaluation of the impact of CEACAM1 in angiogenesis in vivo, we used 2 different murine models. We generated CEACAM1^{endo+} mice on an FVB/N background with additional CEACAM1-L expression under the endothelial cell–specific promoter control of the Tie2 receptor tyrosine kinase. In order to observe the functional consequences of endothelial CEACAM1 deficiency, we also used Ceacam1^{−/−} mice with systemic deletion of the Ceacam1 gene (29). For the CEACAM1^{endo+} transgenic line, we modified a construct by T.N. Sato (30), replacing the β-galactosidase reporter gene (LacZ) by that of the Ceacam1-L cDNA, as shown in Figure 2A. Transgenic founder lines were identified by Southern blotting (Figure 2B), and 2 transgenic lines were used in the experiments described here. We also used 2 independent lines of the Ceacam1^{−/−} mice in our experiments. Transgenic and knockout mice were genotyped by PCR (data not shown). To verify CEACAM1 overexpression in the endothelia of CEACAM1^{endo+} transgenic animals, we double labeled primary endothelial cells isolated from lungs with anti-PECAM1 and anti-CEACAM1 antibodies in flow cytometry (Figure 2C). Primary endothelial cells from CEACAM1^{endo+} mice exhibited overexpression, revealed by both CEACAM1 and PECAM1 staining, compared with their corresponding WT siblings. We also confirmed CEACAM1 overexpression of endothelial cells in adult animals by Western blotting and RT-PCR (data not shown). Macroscopically, no overt vascular damage or alterations were observed under physiological conditions in Ceacam1^{−/−} or CEACAM1^{endo+} transgenic mice. The animals were viable and fertile.

Endothelial CEACAM1-L expression enhances endothelial cell outgrowth. To compare the angiogenic properties of endothelial cells of Ceacam1^{−/−} and CEACAM1^{endo+} transgenic mice, we prepared aortas from transgenic mice and their appropriate WT siblings and performed aortic ring assays (31). Expression of PECAM1 and CEACAM1 in aortic endothelia was validated prior to these experiments by immunohistochemical analyses (data not shown).
Anti-CEACAM1 antibodies destabilize endothelial cell networks. As described above, the aortic endothelium of FVB/N WT, CEACAM1^{endo}-^{−/−}, and C57BL/6 WT mice expressed the CEACAM1 protein. To verify CEACAM1-dependent effects on endothelial cell outgrowth of aortic explants, we supplemented the growth media with the purified monoclonal anti-CEACAM1 antibody AgB10. Figure 4 shows the summary of these inhibition experiments, with representative areas of the newly formed endothelial cell networks shown at higher magnification. After application of the anti-CEACAM1 antibody AgB10 (0.7 μM), the tubular structures emerging from the aortic explants of Ceacam1^{1−/+}- mice remained morphologically intact. This is in agreement with the observation that CEACAM1 is not expressed on the luminal endothelia of Ceacam1^{1−/+}- mice. In sharp contrast, application of AgB10 to the aortic explants of C57BL/6 WT mice induced a morphological disintegration of newly formed capillaries and the formation of isolated cell clusters. This result was also observed in AgB10-treated explants of Ceacam1^{endo}-^{−/−} and FVB/N WT mice. Using isotype-matched controls, the overall architecture of the network was not affected in the Ceacam1^{endo}-^{−/−} or Ceacam1^{1−/+}- mice or their appropriate WT littermates (data not shown).

