SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling

Kevin Evel-Kabler,1,2 Xiao-Tong Song,1,3 Melissa Aldrich,1,2 Xue F. Huang,1,4 and Si-Yi Chen1,2,3

1Center for Cell and Gene Therapy, 2Department of Immunology, 3Department of Molecular and Human Genetics, and 4Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.

DC-based tumor vaccine research has largely focused on enhancing DC maturation/costimulation and antigen presentation in order to break tolerance against self tumor-associated antigens. DC immunization can activate autoreactive T cells but rarely causes autoimmune pathologies, indicating that self tolerance at the host level is still maintained in the vaccinated hosts. This study in mice reveals a novel regulatory mechanism for the control of self tolerance at the host level by DCs through the restriction of positive cytokine feedback loops by cytokine signaling inhibitor SOCS1. The study further finds the requirement of persistent antigen presentation by DCs for inducing pathological autoimmune responses against normal tissues and tumor, which can be achieved by silencing SOCS1 to unleash the unbridled signaling of IL-12 and the downstream cytokine cascade. However, the use of higher-affinity self peptides, enhancement of DC maturation, and persistent stimulation with cytokines or TLR agonists fail to break tolerance and induce pathological antitumor immunity. Thus, this study indicates the necessity of inhibiting SOCS1, an antigen presentation attenuator, to break self tolerance and induce effective antitumor responses.

Introduction
The mechanisms utilized by professional APCs to sense microbes and initiate immune responses has been well studied (1–3), largely because of the critical role of APCs such as DCs in initiating and regulating immune responses and their therapeutic potential (4–6). When DCs encounter proinflammatory stimuli, such as microbial products, the maturation process is initiated and results in proinflammatory cytokine secretion and upregulation of MHC molecules and costimulatory molecules (4, 5). Following maturation and homing to LNs, DCs establish contact with T cells by forming an immunological synapse, where the TCR/MHC interaction and costimulatory molecules congregate in a central area surrounded by adhesion molecules (7). Once activated, CD8+ CTLs can proliferate for several generations and acquire lytic function (8, 9). It has therefore been proposed that the level and duration of peptide-MHC complexes (signal 1) and costimulatory molecules (signal 2) provided by DCs determines the magnitude and fate of an antigen-specific T cell response (10, 11). In addition, cytokines have been implied as a third signal for the activation of T cells by DCs (12, 13).

Little is known about the negative regulatory mechanisms in DCs used to control the magnitude and overactivation of T cell responses, in contrast to the extensive studies on DC activation. Several studies demonstrate that SOCS1 is a negative regulator of LPS-induced macrophage activation and plays an essential role in suppressing systemic autoimmunity mediated by DCs (14–16). SOCS1 is an inducible negative feedback inhibitor of the Jak/Stat signaling pathway (17). Homozygous genetic KO of SOCS1 in mice results in neonatal lethality due to uncontrolled IFN-γ signaling (18, 19). SOCS1-KO DCs are hyperactivated and induce aberrant expansion of B and T cells. Recently we found that SOCS1-silenced DCs were able to induce an enhanced antigen-specific CTL response and antitumor activity (20). We have identified SOCS1 as an important negative regulator of antigen presentation by DCs and demonstrated that silencing of SOCS1 enhances antigen presentation by DCs and antigen-specific antitumor immunity (20). In agreement, Hanada et al. reported that immunization with SOCS1-KO DCs induced a hyper–Th1-type immune response and antitumor activities (21).

Immunologic peripheral tolerance to self antigen reflects the inability of autoreactive T cells that escape censoring in the thymus to cause autoimmune pathologies. The essential requirement for an effective tumor vaccine is its ability to break self tolerance and induce pathological autoimmune responses against tumors and normal nonessential tissues that express self tumor-associated antigens (self TAAs) (22). DC vaccines have been viewed as 1 of the most promising strategies for tumor vaccination (4, 6, 23, 24). A puzzling paradox is that mature DC immunization can effectively break self tolerance at the cellular level, i.e., activate self antigen–specific CTLS, but rarely causes autoimmune pathologies against normal tissues and tumors (25), suggesting that self tolerance at the host level is still maintained in a host’s natural immunosuppressive environment, sustained by various mechanisms such as regulatory T cells and exaggerated by the tumor-derived factors (26, 27), impeding the efficacy and usefulness of DC-based tumor vaccination.

