Expression of Activated Common \(\beta \) Chain in Transgenic Mice

Richard J. D’Andrea,* Duygu Harrison-Findik,* Carolyn M. Butcher,* John Finnie,‡ Peter Blumbergs,§ Paul Bartley,* Matthew McCormack,* Karen Jones,* Robert Rowland,* Thomas J. Gonda,* and Mathew A. Vadas*

*The Hanson Centre for Cancer Research, Division of Human Immunology, Adelaide, 5000 South Australia, Australia; ‡Veterinary Services Division, Institute of Medical and Veterinary Science, Gilles Plains, 5086 South Australia, Australia; and §Department of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia

Abstract

Previously we described activating mutations of h\(\beta_2 \), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h\(\beta_2 \), is able to confer growth factor–independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h\(\beta_2 \) cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h\(\beta_2 \) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h\(\beta_2 \) activation may have the potential to contribute to pathological events in the central nervous system. (J. Clin. Invest. 1998. 102:1951–1960.) Key words: granulocyte macrophage colony-stimulating factor • interleukin 3 • cytokine receptor • polycythemia vera • mutation

Introduction

IL-3, GM-CSF, and IL-5 are potent inflammatory cytokines that deliver proliferative and differentiative signals to neutrophils, eosinophils, monocytes, and immature multipotent progenitors via receptor complexes that comprise ligand binding \(\alpha \) subunits (IL-3R\(\alpha \), GMR\(\alpha \), and IL-5R\(\alpha \)) and a shared signaling subunit, h\(\beta_2 \) (1–3). IL-3 can stimulate the proliferation and differentiation of pluripotent hematopoietic progenitor cells and lineage-committed progenitors in colony assays and also possesses macrophage-activating activity associated with T cell–dependent immune responses (4–6). The effects of GM-CSF overlap extensively with those of IL-3 although GM-CSF acts mainly on committed myeloid progenitors, stimulating proliferation and maturation and giving rise to granulocytes and monocytes (7–9). In addition GM-CSF is a potent activator of these mature cells (10). IL-3, GM-CSF, and IL-5 share the ability to induce eosinophil differentiation and activation (11–13). IL-5 activity is limited to the eosinophil lineage due to the restricted expression of its specific binding subunit IL-5R\(\alpha \) (14). Whereas the activities of GM-CSF and IL-5 appear to be restricted to the myeloid lineage, there is evidence that IL-3 can increase endothelial surface expression of cell adhesion molecules, suggesting a possible nonhematopoietic role in inflammation (15).

The receptor subunits for GM-CSF, IL-3, and IL-5 are members of the cytokine receptor superfamily which is characterized by an \(\sim \) 200-amino acid, extracellular, cytokine receptor module (3, 16–18). Several studies have demonstrated that h\(\beta_2 \) and other members of the cytokine receptor superfamily can be activated by mutation, resulting in ligand-independent signaling (for review see reference 19). Most recently, two classes of activating mutations of h\(\beta_2 \) have been distinguished on the basis of their ability to abrogate the growth factor requirement of the murine myeloid cell line, FDC-P1, and the pro-B cell line, BaF-B03 (19, 20). The first h\(\beta_2 \) activating mutation characterized was h\(\beta_2 \), which arose spontaneously after retroviral infection of the IL-3/GM-CSF–dependent cell line, FDC-P1, with a h\(\beta_2 \) retroviral construct (21). This mutant contains an 111-bp duplication leading to a 37–amino acid duplicated segment in the membrane proximal extracellular domain. Whereas introduction of h\(\beta_2 \) into FDC-P1 cells confers factor-independent growth and survival, the same is not true when this mutant is introduced into the IL-3–dependent, lymphoid cell line BaF-B03, suggesting a requirement for cell type–specific interactions (19, 20). The second class of activating mutation is exemplified by a mutant (V449E) in which glutamic acid is substituted for valine 449 in the transmembrane domain. Unlike h\(\beta_2 \), the V449E mutant confers factor-independent growth on both FDC-P1 and BaF-B03 cells (20). This mutation is analogous to the activating mutation in the c-neu protooncogene (HER-2, erb-B2 receptor) and, by analogy, may lead to receptor oligomerization (reference 20 and references therein). Several other extracellular mutations

Dysregulated Hematopoiesis and a Progressive Neurological Disorder Induced by Expression of an Activated Form of the Human Common \(\beta \) Chain in Transgenic Mice

Address correspondence to Dr. Richard D’Andrea, Division of Human Immunology, Hanson Centre for Cancer Research, Frome Road, Adelaide, South Australia 5000, Australia. Phone: 61-8-8222-3480; FAX: 61-8-8232-4092; E-mail: Richard.Dandrea@imvs.sa.gov.au

Received for publication 15 April 1998 and accepted in revised form 5 October 1998.

© The American Society for Clinical Investigation, Inc. 0021-9738/98/12/1951/10 $2.00

Volume 102, Number 11, December 1998, 1951–1960

http://www.jci.org
of hβc, including several amino acid substitutions and large deletions that truncate the extracellular domain, also lead to growth factor independence when expressed in FDC-P1, but not BaF-B03 cells (20, 22). The different signaling capacities of the two classes of activated mutant are also apparent when these receptors are introduced into primary cells. Infection of murine fetal liver cells with a hβc,FLA retrovirus leads to factor-independent growth of granulocyte-macrophage (CFU-GM), macrophage (CFU-M), and granulocyte colonies (CFU-G) only, whereas infection with a retrovirus that carries hβc,V449E generates colony types representative of all the myeloid/erythroid lineages (23).