CEACAM1^{endo}-^{−/−} transgenic mice exhibit increased neovascularization, whereas neovascularization in Ceacam1^{1−/+}- mice is diminished. To further assess the angiogenic potential of CEACAM1^{endo}-^{−/−} and Ceacam1^{1−/+}- mice, we used a Matrigel plug assay: Matrigel was subcutaneously injected into the mice, and the implants were removed after 3 weeks to evaluate neovascularization after histological processing. To allow efficient vascularization, angiogenic growth factors angiopoietin-1 (Ang-1), bFGF, and VEGF were suspended in the Matrigel prior to injection. Controls did not contain growth factor supplements. Figure 5A shows histological analysis of Matrigel plugs containing Ang-1 retrieved from Ceacam1^{endo}-^{−/−} and Ceacam1^{1−/+}- mice and their corresponding WT siblings. Newly formed vessels were positive for CEACAM1 (blue; counterstain, Nuclear Fast Red) and PECAM1 (red; counterstain, hematoxylin) in CEACAM1^{endo}-^{−/−} transgenic mice and their WT littermates. In plugs from the Ceacam1^{1−/+}- mice (counterstain, hematoxylin), no CEACAM1 staining could be detected. Strikingly, extravascular erythrocytes were detected in the proximity of vessel-like structures in the implants of Ceacam1^{1−/+}- mice (Figure 5A, arrows). However, cell populations in the Matrigel implants from Ceacam1^{1−/+}- mice showed no reactivity toward anti-PECAM1 or anti–von Willebrand factor antibodies (data not shown). In the appropriate WT controls, both CEACAM1 and PECAM1 expression was revealed in newly formed capillaries in the implants.

To confirm that CEACAM1-positive capillaries are also positive for PECAM1, we performed immunofluorescent double labeling of CEACAM1 and PECAM1 in Matrigel explants from the CEACAM1^{endo}-^{−/−} mice. Figure 5B shows double labeling of CEACAM1 (green fluorescence) and PECAM1 (red fluorescence) as well as the overlay (yellow), in which congruent expression of endothelial CEACAM1 and PECAM1 was demonstrated.

Statistical analyses of the overall vascular densities in Matrigel plugs are shown in Figure 5, C and D. CEACAM1^{endo}-^{−/−} transgenic animals exhibited higher neovascularization of the Matrigel implants upon angiogenic challenge with Ang-1, bFGF, and VEGF compared with their WT littermates (Figure 5C). Contrary to these findings, the Ceacam1^{1−/+}- mice exhibited significantly reduced neovascularization of the implants, and only very few intact vessels...
were detected, whereas the C57BL/6 WT mice responded to angiogenic stimuli appropriately (Figure 5D). Without the addition of extra supplements to trigger neoangiogenesis (i.e., controls), the implants remained largely avascular.

Based on our observations that Ceacam1^{+/−} mice exhibited structures within their Matrigel implants that were reminiscent of defective vessels and the finding that the number of intact vessels was dramatically lower compared with specimens from C57BL/6 WT littermates, we sought to determine whether the presence of extravascular red blood cells was associated with actual vascular leakage induced by vascular growth factors. For this purpose, we injected FITC-labeled dextran into the tail veins of the mice prior to removal of the implants for general vascular labeling. Figure 6 presents results obtained after histological processing of the Matrigel plugs containing VEGF. The effects of VEGF on the neovascularization in Ceacam1^{+/−} mice and a WT sibling are shown in representative areas of the Matrigel implants: in the implant removed from a Ceacam1^{+/−} mouse, diffuse smears of fluorescein were detected (Figure 6, white arrows), whereas rather well-defined fluorescent structures were visible after i.v. injection of FITC-labeled dextran into WT animals, and only moderate penetration of FITC-labeled dextran through newly formed vessels was observed in WT mice (Figure 6, yellow arrows). In Matrigel implants without any supplements, very few intact vessels were detected in the Ceacam1^{+/−} mice and the C57BL/6 mice (data not shown). To elucidate whether
these differences between Ceacam1^{−/−} mice and their WT siblings were based on specific morphological features of the vascular architecture, we subjected the Matrigel implants to analyses by electron microscopy. In Figure 7, examples of ultrastructural analyses of VEGF-soaked Matrigel plugs are given: In the CEACAM1^{endo} mouse (Figure 7, left panel), an intact vessel is shown, consisting of the cross-section of an endothelial cell, a pericyte, deposits of ECM, and a basal lamina (thick arrows). In the Ceacam1^{−/−} mice (Figure 7, right panels), we surprisingly did not detect any intact vascular structures. Instead, apoptotic cells were present (arrowheads) as well as red blood cells that were not enclosed by capillaries but were randomly distributed within poorly organized deposits of collagen (thin arrows), and no architectural hallmarks of an orderly vascular endothelial structure were detected.

