Dias-Santagata et al. Oxidative stress mediates tau-induced neurodegeneration in Drosophila

SUPPLEMENTAL DATA

Figure Legends

Supplemental Figure S1. Brain vacuolization is present both in the cortex and in the neuropil of tauR406W-expressing flies. Frontal brain sections of 10-day-old flies were stained with H&E. High power magnification photomicrographs highlight regions of vacuolization in the cortex (A, C and E, arrowheads) and in the neuropil (B, D and F, arrows), in tauR406W-expressing flies (A and B), and in tauR406W transgenic animals heterozygous for either the TrxrΔ1 (C and D) or the Sod2n283 (E and F) null alleles. Partial inactivation of Trxr and Sod2 antioxidant activities enhanced tau-induced neurotoxicity. Scale bar, 10 \(\mu\)m. Genotypes: elav-GAL4/+; UAS-tauR406W/+, elav-GAL4/TrxrΔ1; UAS-tauR406W/+, elav-GAL4/+; Sod2n283/+; UAS-tauR406W/+.

Supplemental Figure S2. Heterozygosity for Sod2n283 or for TrxrΔ1 is not associated with neurodegeneration. (A and B) Frontal brain sections of 10-day-old flies heterozygous for the TrxrΔ1 (A) or for the Sod2n283 (B) null alleles were stained with H&E. Scale bar, 20 \(\mu\)m. (C and D) Neurotoxicity in 20-day-old flies was evaluated by quantification of brain vacuolization (C) and TUNEL-positive neurons (D). Expression of
tauR406W in the fly brain resulted in significant neurodegeneration when compared to controls, as assessed by brain vacuolization (p<0.001) (C) and by neuronal cell death (p<0.001) (D). By contrast, neurotoxicity in 20-day-old flies heterozygous for Sod2n283 or for Trxr∆1 was not significantly different from that of age-matched controls. Genotypes: elav-GAL4/+; elav-GAL4/Trxr∆1, elav-GAL4/+; Sod2n283/+ and elav-GAL4/+; UAS-tauR406W+/+.
Supplemental Figure S1 (Dias-Santagata et al.)

A - tau^{R406W}
B - tau^{R406W}
C - tau^{R406W} + Trx{^A1}
D - tau^{R406W} + Sod2^{n283}
Supplemental Figure S2 (Dias-Santagata et al.)

A

TrxrA1

B

Sod2n283

C

\begin{center}
\begin{tabular}{c c c c}
& control & TrxrA1 & Sod2n283 & tauR406W \\
No. of vacuoles & & & & \\
\hline
0 & 5 & 5 & 20 & \\
5 & 10 & 15 & 20 & \\
10 & 15 & 20 & 25 & \\
\end{tabular}
\end{center}

D

\begin{center}
\begin{tabular}{c c c c}
& control & TrxrA1 & Sod2n283 & tauR406W \\
No. of TUNEL+ cells & & & & \\
\hline
0 & 5 & 5 & 15 & \\
5 & 10 & 15 & 20 & \\
10 & 15 & 20 & 25 & \\
\end{tabular}
\end{center}