With the aim of generating an animal model in which to assess the effects of chronic cytokine receptor stimulation on hematopoiesis and to determine the capacity of chronic activation to contribute to disease and oncogenesis, we have produced transgenic mice expressing the activated mutant hβc,FLΔ. Specifically, we wished to address the following questions:

Which hematopoietic lineages are affected by chronic activation of hβc? The restricted activity of hβc,FLA in hematopoietic cell lines and primary hematopoietic progenitors suggests that hematopoietic effects will be restricted to cells of the myeloid lineage. However, recently hβc has been demonstrated to be phosphorylated on tyrosine in response to erythropoietin (Epo)1 (24), G-CSF (25), and thrombopoietin (26), suggesting a possible involvement in mediating the cellular response to other hematopoietic growth factors.

Does unregulated hβc activity lead to a chronic disease? Chronic inflammatory diseases may be a consequence of chronic stimulation of inflammatory cells by cytokines (27–29). The expression of a constitutively activated form of hβc in transgenic mice may induce chronic stimulation of mature myeloid cells and thus may mimic aspects of chronic inflammatory disease.

Is activated hβc an oncogene? Factor-independent FDC-P1 cells expressing activated hβc, with extracellular and transmembrane mutations, have been shown to be tumorigenic by injection into syngeneic mice (20, 21). This assay suggests that these mutant receptors have tumorigenic potential; however, the different outcomes after infection of primary hematopoietic cells with the two classes of activated hβc, mutant suggest that each could contribute differently to the aberrant cell phenotype. Expression of hβc,FLΔ in transgenic mice will further define the oncogenic potential of this mutant.

Methods

Generation and screening of founder animals. To construct a PGK-I/hβc,FLΔ transgene, an EcoRI-XbaI fragment encoding hβc,FLΔ was cloned between the PGK-I promoter (14) and the SV40 polyadenylation signal. The plasmid vector containing the PGK-I promoter and the SV40 polyadenylation signal was provided by Prof. A. Miyajima (University of Tokyo, Tokyo, Japan). To generate transgenic animals, a 3.4-kb SspI-BamHI DNA fragment containing the mouse PGK-I promoter, the hβc,FLΔ cDNA, and the SV40 early region polyadenylation signal was gel purified and microinjected into CBA × C57BL F1 hybrid mouse embryos (Bresagden Ltd., Thebarton, South Australia, Australia). DNA was prepared from blood of 46 mice and analyzed by PCR with oligonucleotide primers (Bresagden Ltd., Thebarton, South Australia, Australia) specific for the transgene (PGK-I sense primer: 5′-ACCGTCTAAAAGCAGGCACTGTC3′ and β-anti-sense primer: 5′-ACCCGCGGATAGGGCTG3′). For 10 positive mice, and for subsequent progeny, integration of the transgene was confirmed by Southern blot analysis of DNA prepared from mouse tail (30).

Histological and cytological examination. Mouse tissues were fixed in 10% buffered formalin and paraffin embedded. 6-μm sections were cut and stained with hematoxylin and eosin. Cytocentrifuge preparations of isolated bone marrow or spleen cells were stained with May-Grünwald Giemsa.

Peripheral blood analysis. Blood was collected at autopsy or from anaesthetized mice by orbital plexus puncture, using EDTA as an anticoagulant. Red and white blood cell and platelet counts, packed cell volume (PCV), and hemoglobin levels were obtained using an automated blood cell analyzer (Beckman Coulter Inc., Miami, FL). P values were determined using the Student’s t test (31).

Colonies assays and colony typing. Mice were killed by cervical dislocation. Bone marrow was extracted from femurs, spleens were removed, and cells were isolated by mechanical disruption. Cells were washed three times in DMEM containing 10% FCS and plated at three different densities in A-Iscove’s modified Dulbecco’s medium (A-IMDM) containing 0.3% agar (Difco, Detroit, MI) or 1.4% α-methylcellulose (Fluka, Buchs, Switzerland) and 25% FCS as described (23). Colony numbers were determined in soft agar in the absence of added growth factors, or in the presence of murine GM-CSF, 100 U/ml (obtained from a crude yeast supernatant supplied by Dr. T. Wilson, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia) and IL-3, 100 U/ml (produced from a baculovirus vector and supplied by Dr. A. Hapel, John Curtin School of Medical Research, Canberra, ACT, Australia). Colonies of > 50 cells were scored microscopically after 7 d of culture using a grid system. In cultures where colonies were too numerous to score the total plate, a portion of known area was counted and the number of colonies obtained was multiplied to give total colony number for the whole plate. To assess colony type, individual colonies were removed from α-methylocellulose cultures at days 7–11 of culture, air dried on glass slides as described (32), and stained with May-Grünwald-Giemsa. Colony types were determined by microscopic morphology. For quantitation of erythroid colonies (CFU-E), 5 × 107 spleen cells from transgenic or littermate mice were plated in MethoCult methylcellulose medium (Stem Cell Technologies, Vancouver, BC, Canada) containing α-IMDM either without added growth factor or in the presence of 2 U/ml recombinant human Epo (Janssen Cilag, Baar, Switzerland) and scored at 37°C for 48 h. CFU-E were stained by overlaying PBS containing 1 mg/ml o-phenylenediamine plus 0.03% H2O2 onto the methylcellulose cultures. Colonies consisting of eight cells or more were microscopically scored. P values were determined using the Student’s t test (31).