The aims of this study were to investigate the underlying regulatory mechanisms in DCs used to control the magnitude and overactivation of autoreactive CTL responses and to define the requirements for DCs to induce TAA-specific, pathological autoimmune antitumor responses. We investigate autoimmune CTL responses

Nonstandard abbreviations used: ELISPOT, enzyme-linked immunospot; TAA, tumor-associated antigen; TRP2, tyrosinase-related protein 2.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J. Clin. Invest. 116:90–100 (2006).

doi:10.1172/JCI26169.
Figure 1 Persistent TLR stimulation of DC immunization failed to induce pathological autoimmune response and antitumor immunity. (A) TRP2-specific CTL responses induced by persistent in vivo TLR stimulation and DC immunization. C57BL/6 mice were immunized with TRP2-pulsed (100 μg/ml) and LPS-matured (100 ng/ml) DCs and then stimulated with various TLR agonists daily for 7 consecutive days. Splenocytes pooled from immunized mice (2–3 mice) were subjected to IFN-γ ELISPOT assays. An irrelevant peptide (OVA-1 peptide) was used as a negative control. (B and C) Inability to control preestablished B16 tumors by persistent in vivo TLR stimulation and DC immunization. Groups of mice were inoculated s.c. with B16 tumor cells (2.5 × 10⁴) and 3 days later were immunized via the rear foot pad with 1.5 × 10⁶ TRP2 peptide–pulsed (100 μg/ml) DCs with ex vivo LPS maturation. After DC transfer, in vivo TLR agonists were administered i.p. daily for 7 days. Tumor growth and percent survival (n = 5–7 mice/group) curves represent 1 of 3 independent experiments. When their tumor volume reached approximately 2,000 mm³ in size, mice were euthanized and recorded as dead.

Results

DC immunization and persistent in vivo stimulation with TLR agonists fail to break self tolerance at the host level. We first tested whether DC immunization, plus persistent in vivo TLR signaling, was able to break self tolerance and induce self antigen–specific autoimmune pathologies. We selected this combined immunization protocol because DCs are the most potent professional APCs, and TLR signaling is the most potent means to activate DCs and immune responses (1, 2, 4). We used the mouse melanocyte differentiation antigen TRP2 as a model self antigen because it is naturally expressed in normal host melanocytes as well as weakly immunogenic B16 melanoma, and multiple MHC class I epitopes of varying affinity have been identified within TRP2 (28). WT C57BL/6 mice were administered TRP2-pulsed, LPS-matured DCs derived from mouse BM cells. The mice were then stimulated in vivo (i.p.) with TLR agonists to TLR2, -3, -4, and -7 (LPS [TLR4], poly[I:C] [TLR3], peptidoglycan [TLR2], or imiquimod [TLR7]), which are expressed on mouse myeloid DCs (30), for 7 consecutive days. TRP2-specific CTL responses were efficiently induced in mice immunized with WT DCs and TLR agonists as shown by IFN-γ enzyme-linked immunospot (ELISPOT) analysis (Figure 1A). However, despite persistent in vivo TLR stimulation after DC transfer, the development of autoimmune vitiligo, a self-reactive immune response targeted against TRP2 in host melanocytes that is characterized by the development of coat lightening, depigmentation, and/or hair loss, was absent from all immunized mice. Immunization with TRP2-pulsed, matured DCs, followed by in vivo stimulation with various TLR agonists, failed to effectively control tumor progression (Figure 1, B and C). These results indicate that this immunization protocol of mature DC transfer plus persistent in vivo TLR signaling can effectively break self tolerance at the cellular level, i.e. activate self antigen–specific CTLs, but not at the host level, as manifested by the lack of autoimmune pathologies against self antigen–expressing normal tissues and tumor.

Silencing of a signaling inhibitor allows DCs to break self tolerance and induce autoimmune pathologies. To investigate possible molecular restrictions in DCs to prevent autoimmune pathologies, we tested the effect of silencing SOCS1 in DCs on autoimmune responses based upon our previous findings (20). A lentiviral vector, LV-SOCS1-siRNA (eYFP), with the ability to specifically downregulate approximately 90% of SOCS1 mRNA in BM-derived DCs and a control vector, LV-GFP-siRNA (eYFP), were generated as described previously (20). In agreement, the SOCS1 protein expression in the transduced LV-SOCS1-siRNA DCs was significantly reduced, as demonstrated by Western blotting (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI26169DS1). TRP2-pulsed, transduced DCs were transferred into WT C57BL/6 mice. The mice were then stimulated in vivo with or without a low dose of LPS, and CTL responses were measured. As the number of in vivo LPS stimulations was increased, the amount of TRP2-specific CD8+ T cells also increased in SOCS1-siRNA DC mouse (Figure 2A). In contrast, the amount of TRP2-specific CD8+ T cells was only marginally increased in GFP-siRNA DC mice, regardless of the number of LPS stimulations, and was consistently lower than that in SOCS1-siRNA DC mice (Figure 2A, left panels). IFN-γ ELISPOT and CTL assays showed similar results (data not shown). The development of autoimmune vitiligo was apparent at 2–3 months after immunization in many of the SOCS1-siRNA DC mice injected with LPS (Figure 2B). In contrast, autoimmune vitiligo was not observed in any of GFP-siRNA DC mice, even with repeated in vivo LPS administrations. Although the mechanisms for the inability of GFP-siRNA DCs to
induce stronger antitumor immunity in response to repeated LPS stimulation are still not clear, SOCS1-restricted Jak/Stat signaling, endotoxin tolerance, and/or other mechanisms may contribute to this outcome. Interestingly, we observed that the duration of the presence of SOCS1-siRNA DCs in draining LNs of immunized mice was increased, compared with that of GFP-siRNA DCs (Figure 2C), suggesting that the enhanced response of SOCS1-siRNA DCs to repeated LPS stimulation is, in part, due to the prolonged duration of these DCs in draining LNs. Taken together, these results suggest a critical role of SOCS1 in DCs for maintaining tolerance to self antigens at the host level and a necessity of silencing the signaling inhibitor to induce pathological autoimmune responses by DC immunization.

