Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and visceral functions to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointestinal system. We also examine how these mechanisms translate into the development of new approaches for irritable bowel syndrome, a multifactorial disorder for which stress has been implicated in the pathophysiology.

Stress and gut motor function

A real or perceived threat to the homeostasis of mammalian organisms, originating neutrally or externally, triggers adaptive stress responses that affect behavior, as well as endocrine, immune, autonomic, and visceral functions (1, 2). Regarding effects in visceral functions in particular, early seminal investigations reported by Cannon and by Almy and colleagues provided clear evidence that emotional stress impacts gastric and colonic motor activity in healthy volunteers and cats (3, 4). Subsequent studies established that delayed emptying of the stomach is the most common response evoked by various acute stressors in both experimental animals and healthy human subjects (5). By contrast, in the colon, various stressors (including anxiety, dichotomous listening, fear, intermittent hand immersion in cold water, and stressful interviews) increase colonic motility in healthy subjects (5). Similarly, in rodents and dogs, stressors as diverse as open-field test, fear conditioning, loud or tail shocks, and increased levels of cytokines induced by endotoxins stimulate propulsive colonic motor function (2, 5–7). The autonomic nervous system provides a peripheral neuronal network by which the effects of stress can be rapidly imposed on gut function. These are mediated through the sympathetic, vagal and pelvic parasympathetic innervation of the enteric nervous system embedded into the muscular layers of the gut (8).

It is becoming increasingly recognized that these interconnected brain-gut pathways activated during stress have relevance in the pathophysiology of functional bowel disorders (9–11). In particular, various stressors in the form of early life trauma, sexual abuse, maternal neglect, fear conditioning, life-threatening events, and enteric infection have an important role in the etiology of irritable bowel syndrome (IBS), which is characterized by altered bowel movements, bloating, and visceral pain (10–13). Cyclic vomiting syndrome is another brain-gut disorder manifested by recurrent, stereotyped episodes of nausea and vomiting in the pediatric population, which is triggered by stressors related to heightened emotional state, fasting, exercise, and infection in 80% of the patients (14).

A big step forward in our understanding of the neurocircuits and biochemical effectors that coordinate the physiological response to stress came from the identification in the hypothalamus of the 41-aa peptide corticotropin-releasing factor (CRF) by Vale et al. in 1981 (15). Since then, experimental studies in nonprimates and primates have supported the notion that CRF signaling is a key component of the multifaceted acute response to stress and that overactivity of this pathway has a role in the pathophysiology of various neuroendocrine and psychiatric illnesses related to stress, including anxiety and depression (16–18). Consequently, emphasis has been placed on elucidating the level of involvement of CRF signaling pathways, in both the brain and the gut, in the alterations of gut motor function known to be associated with stress (5, 19). In addition, the clinical relevance of overactive CRF signaling in the brain and periphery in functional bowel diseases is receiving increasing interest (20, 21), particularly because of the high prevalence of coexisting psychiatric disorders, prominently anxiety and depression, in IBS patients (22).

In this Review, we first discuss recent advances in our knowledge of CRF signaling as it relates to CRF family members and their receptors, as well as the insight provided by the development of CRF receptor antagonists. Preclinical studies supporting a primary role for CRF receptor activation in the brain and gut in mediating the alterations of gastric and colonic motor function associated with exposure to various stressors are reviewed. The potential relevance of CRF signaling pathways in the pathogenesis and treatment of IBS is also addressed (20, 23).

CRF signaling pathways

CRF family members and receptors. CRF was the first peptide isolated (15) of a family of mammalian CRF-related peptides that now includes urocortin 1, urocortin 2 (also known as stresscopin-related peptide), and urocortin 3 (also known as stresscopin) in the central nervous system (CNS) and periphery. CRF is processed from a larger prohormone (prepro-CRF) to a 41-aa peptide, corticotropin-releasing factor (CRF) by carboxypeptidases, leaving two C-terminal extensions, CRF(39–41) and CRF(40–41), with distinct functions (16). CRF and CRF receptors play a key role in central and peripheral stress responses, which are mediated by brain regions associated with the hypothalamic-pituitary-adrenal (HPA) axis (26). CRF receptor type 1 has been implicated in the etiology of IBS, with altered CRF receptor expression and CRF immunoreactivity in the enteric nervous system of IBS patients (8). CRF receptor type 2 plays a role in gastrointestinal motility (27) and porcine enteritis (28). The binding profiles of the CRF receptors have been described in the enteric nervous system and IBS patients (29). CRF(39–41) has a role in the central nervous system (CNS), whereas CRF(40–41) has a role in the periphery (30).