Surface expression of leukocyte antigens. Bone marrow or isolated spleen cells were stained at 4°C with biotinylated monoclonal antibodies specific for mouse leukocyte antigens and washed, followed by incubation with a phycoerythrin-streptavidin conjugate (Beckman Coulter Inc.). Cells were then fixed and analyzed with the following antibodies: Gr-1 (33), B220 (34, 35), Ter119 (36, 37), and Thy-1-2 (38) using an Epics XL flow cytometer (Beckman Coulter Inc.).

Immunoprecipitation and Western blot analysis. Spleen cells (2.5 × 107) were lysed at 4°C for 40 min in buffer containing 150 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1% Triton X-100, and the protease inhibitor cocktail Complete™ (Boehringer Mannheim GmbH, Mannheim, Germany). After removal of debris by centrifugation, the lysate was immunoprecipitated using the hβc, specific monoclonal antibody 8E4 (39) and protein A-Sepharose beads (Amersham Pharmacia Biotech, Uppsala, Sweden). Proteins separated by 7.5% SDS-PAGE were then transferred to nitrocellulose and detected using a second hβc,-specific monoclonal antibody, 8E4.
specific monoclonal antibody 1C1 (40) and enhanced chemiluminescence (Pierce Chemical Co., Rockford, IL). Control immunoprecipitations were performed using lysate from Ba-F-B03 cells expressing wild-type h\(_\beta_c\).

RNA isolation and expression analysis. RNA was extracted using RNeasySTM (Tel-Test Inc., Friendswood, TX), following the manufacturer’s instructions, treated with 30 \(\mu\)l RNase I Free DNase I (Promega Corp., Madison, WI) at 37°C for 4 h to remove any contaminating genomic DNA, and resuspended in sterile, diethylypyrocarbonate-treated water. After a 5-min incubation at 65°C, the purified RNA was incubated at 37°C for 2 h with the following reagents to generate cDNA: 5’ First strand RT Buffer™ (Life Technologies Inc., Grand Island, NY), 0.01 M DTT, 0.5 mM dNTP cocktail, 10 \(\mu\)l RNA Guard™ (Amersham Pharmacia Biotech), 100 pmol oligo-dT adapter primer (5’GACTCGAGTGCACATGGATC3’), and 400 \(\mu\)l Super Script II RT (Life Technologies Inc.). Control samples contained no reverse transcriptase and 400 \(\mu\)l Super Script II RNase H reverse transcriptase (Life Technologies Inc.).

Purified RNA was incubated at 37°C for 2 h with the following reagents to generate cDNA: 1× First strand RT Buffer™ (Life Technologies Inc., Grand Island, NY), 0.01 M DTT, 0.5 mM dNTP cocktail, 10 \(\mu\)l RNA Guard™ (Amersham Pharmacia Biotech), 100 pmol oligo-dT adapter primer (5’GACTCGAGTGCACATGGATC3’), and 400 \(\mu\)l Super Script II RT (Life Technologies Inc.). Control samples contained no reverse transcriptase (−RT). RNAse A (0.2 ng/ml) and RNase H (2.5 U/ml) were then added and samples were incubated at 37°C for 30 min. To confirm integrity of cDNA, we performed PCR with a 5’-primer specific for the glyceraldehyde-phosphate dehydrogenase cDNA (GAPDH sense primer: 5’GGGCATCTGGGCTGACT3’) and a 3’-primer specific for the synthetic adapter sequence: (5’GACTCGAGTCGACATGGATC3’). cDNA (2 \(\mu\)l) was removed and mixed with the following reagents in a final volume of 50 \(\mu\)l: 1× PCR buffer (Perkin Elmer, Foster City, CA), 2 mM magnesium chloride, 0.025 mM dNTPs, 100 ng of each primer, and 2 U Taq polymerase (Perkin Elmer). PCR was performed using the following cycling parameters: 94°C/1 min, 60°C/1 min, and 72°C/30 s for 25 cycles, after an initial step at 94°C for 3 min. Equivalent amounts of cDNA were removed for PCR analysis with \(\beta\) chain-specific primers (5’GGGCTTGGGCTGACT3’ and 3’GGGCATCTGGGCTGACT3’) and a 3’-primer specific for the synthetic adapter sequence: (5’GACTCGAGTCGACATGGATC3’). PCR was performed as above but with the following cycling parameters: 94°C/1 min, 58°C/1 min, and 72°C/1 min for 25 cycles. PCR products were fractionated on a 2% TAE-agarose gel, transferred to Hybond-N (Amersham Pharmacia Biotech), and hybridized with \(^{32}\)P-labeled GAPDH- and h\(\beta_c\)-specific fragments as per the manufacturer’s instructions. Probe fragments were purified with BRESACLEAN™ (Bresatec Ltd., Thebarton, South Australia, Australia) and labeled with \(^{32}\)P using a megaprime DNA labeling kit (Amersham Pharmacia Biotech).

After hybridization filters were washed twice with 2× SSC, twice in 0.1× SSC/0.1% SDS at 65°C, and then exposed to a phosphorimaging cassette.