SOCS1-silenced DCs induce effective antitumor immunity capable of controlling preestablished B16 tumors when costimulated with a TLR agonist. We (20) and Hanada et al. (21) have independently shown that SOCS1-siRNA DC or SOCS1-KO DC vaccination of weakly immunogenic (TRP2+) B16 tumor-bearing mice results in a reduction in tumor growth and an increase in survival; however, tumor growth is not fully inhibited, and mice eventually succumb to tumor burden. Therefore, we tested whether SOCS1-silenced DCs more potently induce autoreactive CTL responses capable of controlling the growth of preestablished B16 tumors when boosted in vivo with a TLR agonist such as LPS, a potent inducer of proinflammatory cytokines (1–3). The addition of in vivo stimulation with LPS significantly enhanced the ability to inhibit B16 tumors and promote mouse survival by immunization with SOCS1-siRNA but not GFP-siRNA DCs (Figures 2, D and E). The enhanced antitumor activity was correlated with potent TRP2-specific CTL activities observed in SOCS1-siRNA DC mice (data not shown). By transferring SOCS1-siRNA DCs into CD4- and CD8-kO mice, it was further demonstrated that the antitumor response required both CD8+ and CD4+ cells, although a weak antitumor response was observed in CD4-kO mice (Figures 2, D and E). No apparent toxicity, other than autoimmune vitiligo, was observed in the
Effects of SOCS1 silencing on antigen presentation by DCs. (A) Inhibition of preestablished B16 tumor by SOCS1-siRNA DC immunization with TRP2 peptides of different affinities. WT C57BL/6 mice were inoculated s.c. with B16 tumor cells (2.5 × 10^5) and 3 days later were immunized with 1.5 × 10^6 TRP2 peptide–pulsed (50 μg/ml; TRP2a or TRP2b), transduced DCs with ex vivo LPS maturation (100 ng/ml). One day after DC transfer, in vivo LPS was administered i.p. (30 μg/mouse) 1 time. Tumor growth curves (n = 6 mice/group) represent 1 of 3 independent experiments. P < 0.01, GFP-siRNA DC compared with SOCS1-siRNA DCs. (B) CD8+ T cell responses induced by SOCS1-siRNA DCs with different TRP2 peptides. CD8+ T cells isolated from the pooled splenocytes of immunized mice (2–3 mice) were subjected to IFN-γ ELISPOT assays stimulated with TRP2a or TRP2b peptide (10 μg/ml). An irrelevant peptide derived from ovalbumin was used as a negative control. *P < 0.01 versus SOCS1-siRNA DC plus TRP2a; **P < 0.01 versus SOCS1-siRNA DC plus TRP2b.

TRP2-pulsed SOCS1-siRNA DC mice coinjected with LPS more than 6 months after immunization. Histological analysis of major organs and tissues of the immunized mice revealed no pathologic inflammation (data not shown). Collectively, these results suggest that SOCS1-restricted signaling of TLR agonist–induced cytokines in DCs may control their ability to break tolerance at the host level and induce effective antitumor immunity.

Role of SOCS1-restricted cytokine (IL-12) production by DCs in breaking self tolerance at the host level. We next investigated possible mechanisms used by SOCS1 in DCs to regulate antigen presentation by examining its influence on 3 major signals provided to T cells: anti–genic peptide/MHC presentation (signal 1), costimulatory molecule expression (signal 2), and/or cytokine production (signal 3). By flow cytometric assays, we consistently found that there were slightly altered surface levels of costimulatory/inhibitory molecules (B7.1, B7.2, OX40L, CD40, or PDL1) on SOCS1-siRNA DCs compared with those on GFP-siRNA DCs both before and after LPS-induced maturation (data not shown), in agreement with our previous observation (20). Comparable levels of MHC class I and II molecules (signal 1) were also detected on SOCS1-siRNA DCs and GFP-siRNA DCs (data not shown). We further investigated whether peptide immunogenicity (TCR affinity) can influence SOCS1-restricted CTL responses in vivo. Since a high-affinity form (TRP2b) and a low-affinity form (TRP2a) of the TRP2 CTL peptide were identified previously (28), we used these 2 TRP2 peptides to test whether the strength of signal 1 can influence the ability of transduced DCs to control B16 tumor growth. Figure 3A shows that GFP-siRNA DCs loaded with either the low- or high-affinity peptide were unable to induce B16 tumor regression with in vivo LPS stimulation, although GFP-siRNA DCs loaded with the TRP2b peptide showed a marginal effect on tumor growth. In contrast, both SOCS1-siRNA DC groups loaded with the low- or high-affinity TRP2 peptide effectively blocked tumor growth. We investigated TRP2-specific CTL activities in vaccinated mice with IFN-γ ELISPOT. Figure 3B shows that GFP-siRNA DCs loaded with the high-affinity peptide induced stronger IFN-γ responses than did GFP-siRNA DCs loaded with the low-affinity peptide. However, both SOCS1-siRNA DCs loaded with low- or high-affinity peptide induced much stronger IFN-γ responses than GFP-siRNA DCs (P < 0.01). These results show that SOCS1 in DCs does not have a significant impact on the expression of costimulatory/inhibitory molecules or MHC class I and II molecules on DCs; and SOCS1-restricted signaling in DCs plays a more dominant role than self peptide affinity in inducing CTL responses and antitumor immunity.

