A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation

Shao H. Yang,1 Margarita Meta,2 Xin Qiao,1 David Frost,3 Joy Bauch,3 Catherine Coffinier,1 Sharmila Majumdar,2 Martin O. Bergo,4 Stephen G. Young,1 and Loren G. Fong1

1Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA. 2Department of Radiology, UCSF, San Francisco, California, USA. 3Abbott, Abbott Park, Illinois, USA. 4Department of Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Göteborg, Sweden.

Hutchinson-Gilford progeria syndrome (HGPS) is caused by the production of a truncated prelamin A, called progerin, which is farnesylated at its carboxyl terminus. Progerin is targeted to the nuclear envelope and causes misshapen nuclei. Protein farnesyltransferase inhibitors (FTI) mislocalize progerin away from the nuclear envelope and reduce the frequency of misshapen nuclei. To determine whether an FTI would ameliorate disease phenotypes in vivo, we created gene-targeted mice with an HGPS mutation (LmnaHG/+) and then examined the effect of an FTI on disease phenotypes. LmnaHG/+ mice exhibited phenotypes similar to those in human HGPS patients, including retarded growth, reduced amounts of adipose tissue, micrognathia, osteoporosis, and osteolytic lesions in bone. Osteolytic lesions in the ribs led to spontaneous bone fractures. Treatment with an FTI increased adipose tissue mass, improved body weight curves, reduced the number of rib fractures, and improved bone mineralization and bone cortical thickness. These studies suggest that FTIs could be useful for treating humans with HGPS.

Introduction
Hutchinson-Gilford progeria syndrome (HGPS) is a rare pediatric progeroid syndrome characterized by multiple disease phenotypes, including slow growth, sclerodermatous changes of the skin, alopecia, micrognathia, osteoporosis, osteolytic lesions in bone, and occlusive atherosclerotic vascular disease (1–5). HGPS is caused by an LMMA mutation that results in the synthesis of a mutant prelamin A, commonly called progerin, that contains a 50-amino-acid deletion within the carboxyterminal portion of the protein (2, 6). Progerin undergoes farnesylation at a carboxyterminal CaaX motif, but it lacks the cleavage site for the endoprotease ZMPSTE24 and therefore cannot be further processed to mature lamin A (2, 6). Within cells, progerin is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear lamina and causes misshapen nuclei (7–9).

We suspected that protein farnesylation might be crucial for the targeting of progerin to the nuclear rim, and we hypothesized that blocking farnesylation with a farnesyltransferase inhibitor (FTI) would mislocalize progerin away from the nuclear rim and reduce the frequency of misshapen nuclei (6, 9, 10). Indeed, this was the case; an FTI reduced the number of misshapen nuclei in fibroblasts from mice with a targeted HGPS mutation (9). Subsequently, we (10) and others (11–13) showed that FTIs also improved nuclear shape in fibroblasts from humans with HGPS.

The fact that FTIs improved nuclear shape in HGPS cells raised hope for a potential therapy and stimulated interest in testing the efficacy of FTIs in a gene-targeted mouse model of HGPS (6, 9–13). In this study, we describe disease phenotypes in mice carrying a targeted HGPS mutation and define the impact of FTI treatment on the course of the disease.

Results
Slow growth, bone abnormalities, and loss of fat in LmnaHG/+ mice. The tissues of LmnaHG/+ mice (mice heterozygous for a targeted HGPS mutation [ref. 9] yielding exclusively progerin) expressed lamin A, lamin C, and progerin. The amount of progerin in both liver and aorta was greater than that of lamin A or lamin C, as judged by Western blotting (Figure 1A). Homozygous mice (LmnaHG/HG) expressed exclusively progerin (Figure 1A).