Ceacam1^{−/−} mice show significantly reduced collateral blood flow after hind limb ischemia in contrast to CEACAM1^{endo} mice. To validate a functional role for CEACAM1 in vascular remodeling in vivo, we investigated vascular growth after induction of ischemia via unilateral femoral artery occlusion in CEACAM1^{endo} and Ceacam1^{−/−} mice and their respective WT littermates. These experiments were based on the previous observation that hypoxia induces CEACAM1 expression in synergy with other angiogenic factors in ischemic cardiac muscle (19).

As a functional parameter, we determined collateral blood flow 1 week after femoral artery occlusion via fluorescent microscopes employing established methods of blood flow determination in mice (32). In addition, we determined maximum systolic blood flow via a transonic flow probe placed at the collateral stem region as an indirect parameter of collateral conductance. Finally, we determined vascular growth by assessing capillary and arteriolar densities in the different calf muscles. The ischemic hind limb model offers the advantage that vascular growth is investigated in a physiologically relevant setting. Perfusion recovery in the ischemic leg was expressed as percent perfusion of the nonligated leg as described previously (32).

These data are summarized in Figure 8 and Table 1. Equal perfusion of both kidneys served as reference for adequate microsphere mixing and injection (data not shown) (32, 33). In agreement with the results obtained in neovascularization of Matrigel plugs, the relative perfusion of ischemic versus nonischemic limbs 7 days after surgery was significantly higher in CEACAM1^{endo} mice compared with their WT littermates (Figure 8 and Table 1; for CEACAM1^{endo} mice, 75% ± 5%; for WT littermates, 54% ± 6%; P < 0.05). Perfusion in ischemic hind limbs in Ceacam1^{−/−} mice was significantly lower than their genetically unaltered siblings (Ceacam1^{−/−} mice, 45% ± 3%; WT mice, 62% ± 3%; P < 0.01). Maximal blood flow amplitudes as determined by transonic flow probes also showed a clear tendency toward higher blood flows in CEACAM1^{endo} mice in the ischemic hind limb compared with Ceacam1^{−/−} animals (Table 1). These differences, however, did not reach statistical significance, due to large standard deviations. The alteration in blood flow recovery between the different WT groups is in accordance with previous studies showing a marked variation in the arteriogenic response among different mouse strains (34). The lower perfusion rates in Ceacam1^{−/−} mice correlated with different vascular densities in ischemic calf muscles after femoral artery ligation — as demonstrated in Figure 9, immunofluorescent labeling of PECAM1 showed that vascular densities were markedly increased in CEACAM1^{endo} compared with Ceacam1^{−/−} mice.