The above observations and known SOCS1 functions as an inhibitor of JAK/STAT signaling (17) imply a critical role of SOCS1-restricted cytokine signaling and production in controlling T cell responses. We initially tested the importance of several candidate cytokines known to influence CTL activation by using DCs derived from the BM of different KO mice. LV-transduced DCs derived from IL-12p35–KO mice (p35−/−; SOCS1-siRNA DCs) were no longer able to inhibit the growth of preestablished B16 tumors (Figures 4, A and B). IFN-γ ELISPOT and CTL assays showed that p35−/− SOCS1-siRNA DCs had a substantially reduced ability to induce TRP2-specific CTL responses compared with WT SOCS1-siRNA DCs (Figure 4C and Supplemental Figure 2). In addition, in vivo stimulation with LPS failed to boost CTL responses induced by p35−/− SOCS1-siRNA DCs as measured by TRP2-tetramer analysis (Figure 2A), and autoimmune vitiligo did not develop in these mice (data not shown). In contrast to the essential role of IL-12 produced by antigen-presenting DCs, antitumor CTL responses were still effectively induced in IL-12p35−/− KO mice immunized with WT SOCS1-siRNA DCs, suggesting that IL-12 produced by host cells is not required for the induction of CTL responses (Figure 4, A–C, and Supplemental Figure 2). These results suggest that IL-12 production by SOCS1-silenced, antigen-presenting DCs is required for inducing a potent TRP2-specific CTL response and breaking self tolerance at the host level.

Prolonged and enhanced production of IL-12 by SOCS1-silenced DCs versus transient and low production by WT DCs. DCs produce significant amounts of heterodimeric IL-12 in response to microbial products and/or CD40 ligand. However, the duration of IL-12 production by stimulated DCs is tightly restricted to a short time period (8–16 hours) (31). We determined the effect of SOCS1 on the concentration and duration of IL-12 produced by DCs following in vitro stimulation. To test this we stimulated SOCS1-silenced DCs or control DCs with LPS alone or in combination with stimula-
The marked difference in IL-12p70 compared with IL-12p40 secretion is likely due to the upregulation of IL-12p35 expression, which has previously been shown to act as the rate-limiting step for IL-12 heterodimer secretion (36). Indeed, higher levels of IL-12p35 mRNA were also detected in SOCS1-siRNA DCs, compared with control GFP-siRNA DCs (Supplemental Figure 3). We also observed that the levels of the IFN-inducible factors ICSBP and IRF-1 mRNA (37) appeared enhanced in SOCS1-siRNA DCs, while the transcription factors C/EBP-β and c-Rel remained largely unchanged compared with control DCs (Supplemental Figure 3). Consistent with the in vitro data, the expression levels of IL-12p35 as well as other proinflammatory cytokines, IFN-γ and IL-2, were elevated in DCs isolated from the draining LNs of mice receiving SOCS1-siRNA DCs and in vivo LPS stimulation (Supplemental Figure 4). Finally, we found that SOCS1-silenced DCs were able to continuously produce high levels of IL-12p70 for at least 72 hours when stimulated with LPS/anti-CD40 mAb, while control GFP-siRNA DCs produced only low levels of IL-12p70 over the same culture period (Figure 5C). These results indicate that SOCS1 silencing allows DCs to continuously produce increased levels of IL-12p70 in response to inflammatory stimulation.