Citation for this article: J Clin Invest. 117:33–40 (2007). doi:10.1172/JCI30085.

Nonstandard abbreviations used: antiovine-g-30, [d-Phe11-His41]saunavine1-g; astressin, cyclo[30–33]([d-Phe11]-Nle21,26-Glu29,Lys30]-Ac-CRF12–41; astressin-B, cyclo[30–33]([d-Phe11]-Nle21,26-Glu29,Lys30]-Ac-CRF12–41; CRF receptor type 1; CRF1; CRF receptor type 2; CSF, cerebrospinal fluid; d-Phe11-CRF12–41, [d-Phe11]-Nle21,26-COMeLeu29]-[CRF12–41]; HPV, hypothalamic-pituitary-adrenal; IBS, irritable bowel syndrome; LC, locus coeruleus; PVN, paraventricular nucleus of the hypothalamus.

Conflict of interest: The authors have declared that no conflict of interest exists.

Overview of the family of peptides related to CRF and their receptors

CRF was the first peptide isolated of a family of mammalian CRF-related peptides that now includes urocortin 1, urocortin 2, and urocortin 3. CRF can bind either of 2 CRF receptors, CRF receptor type 1 (CRF₁) or CRF receptor type 2 (CRF₂), although it has a preferential affinity for CRF₁. By contrast, urocortin 1 has equal affinity for both receptors, and urocortin 2 and urocortin 3 are selective ligands for CRF₁ receptors. Both CRF receptors share 70% similarity and belong to the 7-transmembrane-G protein–coupled superfamily. CRF₁-selective antagonists are small nonpeptide molecules, while nonselective and CRF₂ antagonists are peptides.

(24) (Figure 1). Consistent with a role for this family of peptides in survival and adaptation, the structures of CRF and urocortin 1 are highly conserved across mammalian species and during evolution, as shown by the 45%–48% similarity with the nonmammalian CRF-related peptides sauvagine (which has been isolated from the amphibian Phyllomedusa sauvagii) and urotensin I (which has been isolated from fish) (25).

CRF and the urocortins exert their biological actions on target cells through activation of 2 receptors, known as CRF receptor type 1 (CRF₁) and CRF receptor type 2 (CRF₂), which are encoded by 2 distinct genes (26). CRF₁ and CRF₂ belong to the B1 class subfamily of 7-transmembrane-domain G protein–coupled receptors (26, 27) (Figure 1). CRF₁a is the main functional variant of CRF₁ and is widely expressed in the brain and some peripheral tissues in mammals (26). In addition, alternative splicing of the primary transcript encoding CRF₁ can lead to a number of other variants, named CRF₁b–n, all of which display impaired signaling (26). The expression of the CRF₁b–n variants is tissue specific, can vary with the functional activity of the tissues, and might be influenced by environmental factors — as reported so far in the skin of humans and rodents and in human myometrium and placenta (26). The functional significance of these other transcripts is still poorly characterized, but some splice variants, such as CRF₁d, have been reported to modulate CRF and urocortin 1 signaling in transfected cells by acting as a “decoy receptor” able to compete with CRF₁a for agonist binding (26). In addition, recent data in human myometrial smooth muscle cells indicate that steroids can change the ratio of expression of CRF₁a and CRF₁b, with increased expression of the CRF₁a functional form of CRF and decreased expression of the nonfunctional form CRF₁b, thereby enhancing tissue responsiveness to CRF (26). However, similar information regarding the expression of various CRF₁ splice variants in the brain and gut, and their regulation in these tissues under stress conditions, is still lacking.

In contrast to CRF₁, 3 functional CRF₂ variants, 2α, 2β, and 2γ (renamed 2a, 2b, and 2c), have been identified in mammals (24, 26). The CRF₂ variants have a common carboxy-terminal region and structurally distinct amino-terminal extracellular domains (the region involved in ligand binding) that contain 34 aas for CRF₂a, 61 aas for CRF₂b, and 20 aas for CRF₂c (24, 28, 29). Recently, a novel soluble splice variant has been identified in the mouse brain and shown to encode only the first extracellular domain of CRF₂a and to function as a soluble binding protein for CRF and urocortin 1 (29).