Results

Generation of founder transgenic mice expressing h\(\beta_c\)FL\(\Delta\). With the aim of analyzing the consequences of chronic stimulation via the cytokine receptor, h\(\beta_c\), we have generated transgenic mice in which an activated form of the receptor (h\(\beta_c\)FL\(\Delta\)) (21) has been linked to a promoter fragment from the PGK-I gene. PGK is a housekeeping enzyme that is expressed at moderate levels in virtually all cell types (41). From 46 pups, 10 were confirmed positive for the transgene by Southern analysis (data not shown). 7 of the 10 founder transgenic animals became moribund between 7 and 25 wk and displayed a severe neurological disturbance. One animal which did not display neurological symptoms died at 15 wk, with evidence of hemorrhage in the chest cavity and an enlarged spleen upon autopsy. The two remaining animals died at 45 and 75 wk, during anesthesia, showing no neurological symptoms or pathology at autopsy. Median age of death for the transgenic founder population was 18 wk compared with a normal life span of 2–3 yr for nontransgenic animals. Two founder animals that survived to mating age and displayed neurological symptoms were mated to generate transgenic lines.

Function and expression of h\(\beta_c\)FL\(\Delta\) in transgenic animals. Expression of h\(\beta_c\)FL\(\Delta\) in infected murine fetal liver progenitor cells has been shown previously to generate growth factor-independent granulocyte, macrophage, and granulocyte-macrophage colonies. Control and transgenic spleen cells of founder h\(\beta_c\)FL\(\Delta\) transgenic mice and littermate controls. Cells were plated with (A and B) or without (A and C) the addition of murine GM-CSF and IL-3 in soft agar medium as described in Methods, and the resultant colonies were scored after 7 d. 5 \times 10^6 bone marrow cells (A and B) or 2.5 \times 10^5 spleen cells (C and D) from transgenic or littermate, nontransgenic mice were plated in duplicate dishes. Values represent mean ± SEM of duplicate dishes from several experiments (transgenic bone marrow, \(n = 6\); control bone marrow, \(n = 2\); transgenic spleen, \(n = 3\); control spleen, \(n = 1\)). Note that total cell numbers in transgenic bone marrow were not significantly different from littermates, while transgenic spleens varied in size from 1.7- to 12.2-fold larger than littermate controls. Significant numbers of colonies were obtained from the bone marrow and spleen of transgenic mice, but not littermate controls, in the absence of cytokine (\(*P < 0.0005\)). In the presence of cytokine, colony numbers were significantly decreased in bone marrow and increased in the spleen of transgenic mice when compared with control mice (\(*P < 0.005\)).
The numbers of GM-CSF/IL-3-dependent progenitor cells were decreased in the bone marrow of transgenic mice compared with nontransgenic littermates (Fig. 1 B) and had increased in spleen (Fig. 1 D). The cell numbers in transgenic bone marrow were not significantly different to those of littermate controls (data not shown), suggesting that there is mobilization of progenitor cells from marrow to spleen. Given that normal mice treated with murine (m) GM-CSF or mIL-3 show a redistribution of hematopoietic progenitors through mobilization of bone marrow progenitors to peripheral hematopoietic organs (42, 43), this is also consistent with hβc,FLA activity in hematopoietic progenitors. Bone marrow of transgenic animals yielded predominantly macrophage (CFU-M, 80%) and granulocyte-macrophage (CFU-GM, 20%) colonies in the absence of cytokine, whereas in the presence of GM-CSF and IL-3, granulocyte, macrophage, granulocyte-macrophage, and blast cell colonies were obtained from both transgenic mice and littermate controls (Fig. 2).

We demonstrated protein expression and confirmed that the form of hβc, expressed in the transgenic animals corresponds to the activated mutant hβc,FLA by immunoprecipitation and Western blotting of hβc, from spleenic extracts. Immune complexes from spleen lysates of transgenic mice, analyzed by SDS-PAGE and detected by Western blot with a second hβc-,specific monoclonal antibody, revealed a protein slightly larger than wild-type hβc, in extracts derived from the spleens of transgenic mice (Fig. 3 a). The slightly larger size of the protein compared with wild-type hβc, is consistent with the 37-residue duplication present in hβc,FLA (21), and demonstrates that the activated form of hβc, is expressed in this tissue. Semi-quantitative RT-PCR analysis of several tissue samples from a transgenic mouse demonstrates that the transgene is expressed in brain, heart, kidney, and liver (Fig. 3 b). We used a diagnostic SmaI digestion to confirm that the product generated by the RT-PCR procedure was derived from the transgene and not from endogenous murine βc, or βc,IL-3 transcripts (data not shown). The expression of the transgene in several of the tissues tested is consistent with previous transgene studies using the PGK-1 promoter (14). The presence of CFU-M and CFU-GM in the bone marrow and spleen of transgenic mice in

Figure 2. Typing of hematopoietic colonies from transgenic and littermate mice. Bone marrow colonies were grown in α-methylcellulose for 7 d before removal and typing. Results are expressed as percentage of colony types obtained from > 50 colonies picked from several experiments (n = 3 for littermate mice, n = 4 for transgenic mice). Colony types for transgenic mice without cytokine were significantly different from colony types scored for both transgenic and control groups in the presence of cytokine (*P < 0.05). Tg, transgenic mice; Li, nontransgenic littermate.