Increased and continuous production of IL-12 by WT DCs is not sufficient to break self tolerance at the host level. To investigate whether overproduction of IL-12 alone may account for the ability of SOCS1-silenced DCs to break self tolerance at the host level, we compared the ability of WT DCs transfected with recombinant adenovirus constitutively expressing biologically active mouse IL-12 cytokine (Ad–IL-12) and SOCS1-silenced DCs to induce antitumor CTL responses. DCs transfected with Ad–IL-12 at an MOI of 300 produced a high level of IL-12p70, comparable to the IL-12p70 level produced by SOCS1-siRNA DCs after stimulation with LPS. Unexpectedly, immunization with mature TRP2-pulsed DCs transfected with different MOIs of Ad–IL-12 failed to control the growth of preestablished B16 tumors (Figure 6A). In agreement, in mice immunized with Ad–IL-12 DCs (300 or 1,000 MOI), only modest increases in CTL responses were observed (Figure 6, B and C). Furthermore, we found that in vivo stimulation with a low dose of IL-12 did not significantly enhance CTL responses and antitumor activities in GFP-siRNA DC mice but significantly enhanced the antitumor CTL responses in SOCS1-siRNA DC mice (Figure 6, A–C), suggesting the enhanced sensitivity of SOCS1-silenced DCs to IL-12 stimulation. Importantly, vitiligo was not induced in mice immunized with Ad–IL-12 DCs or GFP-siRNA DCs with IL-12 coinjection, while it was observed in about 40% of TRP2-pulsed, SOCS1-siRNA DC mice coinfected with a low dose of IL-12 (Supplemental Figure 5). These results indicate that continuous overexpression of IL-12 by WT DCs is not sufficient to break self tolerance at the host level and that SOCS1-restricted signaling of IL-12 in antigen-presenting DCs and the concentration of IL-12 produced by DCs play a critical role in controlling CTL responses and tolerance.
Unbridled IL-12 signaling in DCs is required to break self tolerance at the host level. To test the role of IL-12 signaling in DCs for breaking self tolerance at the host level, we compared the CTL responses induced by WT DCs and DCs derived from IL-12 receptor–KO mice (IL-12Rβ2−/−). SOCS1-sienced DCs derived from IL-12Rβ2−/− SOCS1-siRNA DCs exhibited a substantially reduced ability to induce TRP2-specific CTLs compared with WT SOCS1-siRNA DCs (Figure 7B). To further investigate the role of IL-12 signaling in DCs, we examined the ability of in vivo IL-12 stimulation to enhance CTLs in mice immunized with IL-12Rβ2−/− SOCS1-siRNA DCs. Figures 7, C and D, show that in vivo IL-12 stimulation of IL-12Rβ2−/− SOCS1-siRNA DC mice failed to enhance TRP-specific CTL responses. Collectively, these results indicate that SOCS1-restricted IL-12 signaling in antigen-presenting DCs plays a critical role in controlling antigen presentation and the unbridled signal transduction of IL-12 in antigen-presenting DCs is required to break self tolerance and induce pathological autoimmune responses.

SOCS1 restricts IL-12 and cytokine signaling cascade in DCs. Our data suggest that silencing SOCS1 may allow the establishment of an unbridled signaling cascade of IL-12 and IL-12–induced downstream cytokines in DCs. To further determine the ability of IL-12 to continuously signal in SOCS1-siRNA DCs, we examined the duration of IL-12 signaling in WT and SOCS1-silenced DCs by analyzing the phosphorylation kinetics of Stat4 (phosphorylated Stat4 [pStat4]), which is primarily used by members of the IL-12 cytokine family (36). Figure 8A shows that Stat4 was persistently phosphorylated for at least 72 hours in SOCS1-silenced DCs after LPS/anti-CD40 stimulation, whereas pStat4 was already at basal levels at 24 hours in GFP-siRNA DCs, in agreement with the continuous secretion of IL-12p70 by SOCS1-silenced DCs in response to LPS/anti-CD40 mAb stimulation shown in Figure 5C. Furthermore, Ad–IL-12–transfected DCs were found to only have low levels of pStat4 at the indicated time points, suggesting that SOCS1 inhibits Stat4 activation in Ad–IL-12 DCs that continuously produced and exposed to IL-12 (Supplemental Figure 6). We then examined whether IL-12 induces the enhanced production of downstream cytokines by SOCS1-silenced DCs. Figure 8B shows that IL-12 stimulation induced substantially higher levels of inflammatory cytokines such as IFN-γ by mature SOCS1-siRNA DCs than by mature GFP-siRNA DCs, suggesting that SOCS1-silenced DCs have an increased sensitivity to IL-12 stimulation. Figure 8C shows that GFP-siRNA DCs and mock-transduced DCs only transiently produced IL-12p70. In contrast, SOCS1-siRNA DCs persistently produced IL-12p70 after stimulation, at levels comparable to Ad–IL-12 DCs (MOI, 300). Importantly, this increased level of IL-12p70 secretion by SOCS1-siRNA DCs was dependent on the expression of the IL-12 receptor (Figure 8C), indicating that the marked increase in IL-12p70 secretion by SOCS1-silenced DCs is likely due to autocrine signaling by IL-12p70. IL-12 stimulation induces IFN-γ production by DCs (38), and IFN-γ was recently found to be hyper-produced by SOCS1-KO DCs in response to LPS (21). Therefore, we examined whether an unbridled cytokine network, not just IL-12, in SOCS1-silenced DCs is collectively responsible for inducing effective anti-tumor immunity. Using IFN-γ–KO DCs, we found that IFN-γ–KO SOCS1-siRNA DCs only induced weak CTL responses and did not control the growth of preestablished B16 tumors (Figure 7, A and B), suggesting an important role of IFN-γ in inducing antitumor CTL responses by SOCS1-siRNA DCs as well. Collectively, these data suggested that SOCS1 restricts cytokine signaling and only allows DCs to activate CTLs in a pulsing or transient fashion, thus limiting autoimmune pathologies. These data further suggest that SOCS1 silencing leads to the unbridled signaling of IL-12 and the downstream cytokine network in antigen-presenting DCs, resulting in the breaking of self tolerance at the host level and pathological autoimmune responses.
Discussion

This study uncovers a novel regulatory mechanism for the control of pathological autoimmune responses by DCs through the restriction of cytokine signaling and the responsiveness to stimuli by SOCS1. We find that optimal immunization with matured WT DCs loaded with high-affinity self peptide (TRP2) plus persistent TLR signaling effectively activate self-reactive T cells but fail to break self tolerance at the host level. In contrast, SOCS1-silenced DCs effectively break tolerance at the host level and cause self antigen–specific, autoimmune pathologies against normal tissues and tumors. These results indicate that the requirement for breaking self tolerance at the cellular level (autoreactive CTL activation) and at the host level (autoimmune pathologies) by DCs is different and that the hardwired signaling inhibitor prevents DCs from overactivating autoreactive CTLs and causing autoimmune pathologies even when potent inflammatory stimuli are persistently present.