Discussion

Our previous in vitro data suggested that CEACAM1 is involved in angiogenesis. This is supported by a recent proteomic screen for cell membrane components expressed in newly formed tumor vessels and the fact that CEACAM1 expression is upregulated in synergy with other angiogenic factors in cardiac hypoxia (17, 19). To date, however, evidence for a causal implication of CEACAM1 in angiogenesis in vivo was lacking. In the present study, we report on 2 different genetic mouse models in which the angiogenic action of CEACAM1 has been investigated: in CEACAM1^{endo} mice, the expression of CEACAM1-L was targeted to endothelia via the Tie2 promoter, and in Ceacam1^{−/−} mice, the Ceacam1 gene was inactivated by targeted disruption (29). In addition, endothelial cells were transfected with cDNAs coding for WT CEACAM1-L and for CEACAM1-L mutants harboring amino acid substitutions in the cytoplasmic domain. In these experimental systems, we provide conclusive evidence that CEACAM1-L is a potent angiogenic factor in vivo.
evidence that CEACAM1 is involved in angiogenesis and vascular remodeling. (a) CEACAM1 expression enhanced the invasive growth of endothelial cells into ECM matrices. Both stable endothelial CEACAM1 transfectants and endothelial cells from aortas of transgenic mice exhibited increased invasion of ECM matrices. In CEACAM1 transfectants, substitution of Tyr488 or Ser303 in the cytoplasmic domain of CEACAM1-L abrogated the CEACAM1-dependent invasive growth properties. (b) CEACAM1 affected morphogenesis of endothelial cells and blood vessels. In fibrin gels, CEACAM1-transfected endothelial cells differentiated into tubelike structures. In aortic ring assays, branching of newly formed sprouts was more pronounced in endothelial cells from transgenic animals compared with their WT littermates. On the contrary, in aortic explants from the Ceacam1−/− mice, endothelial tube formation was impaired. The formation of tubular networks by CEACAM1-expressing endothelial cells from CEACAM1end−/− transgenic and WT animals was inhibited by a monoclonal anti-CEACAM1 antibody, whereas the antibody did not interfere with the growth of endothelial tubes from Ceacam1+/− mice. (c) CEACAM1 affected the neovascularization of subcutaneous Matrigel implants. When Matrigel plugs containing angiogenic growth factors such as VEGF, bFGF, or Ang-1 were transplanted subcutaneously, an increased number of blood vessels was observed in CEACAM1end−/− mice, whereas only few intact capillaries penetrated the implants in the Ceacam1+/− mice. (d) CEACAM1 expression was essential for vascular remodeling and vessel stabilization in vitro and in vivo. In Matrigel plugs containing Ang-1 or VEGF from Ceacam1+/− mice, perturbation of vascular integrity was observed through the presence of extravascular FITC-labeled dextran and red blood cells. This decrease in vascular stability was confirmed by ultrastructural analyses of the Matrigel implants, which showed no intact capillaries in specimens from Ceacam1+/− mice, but rather apoptotic cells and extravascular erythrocytes scattered within deposits of collagen. Hence we suggest that CEACAM1 supports angiogenesis and vascular remodeling by stabilization of nascent vessels. Moreover, cell populations in the Matrigel plugs from Ceacam1+/− mice appeared to be rather uniform, as interactions with accessory cells, such as pericytes and fibroblasts, were largely absent. (e) A functional role for CEACAM1 in vascular remodeling was also confirmed in our in vivo experiments, after the induction of hypoxia by ligation of the femoral artery: CEACAM1end−/− mice exhibited significantly higher perfusion in their ischemic calf muscles compared with their WT littermates, and collateral vessel growth was perturbed in Ceacam1+/− mice as demonstrated by significantly lower rates of perfusion compared with WT controls.

Notably, normal vasculogenesis appears not to be affected in the Ceacam1+/− mice, since no obvious vascular defects are observed and the animals are fertile. This finding may be explained by the fact that mice possess an additional Ceacam gene (encoding the CEACAM2 protein) that may compensate for the function of CEACAM1, although the role of this protein in angiogenesis has not yet been investigated (35).

In general, members of the IgSF of adhesion molecules like CEACAM1 exhibit angiogenic effects in adults but appear to be dispensable for vasculogenesis in the embryo. Anti-PECAM1 antibodies affect the growth of blood vessels into a subcutaneously implanted ECM matrix and reduce tumor angiogenesis, though PECAM1-deficient mice show no overt vascular defects (8, 9, 36). Similarly, targeted disruption of the endothelial cell–selective adhesion molecule reduces the vascularization of Matrigel plugs and reduces growth of transplanted tumors, whereas vasculogenesis remains unaffected (10). This is different from the role of other families of adhesion molecules, such as cadherins and integrins, in which targeted disruption of the respective genes leads to defects in vasculogenesis. For example, disruption of the VE-cadherin gene results in embryonic lethality due to vascular defects (37). Similarly, ablation of α5 integrin leads to defective mesoderm formation and embryonic lethality (38).