Despite sharing 70% aa sequence similarity, CRF₁ and CRF₂ display distinct characteristic affinities for the CRF family of peptides (Figure 1) (24, 26). CRF has a higher affinity (10- to 40-fold higher) for CRF₁ than for CRF₂, whereas all the urocortins signal preferentially through CRF₂. Urocortin 1 binds CRF₂ with 100-fold greater affinity than does CRF, and CRF₁ with 6-fold greater affinity than does CRF (30–32). Urocortin 2 and urocortin 3 exhibit high selectivity only for CRF₂ (31, 32), with a slightly higher affinity for CRF₂b compared with CRF₂a, and a low affinity for the new soluble CRF₂a splice variant (29, 32) (Figure 1). CRF₂ variants display tissue- and species-specific expression. In nonprimate mammals, CRF₂b is expressed only by neurons and CRF₂a mainly in the periphery and by non-neuronal cells of the brain (33), whereas CRF₂c is found only in the amygdala of the human brain (34). It is well documented that stimulation of CRF₂a, CRF₂b, and CRF₂c activates adenylyl cyclase/cAMP signaling pathways through coupling and activation of Gₐ proteins (26). However, several recent reports indicate that the nature of a trimeric complex, made of CRF agonist, CRF receptor, and G protein, influences the pattern of intracellular signaling in a tissue-specific manner (26).

CRF receptor antagonists. The development of competitive CRF receptor antagonists was an important early development in the endeavor to determine the functions of CRF receptors under basal and stress conditions (35). The first CRF antagonist was α-helical CRF₉₋₄₁, a CRF analog generated by deletion of 8 aas from the amidated carboxyl terminus of CRF (27, 36). A subsequent approach to enhance the potency of CRF antagonists was to design analogs in which the secondary structure of CRF was constrained, leading to the generation of [α-Phe¹²,Nle²¹,38,CαMeLeu²⁷]CRF₂₁₋₄₁ (α-Phe¹²CRF₂₁₋₄₁) and cyclo(30–33)[β-Phe¹²,Nle²¹,38,Glu⁴₀,Lys⁵₃]Ac-CRF₉₋₄₁ (known as astressin) (37). Additional astressin-like analogs were later developed, of which cyclo(30–33)[β-Phe¹²,Nle²¹,38,CαMeLeu²⁷,Glu⁴₀,Lys⁵₃]Ac-CRF₉₋₄₁ (known as astressin-B) is the most efficacious and long-acting (being still effective 24 hours after a single peripheral injection) (38). The use of these CRF antagonists has unraveled the many roles that CRF receptors have in orchestrating the behavioral (anxiety, decreased feeding, and drug seeking), cognitive (anxiety and information), neuroendocrine (ACTH and β-endorphin release), autonomic (activation of the sym-
pathetic nervous system), immunological, and visceral (hypertension and alterations in gut motor function) responses to stress.

However, these CRF antagonists bind both CRF₁ and CRF₂ receptors, and therefore, do not provide selectivity to assess the involvement of the 2 CRF receptor subtypes (27, 42) (Figure 1). An important goal was reached recently when competitive and selective peptide antagonists for CRF₂ were developed and shown to bind equally to the a, b, and c variants of CRF₂ while having little to no affinity for CRF₁ receptors (29, 43, 44) (Figure 1). Three of these peptides are [d-Phe¹¹,His¹²]sauvagine₁₁-₄₀ (known as antisuavagine-30), [d-Phe¹¹,His¹²,Nle¹⁷]sauvagine₁₁-₄₀ (known as K41498), and the long-acting analog with additional conformational constraints, cyclo(31–34)[d-Phe¹¹,His¹²,Nle¹²,CzαMeLeu¹³,3₅,Nle¹⁷,Nle³⁸, Lys³⁹⁴]Ac-sauvagine₁₁-₄₀ (known as astressin-B) (Figure 1). So far, there are no peptide analogs that are selective CRF₁ antagonists; however, a flurry of patents for orally bioavailable, nonpeptidic selective CRF₁ antagonists, it has become clear that the constellation of physiological responses induced by various psychological, physical, visceral, immunological, or chemical stressors, including swimming stress, restraint, abdominal or cranial surgery, peritoneal irritation with 0.6% acetic acid, systemic or brain injection of IL-1β, and exposure to ether anesthesia (5, 63, 66). Consistent with this, various stressors, including abdominal surgery and peripheral administration of IL-1β, activate neurons that express CRF and upregulate levels of mRNA encoding CRF in the PVN (67–70). Likewise, urocortin 1, urocortin 2, and urocortin 3 are present in the PVN, and expression of the urocortins is upregulated during stress (49, 71, 72). The CRF receptor subtypes and endogenous CRF ligands primarily involved in delaying gastric motor function under stress conditions have been characterized in only a few studies so far. The CRF₁ antagonist astressin₂-B injected into the CSF abolished the delayed gastric emptying in response to restraint in rats (63). By contrast, pharmacological blockade with a selective CRF₁ antagonist and the use of mice lacking CRF₁ suppressed the inhibition of gastric transit induced by surgical stress (caused by abdominal surgery or cecal palpation) (73). Collectively, these data provide new insights into the role of specific CRF receptors in the brain in the altered gastric digestive function that occurs in response to stress of surgical or immunological origin. As inhibition of gastric propulsive activity after surgical intervention represents a substantial medical problem for which effective treatments are still lacking (74), these experimental findings might open new therapeutic avenues.