The subsequent mechanistic studies reveal that the inability of matured WT DCs plus persistent TLR signals to break self tolerance at the host level is likely due to the restriction of IL-12 and the downstream cytokine cascade signaling by SOCS1. This conclusion is supported by the following observations: (a) The lack of IL-12 production by SOCS1-silenced DCs (derived from IL-12p35–KO mice) abrogates their ability to break self tolerance at the host level; (b) The blockade of IL-12 signaling in SOCS1-silenced DCs (derived from IL-12Rβ2–KO mice) also abrogates their ability to induce autoimmune pathologies and antitumor activities; (c) SOCS1-silenced DCs produce enhanced levels of IL-12p70 and downstream cytokines with a prolonged duration in response to stimulation; (d) In vivo administration of IL-12 as well as TLR agonists more effectively enhance CTL responses induced by SOCS1-silenced DCs than by WT DCs; and (e) WT DCs transduced with Ad–IL-12 to constitutively overexpress IL-12 are unable to induce autoimmune pathologies.

Maturation is known as the control point for DC transition from the immature, tolerogenic state to the activated, immunogenic state (4, 5). Our results demonstrate that proinflammatory cytokine signaling in mature DCs, restricted by SOCS1, critically regulates the magnitude of CTL responses. This indicates that CTL responses are controlled by DCs on at least 2 levels: the well-defined DC maturation required for the initiation of CTL responses and the SOCS1-restricted cytokine signaling of matured DCs for the control of the magnitude and overactivation of CTL responses uncovered in this study. Our results also imply dynamic interactions between DCs and their surrounding environment of various immune cells and stimuli, which collectively determines the magnitude of CTL responses. It has recently been demonstrated that mature DC lifespan is much longer than previously estimated, lasting 2–3 weeks in vivo (39, 40), supporting the necessity of regulating antigen-presenting DCs after maturation.

This study establishes a new principle for breaking self tolerance and inducing pathological autoimmune responses, which is the first requirement for an effective tumor vaccine, by DCs via silencing a signaling inhibitor. The results of this study suggest the requirement of persistent antigen presentation by DCs for inducing autoimmune pathologies and effective antitumor immunity. Importantly, persistent antigen presentation by DCs cannot be achieved by persistent stimulation with proinflammatory stimuli or overproduction of a key proinflammatory cytokine (IL-12), probably because the hardwired signaling inhibitor prevents the establishment of an intricate autocrine/paracrine cytokine signaling network in DCs and permits DCs to stimulate CTLs only in a tran-

![Figure 6](image_url)

WT DCs constitutively expressing IL-12 were insufficient to overcome self tolerance at the host level. (A) Inability to inhibit preestablished B16 tumors by Ad–IL-12 DCs. BM DCs were transduced with Ad–IL-12 (MOIs of 300 or 1,000) or LV-SOCS-siRNA or LV-GFP-siRNA (MOI of 5). WT mice were inoculated s.c. with B16 tumor cells (2.5 × 10^5) and 3 days later were immunized with 1.5 × 10^6 TRP2-pulsed DCs with ex vivo TNF-α maturation (50 ng/ml). After transfer of DCs, IL-12 (1 µg/mouse) was administered i.p. 3 times on days 1, 3, and 5. Tumor growth curves (n = 6 mice/group) represent 1 of 3 independent experiments. (B and C). Antigen-specific CD8^+ T cell responses. Splenocytes or CD8^+ T cells isolated from the pooled splenocytes of immunized mice were subjected to IFN-γ ELISPOT assays (B) or intracellular IFN-γ staining (C). *P < 0.01 versus SOCS1-siRNA DCs plus IL-12.
Persistent cytokine signaling in DCs is required to induce pathological autoimmune pathologies. (A) Inability to inhibit preestablished B16 tumors by IL-12p35−/−, IL-12Rβ2−/−, or IFN-γ−/− DCs. BM DCs derived from either WT, IL-12p35−/−, IFN-γ−/−, or IL-12Rβ2−/− mice were transduced with LV-SOCS1-siRNA or LV-GFP-siRNA. WT mice were inoculated s.c. with B16 tumor cells (2.5 × 10^5) and 3 days later were immunized with 1.5 × 10^6 TRP2-pulsed, matured DCs, followed by poly(I:C) stimulation i.p. on days 1, 3, and 5. Tumor growth curves (n = 6 mice/group) represent 1 of 3 independent experiments. (B) Reduced potency to induce CTL responses by SOCS1-silenced, IL-12Rβ2−/− DCs or IFN-γ−/− DCs. CD8+ T cells isolated from the pooled splenocytes of mice immunized with DCs derived from WT, IFN-γ−/−, IL-12p35−/−, or IL-12Rβ2−/− mice, followed by poly(I:C) stimulation 3 times, were subjected to IFN-γ ELISPOT assays. *P < 0.01 versus SOCS1-siRNA DCs. (C and D) In vivo IL-12 stimulation failed to enhance the potency of SOCS1-silenced, IL-12Rβ2−/− DCs. Mice were immunized once with WT or IL-12Rβ2−/− DCs (1.5 × 10^6/mouse) pulsed with TRP2 and matured with TNF-α, followed by IL-12 (i.p.) 3 times. Two weeks later, splenocytes or CD8+ T cells isolated from the pooled splenocytes were subjected to IFN-γ ELISPOT (C) and CTL assays against B16 tumor cells (D). *P < 0.01 versus SOCS1-siRNA DCs.