In contrast to other members of the IgSF of cell adhesion molecules with a direct functional implication in vascular remodeling in vivo in response to hypoxia, we show here that abrogation of CEACAM1 expression in Ceacam1+/− mice resulted in deficiencies in endothelial cell assembly into new vessels and vascular remodeling. This was demonstrated by supplementing Matrigel implants in the Ceacam1+/− mice with either Ang-1 or VEGF. Ang-1 has been implicated in vessel remodeling, maturation, and stabilization, and VEGF, formerly designated vascular permeability factor (VPF), induces endothelial cell proliferation and regulates vascular permeability as well as the initial assembly of vessels during vasculogenesis and vessel expansion during angiogenesis (4, 39).

So far, the molecular basis of the angiogenic action of CEACAM1 is largely unresolved. Since CEACAM1 is a homophilic cell adhesion molecule, CEACAM1 may mediate endothelial interactions with accessory cells, such as pericytes and fibroblasts.

Table 1
Summary of results obtained after unilateral femoral artery ligation in Ceacam1end−/− and Ceacam1+/− mice

<table>
<thead>
<tr>
<th>Ceacam1+/−</th>
<th>WT</th>
<th>Ceacam1end−/−</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C57BL/6)</td>
<td>(FVB/N)</td>
<td>(C57BL/6)</td>
<td>(FVB/N)</td>
</tr>
<tr>
<td>Perfusion ratio (%)</td>
<td>45 ± 3a</td>
<td>62 ± 3a</td>
<td>75 ± 5a</td>
</tr>
<tr>
<td>MBFA [μl]</td>
<td>138 ± 22</td>
<td>270 ± 113</td>
<td>180 ± 83</td>
</tr>
</tbody>
</table>

Collateral flows are expressed as occluded to nonoccluded hind limb perfusion ratios and maximum blood flow amplitude (MBFA) to the ischemic leg. aP < 0.01. bP < 0.05.
cell-cell interactions. In addition, recent reports indicate that CEACAM1 interacts with integrins and receptor tyrosine kinases in cis. CEACAM1 colocalizes with β3 integrin at the invasive front of melanomas and in the human intermediate trophotoblast (23, 24). According to our own previous observations, interaction of CEACAM1 with β3 integrin requires tyrosine phosphorylation of the CEACAM1-L cytoplasmic domain. In human melanoma and melanocytic cells, CEACAM1-L-dependent migration and invasion growth is blocked by compounds that interfere with integrin-mediated adhesion (23). In agreement with the results reported here, replacement of Tyr⁴⁸⁸ reduced the CEACAM1-dependent increase in migration and invasion (25). Interestingly, integrin α_{b3} is also involved in the regulation of angiogenesis and progression of malignant tumors (40–43). Taken together, these findings indicate that CEACAM1 and integrins are functionally interconnected. According to results from Najjar and coworkers, CEACAM1 is tyrosine phosphorylated after ligand binding to the insulin and EGF receptors. In turn, the activity of these growth factor receptors is modulated by CEACAM1 (26, 27). Similar to these mechanisms, CEACAM1 may exert its angiogenic properties by regulating the activity of integrins and receptor tyrosine kinases in endothelial cells. In addition to these potential activities, CEACAM1 expression has been reported to upregulate angiogenic growth factors such as VEGF, angiogenin, and angiopoietins but is also upregulated itself under hypoxic conditions or by VEGF (16, 19).

Taken together, our findings provide evidence that CEACAM1 is involved in the invasion of endothelial cells into the ECM as well as in the regulation of capillary sprouting and remodeling into more mature vessels. In addition, the perturbed vascular stabilization observed in CEACAM1-deficient animals in response to angiogenic growth factors or hypoxia points to an essential role for CEACAM1 in vascular growth. Thus it is possible that clinical alteration of ligand binding or cell signaling by CEACAM1 may offer a novel strategy for modulation of angiogenic processes in the treatment of disease.