Stress, CRF receptors in the brain, and small-intestinal transit. Alterations in small-intestinal motor function induced by stress and CRF ligands have been investigated in parallel with those occurring in the stomach (53). Acute psychological stress and central injection of CRF and urocortin 1 exert an inhibitory effect on duodenal and small-intestinal transit and propulsive motility, similar to their effects on gastric functions (6, 54, 65, 66, 75–77). Peptide-inhibitory action is mediated directly by vagal nerves and is independent of activation of the HPA axis (6, 61, 66, 78).
The inhibitory action of central CRF on small-intestinal transit is, however, less prominent than its inhibitory action on gastric transit; this most probably reflects the lesser density of vagal innervation of the small intestine as compared with the stomach (79). In addition, the role of CRF receptors in the brain in stress-related inhibition of small-intestinal transit is yet to be characterized. The reduction of small-intestinal transit induced by partial restraint was reported to be blocked in male, but not in female, rats injected with α-helical CRF9–41 into the CSF (6, 66). Whether these conflicting data relate to sex differences or other experimental components remains to be determined.

Stress, CRF₁ in the brain, and colonic transit. In contrast to the inhibitory effects of CRF and urocortin 1 injected into the CSF on gastric and small-intestinal motor function, these peptides stimulate colonic transit and defeation and induce diarrhea through increased sacral parasympathetic outflow to the large intestine in female and male rats, mice, and gerbils (6, 7, 56, 61, 80–85). Convergent studies have shown that the activation of CRF₁ receptors in the brain contributes to the stimulatory effects of central injection of CRF and urocortin 1, as well as the stimulatory effects of various stressors, on colonic motor function (23, 53). First, the colonic propulsive motor activity induced by stress is mimicked by central administration of urocortin 1 and the preferential CRF₁ agonist ovine CRF (27), whereas the selective CRF₂ agonists urocortin 2 and urocortin 3, injected into the CSF at a dose similar to that of CRF, are inactive (56). In addition, central administration of the pan-CRF peptide antagonists α-helical CRF₉–₄₁, D-Phe¹⁶-CRF₁₂–₄₁, and astressin blocked the colonic motor stimulation (motility, transit, and defeation) induced by central injection of CRF and urocortin 1, as well as by various stressors (wrap or partial restraint, water avoidance, conditioned fear, IL-1β injected into the CSF, and morphine withdrawal) (6, 7, 56, 66, 80, 82, 83, 86–89). Similarly, the selective CRF₁ antagonists CP-154,526, CRA 1000, NBI 27914, NBI 35965, and antalarmin, injected either into the CSF or i.p., prevented the acceleration of colonic transit induced by restraint, dampened defeation in response to water avoidance, restraint, and social stress, and inhibited the diarrhea elicited by morphine withdrawal (23). Likewise, CRF₁-deficient mice have lower defeation scores than wild-type littermates in an open-field test (90). Lastly, the CRF₂-specific peptide antagonist astressin₂-B, injected into the CSF at doses that block CRF; effects on gastric emptying, did not inhibit the stimulatory effect of CRF on colon function in rodents (5, 23, 56).