Various inhibitory mechanisms exist in T cells to prevent pathological autoimmunity (26, 43, 44). Disabling of 1 of these inhibitory mechanisms, such as the blockade of CTLA4 on T cells or depletion of CD25+ regulatory T cells, is sufficient to break self tolerance at the host level but causes unwanted nonspecific autoimmune pathologies (26, 45, 46). However, inhibition of a signaling inhibitor in antigen-loaded DCs can induce a TAA-specific, pathological autoimmune response against tumor. The results of our study also suggest a new avenue to improve tumor immunotherapy in general by coadministration of an inhibitor of these signaling inhibitors and a cytokine or TLR agonist.

DCs activated by TLR signaling produce a large number of cytokines, including IL-12, TNF-α, IL-6, IFN-α/β, and IFN-γ, most of which are regulated by SOCS1 (17, 47). The importance of cytokines as a third signal for the activation or overactivation of T cells by DCs has been recognized (12, 13, 48). Production and signaling of proinflammatory cytokines such as IL-12 by WT DCs after TLR signaling is transient (31). Recent studies also showed that autocrine and paracrine signaling of cytokines produced by DCs plays a role in determining the outcome of antigen presentation (30, 49). Here we find that unbridled IL-12 and the downstream cytokine signaling play a critical role in the breaking of tolerance and increased CTL responses. Interestingly, SOCS1−/− inflammatory disease is primarily caused by unbridled IFN-γ signaling (17), although IL-12 also plays a role (47), while LPS-induced toxicity in SOCS1−/− mice is linked to unbridled IFN-α/β signaling (32). Hanada et al. recently reported that SOCS1-KO DCs induced more effective antitumor CTL responses probably due to the enhanced expression of IFN-γ (21). Apparently, other cytokines such as IFN-γ (Figure 7), in addition to IL-12, also play a role in the increased CTL responses induced by SOCS1-silenced DCs. Thus, further studies are warranted to delineate the cellular and molecular details of this SOCS1-regulated, complicated autocrine and paracrine cytokine signaling network in controlling the ability of DCs to activate or overactivate autoreactive CTLs in a natural, suppressive environment. In summary, this study contributes...
to the fundamental understanding of molecular and immunologic regulation of DCs and may lay a foundation for developing more effective tumor vaccines that not only activate autoreactive T cells, but also cause pathological autoimmune antitumor responses.

Methods

Mice. Approval for performing these mouse experiments was obtained from the institutional review board at Baylor College of Medicine. Four- to 6-week-old female C57BL/6, CD4-kO, CD8-kO, IL-12p35–kO, IFN-γ–kO, and IL-12Rβ2–kO mice were purchased from The Jackson Laboratory and maintained in a pathogen-free mouse facility at Baylor College of Medicine according to institutional guidelines.

Peptides. H2-Kβ–restricted TRP2 peptides, TRP2a (VYDFFVWL) and TRP2b (SVYDFFVWL) (28), were used for this study. The control H2-Kβ–restricted peptide was OVA-I (SIINFEKL). All peptides were synthesized and purified by HPLC to greater than 95% purity by Genemed Synthesis Inc. All peptides were dissolved in DMSO before final dilution in endotoxin-free PBS.

Transduction of BM-derived DCs with lentiviral and adenoviral vectors. Recombinant lentiviral vectors (LV-SOCS1-siRNA and LV-GFP-siRNA) were produced and titrated as described previously (20). A recombinant adenovirus engineered to constitutively express biologically active IL-12 was purchased from InvivoGen and produced according to the manufacturer’s instructions. Mouse BM-derived DCs were prepared as described previously (20). Briefly, mouse BM was flushed from the hind limbs, passed through a nylon mesh, and depleted of red cells with ammonium chloride. After extensive washing with RPMI-1640, cells were cultured with RPMI-1640 supplemented with 10% FBS, recombinant mouse GM-CSF/ml (20 ng/ml; PeproTech), and recombinant mouse IL-4 (20 ng/ml; PeproTech). On days 2 and 4 of culture, the supernatant was removed and replaced with fresh medium containing mGM-CSF and mIL-4. All cells were cultured in the presence of GM-CSF and IL-4. *P* < 0.01 versus WT SOCS1-siRNA DCs.
12-well plates with addition of 8 μg/ml Polybrene (Sigma-Aldrich) only for lentivirus-mediated transduction. DCs were washed and plated in 12-well plates at a concentration of 1 × 10^6 cells/well in 400 μl of RPMI-1640. The cells were exposed to lentiviral or adenoviral vectors with different MOIs. After 8–12 hours of transduction, the cells were washed and incubated in fresh tissue culture medium supplemented with GM-CSF and IL-4 as described previously (20, 50).