Figure 3. Expression of hβc,FLA in tissues of transgenic mice. (a) Immunodetection of hβc,FLA in transgenic tissues. Total cell lysates were prepared from the spleens of hβc,FLA transgenic mice (2.5 × 10^6) and from B6/F3 cells (2 × 10^6 cells) expressing GMRa and the wild-type form of hβc. Immunoprecipitates were prepared using the anti-hβc, specific monoclonal antibody 8E4 and resolved by SDS-PAGE (see Methods). hβc, was detected by Western blot analysis with a second hβc,-specific monoclonal antibody (IC1) and enhanced chemiluminescence. hβc,FLA contains a 37-residue duplicated segment (21) and migrates slower than the wild-type hβc, when fractionated by SDS-PAGE. (b) RT-PCR analysis of transgene expression. The RT-PCR protocol is described in Methods. For detection PCR products were transferred to nylon membrane and hybridized with hβc- or GAPDH-specific probes. Lane marked + is the PCR product of a mock cDNA (no reverse transcriptase included in the cDNA synthesis reaction). The PCR products derived from liver of a normal mouse are also shown (eleventh and twelfth lanes). The hβc, PCR product is digested at a diagnostic SmaI site that is not present in mβc, or mβc,IL-3 sequences.
the absence of added cytokine, and the presence of hβ₃,FIΔ protein and mRNA in several tissues indicate that the transgene is expressed and functional in transgenic mice. However, we could not detect expression of hβ₃ on bone marrow or spleen cells by flow cytometry (data not shown). We conclude from these studies that expression of hβ₃,FIΔ is at a level below the detectability of flow cytometry. Therefore, the biological effects observed in this mouse model are the result of chronic low level expression of activated hβ₃.

Hematological disease in transgenic animals. We noted that peripheral blood from most founder transgenic mice was more viscous than that of nontransgenic littersmates. Consistent with this, blood from offspring for both transgenic lines was found to be hypererythroid as determined by analysis of PCV and red blood cell count. Hemoglobin levels were also consistently high. White blood cell counts and platelet levels were not significantly different between transgenic and control animals (Table I).

Histological analysis detected abnormalities in bone marrow and spleen of transgenic animals with and without the neurological disturbance. In vertebral bone marrow sections we observed granulocytic and megakaryocytic hyperplasia and vascular congestion with mature red blood cells (data not shown). All transgenic founders and offspring examined (n = 8) were found to have splenomegaly (mean 5.5-fold; range 1.7–12.2 × litterate control). Splenic histology revealed expanded red pulp with increased numbers of megakaryocytes in transgenic mice (Fig. 4).

Differential counts of cells isolated from bone marrow and spleen for progeny of the two transgenic founders indicated that in spleen of transgenic mice erythroid and myeloid precursors and mature granulocytes were markedly increased, whereas in bone marrow only the immature myeloid cells and granulocyte populations were expanded (Table II). Monocyte cell numbers in both bone marrow and spleen were unaltered in transgenic mice. Lymphocyte numbers in transgenic bone marrow were markedly decreased. A similar decrease in bone marrow lymphocytes, observed when transgenic mice expressing hGMRα and hβ₃ were treated with hGM-CSF for 1 wk, is believed to be due to a block in T cell maturation (44) and it is likely that constitutive signaling, via hβ₃,FIΔ, during T cell development inhibits thymic precursor maturation via a similar mechanism. Total lymphocyte numbers in spleen were unaltered when splenic enlargement was considered (data not shown). Eosinophil numbers were variable among founder transgenic mice. Whereas two founders had markedly increased eosinophils (27 and 29%) in bone marrow preparations, other founders were within the normal range (<5%, data not shown). Changes in cell numbers were also analyzed by staining cells from bone marrow and spleen with murine leukocyte antigen markers (Table III). The increased numbers of mature granulocytes in bone marrow and spleen are mirrored by a marked increase in Gr-1 staining. Decreased staining of the B cell marker, B220, and the erythroid-specific antigen, Ter119, in bone marrow is probably indicative of an overall reduction in other cell types due to granulocytic hyperplasia. Ter119 also confirmed that the number of cells derived from the erythroid lineage was markedly increased in spleen consistent with increased splenic erythropoiesis.

To investigate further the erythroid phenotype in transgenic mice we have examined the number and growth factor requirement of erythroid progenitors in spleen using a CFU-E assay. This assay confirmed that the increase in splenic erythropoiesis as the number of CFU-E in transgenic spleen in the presence of Epo had increased 20-fold compared with spleen from a littermate control (Table IV). Furthermore, we demon-

Table I. Peripheral Blood Analysis

<table>
<thead>
<tr>
<th></th>
<th>PCV (%)</th>
<th>Hgb (g/dl)</th>
<th>WBC (×10⁶/µl)</th>
<th>RBC (×10⁶/µl)</th>
<th>Platelets (×10⁶/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 6)</td>
<td>51.9±1.2</td>
<td>16.1±0.3</td>
<td>8.93±1.42</td>
<td>9.82±0.13</td>
<td>484±75</td>
</tr>
<tr>
<td>Transgenic (n = 6)</td>
<td>68.2±7.6</td>
<td>20.4±2.0</td>
<td>11.20±1.77</td>
<td>12.52±1.11</td>
<td>765±171</td>
</tr>
</tbody>
</table>

*Values are per microliter of whole blood. ¹PCV range: 47.0–55.3% for littermate controls cf. 43.9–87.4% for transgenic mice. ²RBC range: 9.3–10.2 for littermate controls cf. 8.9–15.2 × 10⁶/µl for transgenic mice. §Values are statistically different from control mice (P < 0.05).