Methods

Generation of stable CEACAM1-expressing SVEC4-10 transfectant cells. Stable CEACAM1 transfectant cells were generated with the murine endothelial cell line SVEC4-10 (ATCC CRL-2181) by retroviral infection. CEACAM1-4L and CEACAM1-4L mutants (Y^{488F}, S^{503A}, and Y^{488F}S^{503A}) were generated by site-directed mutagenesis (44, 45). The Y^{488F}S^{503A} mutant was generated by overlap PCR using primers AH1 (5′-GACGTGCAATTCAGTTCCTGAAAATTCAGAAGGAAAGCCCGGCGCCCTTC-3′) and NBIT2 (5′-CATCAGTGGAATTCAAGCAGGAC-3′) (46). Three independent cell clones were selected with G418 (1 mg/ml) by limiting dilution and used in the experiments described herein.

Figure 9

Immunofluorescent labeling of capillaries with anti-PECAM1 antibodies in ligated, ischemic calf muscles. Representative cryostat sections of specimens from CEACAM1^{endo+} and Ceacam1^{−/−} mice after femoral artery ligation were compared. Note that very few capillaries were present in the ischemic calf muscles of Ceacam1^{−/−} mice. For capillary labeling, anti-PECAM1 antibody BM8086 was used. Magnification, ×200.

Transwell assays. Invasion assays were performed in a transwell system (BD Biosciences) with Matrigel-coated filters, and cellular invasion was evaluated after 6 hours (25).

Fibrin assays. Fibrin assays were performed with single cell suspensions as previously described (47). Microscopic evaluations in this report were performed with a Zeiss Axioplan microscope.

Generation of transgenic mice. The lacZ cassette of the pHNHS vector (T.N. Sato, University of Texas Southwestern Medical Center, Dallas, Texas, USA; ref. 30) was exchanged for the murine Ceacam1-4L cDNA followed by a SV40 polyadenylation signal (44). The construct was subjected to DNA sequencing prior to use. Transgenic mice were generated by microinjection into FVB/N mouse oocytes. FVB/N mice were obtained from Harlan. Care of the mice was taken according to standards defined by the Canadian Council on Animal Care and section 8 of the German Law for the Protection of Animals.

Ceacam1^{−/−} mice. Ceacam1^{−/−} mice were generated by N. Beauchemin as described previously (29).

Genotyping of mice. Ceacam1^{−/−} mice were genotyped by PCR (29). The Ceacam1^{endo−} transgenic mice were characterized by Southern blotting after EcoRI restriction digest of genomic DNA from tail biopsies or by PCR. In both cases, an overlapping fragment of the Tie2 promoter and the N-terminal Ceacam1 domain was used as a probe or as a target for amplification by PCR using primers 2TS (5′-GGGAATTCGAAAGTTGTCATGTT-GAGTTF-3′) and 46N1 (5′-CTTCTAGGTTGATTGTTGG-3′).

Isolation of primary endothelial cells from lung. Primary endothelial cells from murine lungs were isolated as described previously (48).

Flow cytometric analyses. Double labeling of CEACAM1 and PECAM1 on primary endothelial cells was performed as described previously (30). For CEACAM1, the monoclonal anti-CEACAM1 antibody AgB10 (a kind gift from T. Rudinskaya and G. Abelev, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Center Research Center, Moscow, Russia) was used.

Ex vivo aortic ring assays. Aortas were prepared from 8- to 10-week-old mice, and aortic ring assays were performed as previously reported (31). For inhibition studies, the anti-CEACAM1 antibody AgB10 was used (10 μg/ml). Endothelial cell outgrowth was monitored for 10 days. Statistics were performed starting at day 2. For quantification, endothelial cell sprouts were counted and their total length was measured.

In vivo Matrigel plug assays. Mice were injected subcutaneously with 0.5 ml Matrigel (BD Biosciences) containing either 200 ng recombinant Ang-1, 120 ng recombinant murine VEGF₁₆₅, or 120 ng bovine bFGF (all R&D Systems) as described previously (49). Controls did not contain any growth factors. Neovascularization in Matrigel implants was gauged after tail vein injection of FITC-labeled dextran (Sigma-Aldrich) and immunohistochemical analysis after routine paraffin embedding.