LmnaHG/+ mice appeared normal for the first 3 weeks of life. By 6–8 weeks, however, both male and female LmnaHG/+ mice began to lose weight (Figure 1B). The survival of LmnaHG/+ mice was reduced (Figure 1C). Also, LmnaHG/+ mice had significantly less subcutaneous fat and abdominal fat (Figure 1, D and E) and exhibited more kyphosis of the spine (Figure 2, A and B). LmnaHG/+ mice invariably developed osteolytic lesions in the ribs, predisposing to rib fractures near the costovertebral junction (Figure 2, C and D). By 18 weeks of age, all LmnaHG/+ mice (n = 11 examined) developed osteolytic lesions in the posterior portion of the zygomatic arch (Figures 2, E and F); they also had micrognathia and a reduction in the zigzag appearance of the cranial sutures (Figure 2, E and F). Some LmnaHG/+ mice had osteolytic lesions in other sites (e.g., clavicle, scapula, calvarium, and mandible). The LmnaHG/+ mice became progressively malnourished, and 50% (39/78) died or were so sick that they had to be euthanized by 27 weeks of age.
Many of the phenotypes in Lmna^{HG/+} mice (e.g., slow growth, weight loss, loss of adipose tissue, kyphosis, osteolytic lesions in the zygomatic arch, and fractured ribs at the costovertebral junction) are shared by Zmpste24^{–/–} mice (14, 15). However, one difference was noteworthy: Zmpste24^{–/–} mice developed a grip strength abnormality (inability to hang upside down from a grid at 4 months of age) (14, 15), whereas in Lmna^{HG/+} mice the grip strength was invariably normal (Figure 2G). No histological abnormalities in skeletal muscle were identified in Lmna^{HG–/–} mice. The aortas of 6- to 7-month-old mice (<i>n</i> = 8) were also examined by routine histology; the intima, media, and adventitia of Lmna^{HG–/–} aortas were normal, free of lesions, and indistinguishable from those of Lmna^{HG+/+} (wild-type) mice (Figure 2H).

Early death and severe bone abnormalities in Lmna^{HG/HG} mice. In sustained breeding efforts, we were able to obtain only a few (<i>n</i> = 12) homozygous mice (Lmna^{HG/HG}). Lmna^{HG/HG} mice were invariably very small (approximately one-half the size of their littermates), with a complete absence of adipose tissue, and many had spontaneous bone fractures in the extremities (Figure 3, A and B). All Lmna^{HG/HG} mice died by 3–4 weeks of age (Figure 1C). As judged by μCT scans, the bones of Lmna^{HG/HG} mice were poorly mineralized; the mice also had micrognathia and an abnormal skull shape, with open cranial sutures (Figure 3, C–F).

We suspected that the more severe disease phenotypes in Lmna^{HG/HG} mice would be accompanied by more extensive abnormalities in nuclear shape in cultured cells. Indeed, a high frequency of nucleoli from Lmna^{HG/HG} fibroblasts were misshapen (59.5% of nuclei had folds or blebs versus 29.6% in Lmna^{HG/+} cells and 10.8% in Lmna⁺⁺ cells; more than 1,000 cells counted for 2 different fibroblast cell lines of each genotype; <i>P</i> < 0.0001 by χ² test) (Figure 4). Treatment of Lmna^{HG/+} and Lmna^{HG/HG} fibroblasts with an FTI significantly reduced the frequency of misshapen nuclei (<i>P</i> < 0.0001).

The phenotype of Lmna^{HG–/–} mice (with 1 Lmna⁺⁺ allele and 1 Lmna-knockout allele; ref. 16) was less severe than that of Lmna^{HG/HG} mice but more severe than that of Lmna^{HG/+} mice. Lmna^{HG–/–} mice (<i>n</i> = 10) had multiple rib fractures by 8 weeks of age (resembling 5- to 6-month-old Lmna^{HG/+} mice), and all Lmna^{HG–/–} mice died by 10–14 weeks of age (data not shown).

Amelioration of disease phenotypes in Lmna^{HG/+} mice with an FTI. To determine whether an FTI would improve disease phenotypes in Lmna^{HG/+} mice, we administered a potent FTI, ABT-100 (17), in the drinking water (39 mg/kg body weight) to groups of 7–10 male and female Lmna^{HG/+} mice, beginning at 4 weeks of age. Biomarker studies indicated that the FTI was active in vivo. First, the FTI interfered with the biogenesis of mature lamin A from the wild-type (Lmna⁺⁺) allele, resulting in the appearance of nonfarnesylated prelamin A in the livers of FTI-treated mice, which could be readily detected by Western blotting with a prelamin A–specific antibody (Figure 5A). Second, Western blots of HDJ-2, a chaperone protein that is normally biotransmitted with an FTI significantly increased the weight of the major fat pads in female mice; the degree of kyphosis was reduced in FTI-treated mice (<i>P</i> < 0.0001) versus 9.1 ± 3.76 in vehicle-treated littermate female mice (<i>n</i> = 4) at 4 months of age (<i>P</i> < 0.0001) versus 13.6 ± 7.31 in vehicle-treated female mice (<i>n</i> = 5) at 4 months of age (<i>P</i> < 0.0001) at 7 months of age (<i>P</i> < 0.0001). Original magnification, ×20.