Table II. Differential Counts

<table>
<thead>
<tr>
<th></th>
<th>Erythroblasts</th>
<th>Myeloid progenitors</th>
<th>Granulocytes</th>
<th>Monocytes</th>
<th>Lymphocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 30*</td>
<td>Tg</td>
<td>23±15</td>
<td>29±1</td>
<td>47±11</td>
<td>0.5±0.7</td>
</tr>
<tr>
<td></td>
<td>Li</td>
<td>24±18</td>
<td>15±5</td>
<td>29±2</td>
<td>1.5±0.7</td>
</tr>
<tr>
<td>Line 7</td>
<td>Tg</td>
<td>7±1</td>
<td>19±1</td>
<td>69±4</td>
<td>2.5±0.7</td>
</tr>
<tr>
<td></td>
<td>Li</td>
<td>17±1</td>
<td>14±5</td>
<td>36±5</td>
<td>5±3</td>
</tr>
<tr>
<td>Spleen</td>
<td>Line 30</td>
<td>Tg</td>
<td>26±0</td>
<td>15±3</td>
<td>8±2</td>
</tr>
<tr>
<td></td>
<td>Li</td>
<td>3±1</td>
<td>0.5±0.7</td>
<td>0.5±0.7</td>
<td>1±1.4</td>
</tr>
</tbody>
</table>

*Line 30 and line 7 represent two independent transgenic lines. ¹Tg, transgenic mice; Li, nontransgenic littermate controls. §Mean percent types ± SD for two mice where 200 cells were scored per cytosin preparation.
strated the growth of CFU-E in spleen of transgenic mice, but not littermate controls, in the absence of added Epo. Again the number of colonies without cytokine was significantly lower than the number observed in the presence of Epo, suggesting that the signal from the activated receptor does not equal the maximal response obtained in the presence of Epo.

Neurological disease in transgenic animals. 7 of the 10 founder transgenic mice exhibited a severe neurological disturbance characterized by head tilting, circling, ataxia, and, occasionally, retropulsion. Transgenic offspring derived from both transgenic lines display a sporadic neurological disorder from 5 wk of age, although this phenotype is not completely pene-

trant. The neurological symptoms in transgenic progeny are similar or identical to those observed in the founder animals. Five transgenic mice exhibiting neurological symptoms were necropsied for pathological analysis. There were no macroscopic abnormalities detected in serial coronal sections of brains cut at 1-mm intervals. Microscopically, bilaterally symmetrical malacic foci consistently confined to the subpial region of the lateral pons and middle cerebellar peduncles were found in all animals displaying neurological symptoms but not in transgenic animals showing normal behavior. These necrotic areas (Fig. 5 a), either ovoid and well-circumscribed or more irregular in outline, were largely comprised of polygonal cells.

Figure 4. Spleen pathology of hβFLΔ transgenic mice. Representative photomicrographs of sections from paraffin-embedded spleen of transgenic and littermate mice. (a) Spleen from nontransgenic littermate (×40). (b) Spleen from transgenic mouse showing expanded red pulp and loss of lymphoid follicle structure (×40). (c) Red pulp from nontransgenic spleen (×200). (d) Red pulp in transgenic spleen (×200) shows increased numbers of megakaryocytes (arrow).
Expression of Activated Common β Chain in Transgenic Mice

1957

Table III. Surface Antigen Expression

<table>
<thead>
<tr>
<th></th>
<th>GR1</th>
<th>Ter119</th>
<th>B220</th>
<th>Thy1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow Tg*</td>
<td>64]%</td>
<td>15</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>Li</td>
<td>39</td>
<td>20</td>
<td>47</td>
<td>15</td>
</tr>
<tr>
<td>Spleen</td>
<td>Tg</td>
<td>7</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Li</td>
<td>3</td>
<td>6</td>
<td>42</td>
<td>35</td>
</tr>
</tbody>
</table>

*Tg, transgenic mice; Li, nontransgenic littermate controls. %Values are percent cells expressing the antigen from one experiment representative of three.

Table IV. Spleen CFU-E

<table>
<thead>
<tr>
<th></th>
<th>Transgenic</th>
<th>Littermate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>88±18*</td>
<td>0±0</td>
</tr>
<tr>
<td>Epo</td>
<td>285±45</td>
<td>13±4.2</td>
</tr>
</tbody>
</table>

*Values are mean colony numbers ± SD for duplicate dishes.

Lesions in white matter lesions in which there is extensive primary demyelination and remyelination in association with large numbers of proliferating and activated foamy macrophage cells in cerebellum and brain stem. However, pathological examination of several lesions, in affected hβcFIΔ mice, failed to reveal evidence of primary demyelination. In all mice examined, pathology was consistent with symmetrical bilateral foci of necrosis in the white matter of brain stem. Thus, the underlying pathogenesis of the two transgenic models appears to be different. Detailed characterization of the cerebellar lesions in the hβcFIΔ transgenic mice is currently underway and will be the basis of a separate study.