Cytokine ELISA analysis. Levels of various cytokines (IL-12p40, IL-12p70, IFN-γ) were quantitated using the supernatant of DC cultures using ELISA analysis (BD Biosciences) according to the manufacturer’s instructions at the time points and with the stimulus as indicated in the figures.

RT-PCR. Total cellular RNA was isolated from DCs using RNeasy (Qiagen) according to the manufacturer’s instructions. The expression level of GAPDH was first evaluated as an internal control using serially diluted reverse-transcribed cDNA. The expression levels of the target mRNAs were then assessed using appropriate pairs of sense and antisense primers: GAPDH, 5′-ACCAGCTCTAGAGCATC-3′ and 5′-TCCAC-CCCTGTGCTGTA-3′; IL-12p35, 5′-AAATGGCAGCTGTTCCAT-3′ and 5′-CCATCCTCTGCAAGTTCACC-3′; IFN-γ, 5′-TCAAGGTCATAGTGATTGGAAAGA-3′ and 5′-TGAGTCGTGCAAGATTTTCATG-3′; eIF-4, 5′-CACAAGTTGCAGCTGCCG-3′ and 5′-TCCAGCAAGGACTGTAGTGC-3′; IRF-1, 5′-CTGTGATGACCAAGAGCATG-3′ and 5′-CTTCTCATCCCTGTAAGACATG-3′; ICSPB, 5′-GATCAAGGAACCTCTTGAG-3′ and 5′-GAAGCTGATGACCATCGTCCG-3′; c-Rel, 5′-TGGCTGACTGACTCAGTCTGGAGTGC-3′ and 5′-CCACAATTTTTGATCAGGGATATATCTGTTTC-3′; C/EBP-β, 5′-GGGCGGAGCGCCACAACATCT-3′ and 5′-TGCTGTTGACAATTTTCCGAC-3′. For analysis of in vivo eYFP-expressing DC lifespan the cells were first purified from the draining LNs using MACS (Miltenyi Biotech). The PCR products were separated by 1% agarose gel electrophoresis and visualized by ethidium bromide staining.

31Cr CTL assays. CD8+ CTL responses were assessed with a standard chromium release assay, which measures the ability of in vitro–stimulated splenocytes to lyse target cells (20, 50). Splenocytes pooled from immunized mice were restimulated in vitro using 10 μg of anti-CD8 mAb (Mab AN 18, 10 mg/ml; InvivoGen) or IL-12 vector at an MOI of 5 or Ad-IL-12 vector at an MOI of 300 or 1,000 (20). DCs were then pulsed with TRP2 peptides for 20 hours, washed with PBS 3 times, and stimulated with LPS (100 ng/ml; Sigma-Aldrich) or TNF-α (50 ng/ml; R&D Systems) for 24 hours, washed with PBS 3 times, and then injected into C57BL/6 mice via a rear foot pad. In the therapeutic model, B16 tumor cells (2.5 × 10^6) were injected s.c. into the right flank of syngeneic mice to establish a tumor model. On day 3 after tumor inoculation, the mice were randomly divided into groups and injected with antigen-pulsed, matured, transduced DCs (1.5 × 10^6) or PBS control. In some mice, TLR agonist (LPS [30 μg/mouse; Sigma-Aldrich]) or TNF-α (50 μg/ml; R&D Systems) was administered i.p. after DC vaccination on the day of tumor challenge. Tumor size was measured every 2–4 days with an electronic caliper until the experiment was completed.

Statistics. For statistical analysis, we used 2-tailed Student’s t test, and a 95% confidence limit was taken to be significant, defined as P < 0.05. Results are presented as mean ± SEM.

Acknowledgments We thank Lisa Rollins, Wenhong Ren, Natasha Lapteva, Andrew Sharabi, Jiali Sun, and Lei Shen for technical assistance and valuable suggestions. This work was supported by grants from the NIH (R01CA90427, R014840, and R01AI48711), the Leukemia and Lymphoma Society SCOR, and the US Army Prostate Cancer Research Program (to X.F. Huang). K. Evel-Kabler and M. Aldrich were supported by a predoctoral and postdoctoral NIH training grant (T32-AI07495).

Received for publication July 5, 2005, and accepted in revised form September 18, 2005.

Address correspondence to: Si-Yi Chen, Center for Cell and Gene Therapy, Alkek Building N1004, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. Phone: (713) 798-1236; Fax: (713) 798-1083; E-mail: sychen@bcm.tmc.edu.