Figure 1
Phenotypes of Lmna^{HG/+} mice. (A) Western blot (with an antibody against lamin A/C), revealing progerin, lamin A, and lamin C in the liver and aorta of Lmna^{HG/+} mice and progerin in the liver of Lmna^{HG/HG} mice. (B) Retarded growth in male and female Lmna^{HG/+} mice. Body weight curves are shown for male Lmna^{HG/+} mice (<i>n</i> = 8) and littermate male Lmna^{HG–/–} mice (<i>n</i> = 6) and for female Lmna^{HG/+} mice (<i>n</i> = 8) and littermate female Lmna^{HG–/–} mice (<i>n</i> = 7). Error bars for female mice and male Lmna^{HG/+} mice are too small to be seen. (C) Reduced survival of Lmna^{HG/+} (<i>n</i> = 42) and Lmna^{HG/HG} (<i>n</i> = 12) mice. (D) Representative H&E-stained sections of skin from a 6-month-old Lmna^{HG/+} mouse and a littermate Lmna^{HG–/–} mouse; <i>n</i> = 4 mice of each genotype examined. (E) Body fat in Lmna^{HG/+} (<i>n</i> = 4) versus Lmna^{HG–/–} (<i>n</i> = 3) at 2 months of age (<i>P</i> = 0.2); Lmna^{HG/+} (<i>n</i> = 8) versus Lmna^{HG–/–} (<i>n</i> = 4) at 4 months of age (<i>P</i> < 0.0001); and Lmna^{HG/+} (<i>n</i> = 5) versus Lmna^{HG–/–} (<i>n</i> = 6) at 7 months of age (<i>P</i> < 0.0001).
fractures was evident on μCT scans (Figure 6D). FTI treatment of LmnaHG/− mice also led to an improvement in bone mineralization and cortical thickness (Figure 6, E and F).

Discussion

Our first goal was to define the phenotype of gene-targeted mice expressing progerin, the mutant protein responsible for HGPS. The LmnaHG/− mice were normal at birth but then exhibited many of the hallmarks that appear early on in humans with HGPS, such as slow growth, osteolytic lesions in bone, osteoporosis, micrognathia, and loss of adipose tissue. These phenotypes were even more dramatic in LmnaHG/HC mice. A second goal was to determine whether treatment with an FTI would ameliorate disease phenotypes in LmnaHG/− mice. Our studies provided a clear answer: an FTI, administered at 4 weeks of age, improved body weight curves, prevented loss of adipose tissue, improved bone mineralization, and reduced the number of rib fractures. Very recently, Fong et al. (18) reported that an FTI ameliorated disease phenotypes in Zmpste24−/− mice. An absence of ZMPSTE24, the prelamin A endoprotease, leads to an accumulation of wild-type prelamin A — not the progerin molecule found in humans with HGPS. The current studies with a mouse HGPS model showed that an FTI ameliorates disease phenotypes caused by progerin, providing support for the notion that FTIs could be useful for treating human HGPS patients.

The phenotypes in LmnaHG/− mice closely resemble those in Zmpste24−/− mice. These phenotypic similarities were reasserting, given that both mouse models have an accumulation of one form of farnesyl–prelamin A (a wild-type prelamin A in Zmpste24 deficiency and the truncated prelamin A in HGPS). However, one phenotypic difference was clear: unlike the Zmpste24−/− mice, LmnaHG/− mice did not develop a grip strength abnormality. The absence of the grip abnormality in LmnaHG/− mice underscores that these mice constitute a faithful model of human HGPS, since children with HGPS do not exhibit significant muscle weakness (1). It is not clear why the Zmpste24−/− mice had muscle weakness, whereas the LmnaHG/− mice did not. Clearly, the Zmpste24−/− mice are sicker mice, in general, than the LmnaHG/− mice, but that may not be the entire explanation, since LmnaHG/− mice retained normal grip strength even when they were very debilitated.
The expression of severe disease phenotypes in mice heterozygous for the Lmna^{HG} allele underscores the potency of progerin in eliciting disease phenotypes. Other groups had previously used gene targeting to create mice with a Lmna-knockout mutation (16) and various Lmna missense mutations (19–21). In those cases, homozygous mice had distinct phenotypes, whereas the heterozygous mice were indistinguishable from wild-type mice.