Discussion

The discovery of activated mutations of hβc (for review see reference 19) gave the opportunity to investigate the consequences of chronic stimulation of this receptor which normally conveys signals in response to GM-CSF, IL-3, and IL-5. We have generated transgenic mice expressing the constitutively

Figure 5. Lesions in white matter of brain stem from transgenic mice displaying neurological symptoms. Brains were obtained from transgenic animals exhibiting neurological symptoms and age-matched nonsymptomatic transgenic and nontransgenic littermates. Sections are from paraffin-embedded cerebellar tissue stained with hematoxylin and eosin. (a) Necrotic area in dorsolateral brainstem with adjacent normal parenchyma (×100). (b) Aggregated foamy macrophages in necrotic area shown in a. (×220). (c) Digestion chambers (arrow) containing axonal debris indicative of myelinated fiber breakdown (×220). Lesions were not seen in any of four nonsymptomatic transgenic mice similarly analyzed.

Expression of Activated Common β Chain in Transgenic Mice 1957
active form of the receptor, hβc,FlIΔ (21), under the control of the housekeeping promoter, PGK-1. Transgene mRNA is expressed in several tissues and the presence of hβc,FlIΔ protein was confirmed in transgenic spleen extracts. Furthermore, clonal assays confirmed activity of the mutant receptor in committed myeloid progenitors. Growth of a significant proportion of macrophage and granulocyte-macrophage progenitors from bone marrow and spleen of transgenic mice occurred in the absence of added cytokine, consistent with previous studies using retrovirally infected murine fetal liver progenitors (23). Expression of hβc,FlIΔ was below the limits of detectability using other techniques such as flow cytometry and we conclude that the phenotype of these transgenic mice is due to chronic low level production of hβc,FlIΔ.

Peripheral blood analysis and tissue histology of transgenic mice revealed the presence of a trilineage hyperplasia in all transgenic animals. This disorder displayed complete penetrance in two independent lines of transgenic animals. Peripheral blood analysis indicated that all transgenic mice displayed mild to severe erythrocytosis. Bone marrow histology revealed granulocytic and megakaryocytic hyperplasia. Expansion of the granulocyte lineage in bone marrow was also evident in the differential counts and from a marked increase in staining for Gr-1, expression of which correlates with granulocyte differentiation and maturation (47). Most transgenic animals were also found to have pronounced splenomegaly, due to increased splenic erythropoiesis.

Despite the restricted effects of hβc,FlIΔ on primary progenitors derived from mouse fetal liver (23) there is a pronounced effect on the erythroid lineage, increased megakaryocyte numbers, and splenomegaly in this animal model. A possible explanation for this is that hβc,FlIΔ may be able to stimulate, or sensitize, multipotent progenitors via synergistic effects with other growth factors. Synergy of an activated cytokine receptor with other growth factor pathways has been demonstrated previously. Expression of an activated form of Epo-R (R129C) (48) in mice leads to increases in erythroid, megakaryocyte, and granulocyte-macrophage progenitors, while expression of the same form of Epo-R in primary fetal liver cells generates only factor-independent CFU-E (49). Expression of this form of Epo-R has been shown to impart a growth advantage on multipotent hematopoietic progenitors, in the presence of synergizing growth factors such as stem cell factor (SCF), resulting in amplification of several lineages in vivo (50). Clearly, transgenic bone marrow progenitors could respond differentially in the presence of SCF or other synergizing growth factors which act on early progenitors resulting in an expansion of several lineages. Further studies are underway to establish the properties of multipotent and multifactor requiring cells from the hβc,FlIΔ transgenic animals.

An alternative explanation is that erythropoiesis and megakaryopoiesis are stimulated via direct physical interactions between hβc,FlIΔ, mEpo-R, and/or m thrombopoietin (Tpo)-R in committed progenitors. Consistent with a direct effect of hβc,FlIΔ on committed erythroid progenitors, we observed growth of CFU-E in spleen of transgenic animals in the absence of added Epo. It has been demonstrated recently that mEpo-R and mβc are constituutively associated in transfected Ba/F3 cells (51). Epo has also been reported to induce tyrosine phosphorylation of hβc and mβcR in some cell lines (24, 52). In addition, thrombopoietin has been shown to induce tyrosine phosphorylation of hβc in the human erythroleukemia cell line, TF-1 suggesting a possible role for hβc in megakaryopoiesis (26). A more definitive demonstration of a functional role for βc in non-myeloid lineages awaits the generation of animals lacking functional βc and βcR. Animals deficient in either βc or βcR have not been shown to have impaired erythropoiesis or megakaryopoiesis (53, 54); however, these animals will have one of the βc subunits intact and this may still allow a functional interaction with Epo-R to occur. Nevertheless, the above studies raise the possibility that the presence of activated hβc in erythroid and megakaryocyte progenitors affects their sensitivity to growth factors via a direct interaction with Epo-R or Tpo-R.

The human myeloproliferative disorder polycythemia vera (PV) is characterized by splenomegaly and an increased production of erythrocytes, granulocytes, and platelets. Isoenzyme studies suggest that PV is a clonal disease of a multipotent stem cell (55). PV is gradual in onset and runs a chronic but slowly progressive course. The dominant feature of this disease is polycythemia and a concomitant elevated hemoglobin concentration and PCV (56). In bone marrow clonal assays, performed with serum containing medium, patients with PV characteristically exhibit CFU-E in the absence of added Epo (57). Molecular analysis of Epo-R in PV has failed to identify a disease-associated alteration (58, 59), thus it is unlikely that an acquired mutation of the Epo-R is responsible for PV. It is notable that PV hematopoietic progenitor cells are also hypersensitive to GM-CSF (60), IL-3 (61), and SCF (62). In addition, recent studies demonstrated that PV progenitor cells are 100-fold more sensitive to IGF-1 than normal cells (63) and indicate that the IGF-1 receptor on PV-derived cells displays increased basal phosphorylation (64).