Immunohistochemical analyses of CEACAM1 and PECAM1 expression. Immunohistochemical staining of CEACAM1 and PECAM1 was performed on cryosections or paraffin-embedded specimens with polyclonal anti-CEACAM1 antiserum (2456, 1:500 dilution; prepared by N. Beauchemin) and with an anti-PECAM1 antibody (2 μg/ml, DPC Biemann). CEACAM1 and PECAM1 binding was visualized through alkaline phosphatase activity with either naphthol-AS-bisphosphate or Vector Blue (Vector Laboratories) on paraffin sections and FITC-labeled anti-
rabbit or Cy3-labeled anti-rat antibodies (Vector Laboratories) on cryosections. Counterstaining of nuclei was performed with either Mayer’s hemalaun or Nuclear Fast Red (Sigma-Aldrich).

Electron microscopy. Matrigel plugs were fixed in 4°C phosphate-buffered glutaraldehyde (3.5%, pH 7.4) for 12 hours and processed for electron microscopy as described previously (50). Contrast sections were viewed in a Philips CM100 electron microscope.

Induction of hind limb ischemia and evaluation of collateral growth. All experiments were performed according to section 8 of the German Law for the Protection of Animals and were approved by the Behörde für Wissenschaft und Gesundheit, Lebensmittel sicherheit und Veterinärwesen, Hamburg, Germany, and the Review Board at the Animal Center, University Medical Center Hamburg-Eppendorf. CEACAM1−/− mice and their appropriate WT littermates were anesthetized with isoflurane inhalation. The femoral artery was ligated unilaterally between the origin of the deep femoral artery and the entry of the lateral circumflex artery, which was also ligated. A second ligation was placed about 1 cm below the first ligation using 7-0 silk sutures (Ethicon). After 7 days of femoral artery occlusion, mice were anesthetized again. The external iliac artery was prepared, and a transonic flow probe was placed around the vessel for the recording of blood flow amplitudes. Subsequently a left-sided thoracotomy was performed, and ultrasonicated red fluorescent microspheres (15 μm; Invitrogen Corp.) were injected into the beating left ventricle as described previously (32). Microspheres were counted under the fluorescent microscope in 70-μm sections from the gastronemial muscle. At fixed intervals, 10-μm sections were obtained for immunohistochemical analyses. Kidneys served as reference organs proximal to the occlusion site. All experiments and data analysis were performed blinded, without knowledge of the type of mice investigated. Collateral blood flow was expressed as occluded and nonoccluded hind limb perfusion ratios (microspheres) and maximum blood flow amplitudes (transonic flow probe) to the ischemic leg (32).

Statistics. Statistical analyses were carried out with 2-tailed Student’s t test. P values less than 0.05 were considered to be statistically significant.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (grant SFB470-C5) and the Deutsche Krebshilfe (grant 10-1723-W4) to C. Wagener, the Deutsche Forschungsgemeinschaft (grants It 13/1-3 and It 13/2-3 within the priority program “Angiogenesis” SPP 1069) to W.D. Ito, the Cancer Research Society Inc. and the Canadian Institutes for Health Research (grant 42501) to N. Beauchemin, and the Heinz-Breuer-Stipendium of the German Society for Clinical Chemistry and Laboratory Medicine and the Canadian Cancer Research Society postdoctoral fellowship to A.K. Horst. The authors also gratefully acknowledge expert technical assistance by Roswitha Reusch, Elke Schäfer, Susanne Feldhaus, Christa Frenz, Petra Tide, and Krimhild Scheke. The authors also wish to thank Thomas N. Sato for the kind gift of the pHNNS plasmid.

Received for publication December 27, 2004, and accepted in revised form March 7, 2006.

Address correspondence to: C. Wagener, Department of Clinical Chemistry, Center of Clinical Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany. Phone: 49-40-42803-2981; Fax: 49-40-42803-4621; E-mail: wagener@uke.uni-hamburg.de.

Andrea Kristina Horst and Wulf D. Ito contributed equally to this work.

Nicole Beauchemin and Cristophe Wagener contributed equally to this work.