Occlusive disease of the large arteries is a late phenotype of humans with HGPS, apparent during the second decade of life and often leading to fatal stroke or myocardial infarction. The mechanisms underlying the occlusive arterial disease are uncertain. Pathologic studies of several progeria patients by Stehbens and coworkers (4, 5) and Ackerman and Gilbert-Barness (3) revealed moderately severe atherosclerotic lesions in the arterial intima along with the loss of some smooth muscle cells in the arterial media. The Lmna^{HG/+} mice did not have histopathological abnormalities in the intima or media of the aorta, even though they clearly exhibited many of the early hallmarks of HGPS. We do not know why the Lmna^{HG/+} mice did not develop disease in their large arteries, but we suspect that they simply did not live long enough for this late HGPS phenotype to emerge. Recently, Varga et al. (22) created transgenic mice with a 164-kb human bacterial artificial chromosome spanning 4 genes — RAB25, UBQLN4, MAPBPIP, and LMNA (engineered to contain the G608G HGPS mutation; ref. 2). The amount of progerin expressed in the tissues of transgenic mice, relative to the amounts of human and mouse lamin A and lamin C, was not clear. The transgenic mice did not manifest any of the early hallmarks of progeria, nor did they have arterial intimal lesions or vascular occlusions, but they did exhibit loss of smooth muscle cells in the media of the aorta (22). The explanation for this constellation of findings is not clear.

In this study, an FTI ameliorated disease phenotypes in Lmna^{HG/+} mice but fell short of curing the disease. The concentration of the FTI in the plasma of mice in these studies was low relative to that achieved in earlier anticancer studies (17); in the future, it will be interesting to determine whether a higher dose of an FTI would be more efficacious in preventing disease. Also, it will be important to test the efficacy of an FTI in reversing disease phenotypes in mice after they are well established, as the ability to reverse disease will be of paramount importance to HGPS patients who already suffer from advanced...
whether nonfarnesylated progerin (which is present during FTI treatment) has the potential to elicit disease phenotypes over the long term.

Methods

A gene-targeted model of HGPS. Previously, we generated chimeric mice from mouse embryonic stem cells with a mutant Lmna allele (Lmna^{HGPS}) yielding exclusively progerin and bred those mice to generate Lmna^{HGPS/−} mice. (A) FTI treatment in Lmna^{HGPS} and Lmna^{+/−} mice leads to the appearance of wild-type prelamin A (with antibodies against prelamin A and lamin A/C) and the appearance of nonfarnesylated HDJ-2 (with an antibody against HDJ-2; nonfarnesyl–HDJ-2) in liver extracts of FTI-treated mice. Red arrows indicate prelamin A, which migrates slightly above mature lamin A. (B and C) Effect of FTI treatment on body weight in female (B) and male (C) mice. Lmna^{+/−} (circles) and Lmna^{HGPS} (squares) mice were given the FTI (red symbols) or vehicle alone (open symbols), beginning at 4 weeks of age, and body weights were measured weekly. Body weight curves for the FTI-treated Lmna^{HGPS} mice were significantly improved, compared with those for vehicle-treated Lmna^{HGPS} mice ($P < 0.0001$ for both males and females). Male Lmna^{HGPS} mice on vehicle, $n = 9$; male Lmna^{HGPS} mice on FTI, $n = 7$; female Lmna^{HGPS} mice on vehicle, $n = 5$; female Lmna^{HGPS} mice on FTI, $n = 10$; male Lmna^{+/−} mice on vehicle, $n = 5$; male Lmna^{+/−} mice on FTI, $n = 5$; female Lmna^{+/−} mice on vehicle, $n = 9$; female Lmna^{+/−} mice on FTI, $n = 4$. (D) Body fat weights in Lmna^{HGPS} mice on FTI or on the vehicle alone. The weight of body fat in Lmna^{HGPS} mice was significantly lower than in Lmna^{+/−} mice ($P < 0.0001$) and was significantly increased after FTI treatment ($P = 0.002$). (E) Representative H&E-stained sections of skin from 6-month-old Lmna^{+/−}, vehicle-treated Lmna^{HGPS}, and FTI-treated Lmna^{HGPS} mice; $n = 4$ mice in each group examined. The black line spans the layer of subcutaneous fat.