The observation that PV progenitors appear to be hypersensitive to several growth factors suggests a defect in a shared receptor component or intracellular signaling pathway. Our work suggests that activating mutations in hβc can cause a dysregulation of hematopoiesis similar to that observed in PV. Founder transgenic mice, and transgenic animals from both stable transgenic lines, exhibit splenomegaly, amplification of erythroid, myeloid, and megakaryocyte lineages, and growth of CFU-E in the absence of added Epo. hβc is expressed in multipotent progenitors (65, 66) and it can be activated by several classes of mutation (19). Synergistic interactions of activated hβc with other growth factors in multipotent progenitors and direct interactions between βc, Epo-R, and Tpo-R may provide mechanisms for these activating mutations to influence erythropoiesis and megakaryopoiesis. Thus, we feel that the gene for hβc is a good candidate for mutations involved in PV. Given the extensive map now available for potential hβc activating mutations, which cluster mostly in the membrane-proximal and transmembrane domains (19), it will be interesting to perform a comprehensive, fine-scale analysis of this region of the hβc gene in PV patients.

In addition to the hematological abnormalities, several founder transgenic mice displayed signs of neurological disease. Characteristically, the appearance of this disorder occurred with sudden onset, becoming progressively more severe over 1–2 wk, eventually leading to complete incapacitation. The neurological disorder has been maintained in two independent transgenic lines, occurring sporadically and with varying age of onset. The neurological symptoms observed in affected mice correlated with the presence of necrotic lesions in the pons and cerebellar peduncles. Cerebellum and brain stem are major centers controlling motor function (67); thus, these...
lesions are the probable cause of motor disease in the hCFIΔ transgenic mice.

We speculate that these lesions may be initiated as a result of hCFIΔ activity in cells resident in brain stem. Macrophages resident in white matter (microglia) are candidates for initiating the tissue damage given that they are derived from the myeloid lineage (68), that they normally respond to IL-3 (69, 70), and that they have been demonstrated to express hCFI (71). Activated macrophages secrete soluble factors that include cytokines, serine proteases, proangiogonins, and reactive oxygen species that may be responsible for the initial tissue injury (72). The sporadic nature of the disease and the fact that lesions are restricted to the pons and cerebellar region of the brain imply that further priming events are required in hCFIΔ transgenic mice to initiate these lesions. We suggest that once a threshold number of macrophages are generated by local proliferation there may be further activation of resident macrophages and/or perivascular endothelium which may, in turn, provide signals for recruitment and extravasation of peripheral macrophages. It is curious that there is a lack of any similar neurological disorder in transgenic animals ubiquitously expressing hGM-CSF receptor α and β subunits, when administered hGM-CSF over a 1 wk period (73). Neurological disease in the hCFIΔ transgenic mice is likely to be a result of chronic exposure to a GM-CSF or IL-3 signal and may take > 1 wk to develop to the point where mice display neurological symptoms. Alternatively, in the GM-CSF receptor transgenic animals, the administered GM-CSF cannot cross the blood-brain barrier and is not able to stimulate cells resident in the cerebellum.

In conclusion, transgenic mice with chronic low level exposure of an activated hCFI, mutant develop a myeloproliferative disorder characterized by granulocytic, megakaryocytic, and erythroid hyperplasia. The pathophysiology of this disorder shows similarities to the human condition PV, suggesting that the hCFIΔ mouse may be a useful animal model for this disorder. Furthermore, lesions in hCFIΔ may be caused by the pathogenesis of PV, possibly through a mechanism involving synergy with other growth factors or interactions with other cytokine receptors. In addition these mice develop a progressive neurological disorder as a result of macrophage accumulation in response to necrotic lesions in the pons and cerebellar peduncles. While the basis for this lesion is unknown, it suggests that chronic activation of the GM-CSF/IL-3 receptor in cells types resident in brain stem can initiate tissue damage and may underlie degenerative disease in this tissue.

Acknowledgments

We are very grateful to Dr. Ivan Bertoncello and Dr. Tim Hughes for valuable discussions. We also thank Brigit Mills and Loren Matthews for maintenance of transgenic mouse colonies, and Jenny Langman for tissue sectioning and staining. Antibodies for cell surface typing were kindly provided by Dr. A. Strasser (Walter and Eliza Hall Institute) and Dr. I. Bertoncello (Peter MacCallum Cancer Research Institute, Melbourne, Victoria, Australia).

This work was supported by grants from the National Health and Medical Research Council of Australia and the Anti-Cancer Foundation of South Australia. R.J. D’Andrea is supported by an HM Lloyd Senior Research Fellowship in Oncology from the University of Adelaide.

References

34. Coffman, B. 1982. Surface antigen expression and immunoglobulin rear

41. McLaren, H., M.C. Sutherland, C.N. Adra, B. Leclair, M.A. Rud

phage colony-stimulating factor (IL-3) and recruitment of Stat5 to possible Stat5-dock-

58. Frendl, G. 1992. Interleukin-3 from colony stimulating factor to pluri