Figure 5

An FTI (ABT-100) ameliorates disease phenotypes in Lmna^{HGPS} mice. (A) FTI treatment in Lmna^{HGPS} and Lmna^{+/−} mice leads to the appearance of wild-type prelamin A (with antibodies against prelamin A and lamin A/C) and the appearance of nonfarnesylated HDJ-2 (with an antibody against HDJ-2; nonfarnesyl–HDJ-2) in liver extracts of FTI-treated mice. Red arrows indicate prelamin A, which migrates slightly above mature lamin A. (B and C) Effect of FTI treatment on body weight in female (B) and male (C) mice. Lmna^{+/−} (circles) and Lmna^{HGPS} (squares) mice were given the FTI (red symbols) or vehicle alone (open symbols), beginning at 4 weeks of age, and body weights were measured weekly. Body weight curves for the FTI-treated Lmna^{HGPS} mice were significantly improved, compared with those for vehicle-treated Lmna^{HGPS} mice ($P < 0.0001$ for both males and females). Male Lmna^{HGPS} mice on vehicle, $n = 9$; male Lmna^{HGPS} mice on FTI, $n = 7$; female Lmna^{HGPS} mice on vehicle, $n = 5$; female Lmna^{HGPS} mice on FTI, $n = 10$; male Lmna^{+/−} mice on vehicle, $n = 5$; male Lmna^{+/−} mice on FTI, $n = 5$; female Lmna^{+/−} mice on vehicle, $n = 9$; female Lmna^{+/−} mice on FTI, $n = 4$. (D) Body fat weights in Lmna^{HGPS} mice on FTI or on the vehicle alone. The weight of body fat in Lmna^{HGPS} mice was significantly lower than in Lmna^{+/−} mice ($P < 0.0001$) and was significantly increased after FTI treatment ($P = 0.002$). (E) Representative H&E-stained sections of skin from 6-month-old Lmna^{+/−}, vehicle-treated Lmna^{HGPS}, and FTI-treated Lmna^{HGPS} mice; $n = 4$ mice in each group examined. The black line spans the layer of subcutaneous fat.

Tomographic analyses. Lmna^{+/−}, Lmna^{HGPS}, and Lmna^{HGPS/C} mice were examined by compact cone-beam tomography (μCT 40 scanner; Scanco Medical). Whole-body scans were performed in the axial plane mounted in a cylindrical sample holder at medium resolution with a current of 0.16 mA and a voltage of 70 kilovolt peak (kVp), at an isotropic voxel size of 20.5 μm for the skulls and 30.7 μm for the remainder of the skeleton.

Cortical thickness and degree of mineralization of the cortical bone in the proximal portion of the posterior ninth left rib were determined by μCT scanning; the X-ray tube operated at 55 kVp and 145μA. Scans of transverse sections of the rib were obtained at 10-μm nominal resolution (high-resolution mode). Two-dimensional images were reconstructed in 2,048 x 2,048-pixel matrices using a standard convolution back-projection procedure with a Shepp and Logan filter, and a cortical volume of interest (VOI) was defined for each measurement. A constrained 3-dimensional Gaussian filter was used to suppress noise. The mineralized tissue was segmented with a fixed threshold for all samples. A manufacturer-provided hydroxyapatite phantom of known density was used to calibrate the system, allowing us to estimate the degree of mineralization of the cortical bone tissue.

Standard skeletal X-rays were performed with a Faxitron X-ray system (Faxitron X-ray Corp.) at 30 kV for 2 seconds. The degree of kyphosis of the spine (kyphotic index) was calculated as described previously (23).

Analysis of rib fractures in Lmna^{HGPS} mice. Lmna^{+/−} and Lmna^{HGPS/C} mice were euthanized at 8, 16, 24, and 28 weeks of age. The interior of the thorax was photographed with a digital camera, and rib fractures were counted.
A LTnnaH/G+ (vehicle) LtnnaH/G+ (FTI) E

Figure 6
An FTI (ABT-100) ameliorates bone disease in LmnaH/G+ mice. (A) Radiographs of a 6-month-old vehicle-treated LmnaH/G+ mouse and a littermate FTI-treated LmnaH/G+ mouse. (B) Kyphotic index in FTI-treated and vehicle-treated LmnaH/G+ and LmnaH/G- mice. The degree of kyphosis in LmnaH/G- mice was greater (a smaller kyphotic index) than in LmnaH/G+ mice (P < 0.0001) and was significantly reduced (a larger kyphotic index) after FTI treatment (P = 0.02; n = 10 per group). (C) Reduced number of rib fractures in FTI-treated LmnaH/G+ mice. After 24 weeks, surviving mice were euthanized, and the number of rib fractures was counted. The number of rib fractures in the FTI-treated LmnaH/G+ mice was significantly lower than in vehicle-treated LmnaH/G+ mice (P < 0.0001). (D) µCT scans illustrating reduced numbers of rib fractures in FTI-treated LmnaH/G+ mice. Red arrowheads indicate rib fractures and surrounding callus. In the FTI-treated mouse, there was thinning of 1 rib along with a small amount of callus. No rib fractures were observed in LmnaH/G- mice. (E and F) FTI treatment improved bone mineralization (E) and bone cortical thickness (F) in LmnaH/G- mice without affecting the bones of LmnaH/G+ mice. Error bars are too small to be seen in E. gHA/cm², grams of hydroxyapatite per cubic centimeter.

Body fat measurements. LmnaH/ and LmnaH/G- mice were euthanized at 8, 16, 24, and 28 weeks of age. The major fat pads (reproductive, inguinal, and mesenteric) were isolated and weighed.

Histology. Tissues were fixed in 10% formalin for 24 hours and dehydrated in 50% ethanol. The tissues were then embedded in paraffin, and 5-µm sections were stained with H&E.

Treatment of cells with the FTI and Western blots. Adherent early-passage mouse embryonic fibroblasts in 6-well tissue culture plates were incubated with the vehicle control (DMSO) or 2.5 μM ABT-100 in culture medium at 37°C for 48 hours. The cells were washed with PBS, and urea-soluble extracts were prepared (24). Liver and aorta samples were collected and frozen in liquid nitrogen, and urea-soluble extracts were prepared and analyzed by SDS-PAGE and Western blotting (15). The antibody dilutions were 1:6,000 for a rabbit anti-prelamin A antiserum, 1:400 for a goat anti-
lamin A/C antibody (Santa Cruz Biotechnology Inc.), 1:500 for a mouse anti-HDJ-2 antibody (NeoMarkers), 1:2,000 for a goat anti-actin IgG (Santa Cruz Biotechnology Inc.), 1:6,000 for HRP-labeled anti-goat IgG (Amersham Biosciences), 1:6,000 for HRP-labeled anti-mouse IgG (Amersham Biosciences). Antibody binding was detected with the ECL Plus chemiluminescence system (Amersham Biosciences) and exposure to x-ray film.

Immunofluorescence microscopy. The percentage of LmnaH/+/LmnaH/G- and LmnaH/G/H- fibroblasts with misshapen nuclei was assessed by immunofluorescence microscopy. Fibroblasts were grown on coverslips, fixed in 3% paraformaldehyde, permeabilized with 0.2% Triton X-100, and blocked with PBS containing 10% fetal bovine serum and 0.2% bovine serum albumin (15). Cells were incubated for 60 minutes with antibodies against lamin B1 and B2 (sc-6217, 1:400; Santa Cruz Biotechnology Inc.) or lamin A (sc-20680, 1:200; Santa Cruz Biotechnology Inc.) and lamin A/C antibody (Santa Cruz Biotechnology Inc.). Cells were incubated for 60 minutes with antibodies against lamin B1 and B2 (sc-6217, 1:400; Santa Cruz Biotechnology Inc.) or lamin A (sc-20680, 1:200; Santa Cruz Biotechnology Inc.). After washing, cells were stained with species-specific Cy3-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories Inc.) and DAPI to visualize DNA. Images were obtained on an Axiovert 40 CFL microscope (Zeiss) with a 63×/1.25 oil immersion objective and processed with AxioVision 4.2 software (Zeiss). Two independent observers blinded to genotype scored nuclear shape abnormalities.

Statistics. Body weight curves were compared with repeated-measures ANOVA and the log-rank test. The degree of mineralization, cortical thickness, number of rib fractures, fat pad weight, and kyphotic index measurements were compared with the 2-tailed Student’s t-test. Data are shown as mean ± SEM. Differences in the percentages of misshapen nuclei were assessed by the χ² test.

Acknowledgments
We thank Ken Jarvis for measurements of ABT-100. This work was supported by NIH grants AR050200 and HL76839 and grants from the Progeria Research Foundation. S.H. Yang was supported by a postdoctoral fellowship grant from the American Heart Association, Western States Affiliate.

Received for publication May 2, 2006, and accepted in revised form May 23, 2006.

Address correspondence to: Loren G. Fong or Stephen G. Young, 650 Charles East Young Drive South, Los Angeles, California 90095, USA. Phone: (310) 825-4934; Fax: (310) 206-0865; E-mail: lfong@mednet.ucla.edu (L.G. Fong) or sgyoung@mednet.ucla.edu (S.G. Young).