The PVN, the locus coeruleus (LC), and the Barrington’s nucleus, which lies just ventromedial to the LC, are areas of the brain where CRF and stress stimulate colonic motor function and anxious behavior (16, 91) (Figure 2). These sites are activated by water-
avoidance stress, as is shown by their increased expression of FOS, a neuronal marker of cell activation (80). Water avoidance also induces rapid transcription of the gene encoding CRF in the PVN (92). Furthermore, α-helical CRF9–41 injected into the PVN prevents the stimulation of colonic transit and defecation induced by partial restraint and water avoidance (64, 80, 87). Likewise, in inbred rats with a genetically impaired hypothalamic CRF response to stress (93), water avoidance results in a reduced activation of neurons in the PVN and sacral parasympathetic nucleus (as shown by decreased expression of FOS) and is associated with an attenuated colonic motor response (86). Moreover, expression of the gene encoding CRF1 in the PVN (60) is markedly increased by different types of interoceptive or exteroceptive stressors (94). It has been shown that CRF-synthesizing neurons in the Barrington’s nucleus project to both the noradrenergic LC and the sacral parasympathetic nucleus of the spinal cord, which innervates the descending colon (Figure 2) (91, 95). In the LC, CRF increases the rate at which noradrenergic neurons fire and thereby increases the amount of noradrenaline released into the brain cortex, leading to arousal and anxiogenic behavior (Figure 2) (91, 96). Consequently, the activation of CRF-CRF1 signaling in the PVN and LC (94, 97) is well positioned to participate in stress circuits that coordinate behavioral anxiogenic and autonomic responses that impact colonic motility (81, 91). It might be speculated that overactivity of these neurological circuits has relevance to the high incidence of anxiety disorders in patients with IBS and that these effects might be efficiently targeted by CRF1 antagonists (16, 23, 98).

Peripheral CRF signaling and stress-related alterations of gut motor function

As established for a number of neuropeptides (such as somatostatin, opiates, and calcitonin gene–related peptides) that act in the brain to influence gut motility (99), the CRF ligands and receptors that were initially characterized in the brain (where they function to influence gut motor function) have recently been shown to be widely expressed in peripheral tissues, including the gastrointestinal tract of experimental animals and humans (19, 32, 100–103). The coincident expression of CRF ligands, mostly uroctins, with cognate receptors provided strong support for the idea that their local action could influence gut motor function (100–102, 104, 105).

CRF receptors in the periphery and gut transit. Initial functional studies showed that injection of CRF peripherally alters gut motility and transit in several mammalian species, including rodents, dogs, and humans (6, 62, 106–109). In particular, injection of CRF either i.v. or i.p. inhibited gastric emptying, delayed small-intestinal transit, stimulated colonic transit and defecation, and induced diarrhea with a potency similar to that of CRF injected into the CSF (6, 61, 106). Although central administration and peripheral administration of CRF result in similar gut transit alterations, distinct sites and mechanisms of action are involved (54, 57, 61, 110, 111). For example, pharmacological blockade of autonomic outflow does not modify the inhibition of gastric emptying and acceleration of colonic transit induced by injection of CRF i.p., whereas it abrogates the gastric and colonic responses induced by injection of CRF into the CSF (61). In addition, injection of α-helical CRF9–41 into the CSF does not modify the stimulation of colonic transit induced by injection of CRF i.v.; this indicates that the peripherally injected CRF did not activate CRF receptors in the brain (66).

Further studies in rodents have established that peripheral injection of CRF, urocortin 1, urocortin 2, or urocortin 3 delays gastric emptying by activating CRF1, whereas peripheral injection of CRF or urocortin 1 stimulates colonic motility through activation of CRF2 expressed by colonic myenteric neurons (19). This was shown by the fact that injection of the selective CRF2 agonist, urocortin 2, or, less potently, urocortin 3 either i.p. or i.v. inhibited gastric emptying of a solid or liquid meal but did not influence distal colonic transit in rodents (106, 112). By contrast, under the same conditions, CRF and urocortin 1 inhibited gastric motor function and stimulated colonic propulsion and defecation in rats and mice (54, 106, 112). Moreover, in rodents, peripheral injection of the CRF2-specific antagonists astressin-B and antistauvagine-30 prevented the inhibition of gastric emptying that is induced by CRF and urocortin 1 given i.v. or i.p. but did not modify their stimulation of distal colonic transit (106, 112). Conversely, peripheral injection of the CRF2-specific antagonists CP-154,526 and NBI 27914 blocked the stimulation of colonic transit, defecation, and diarrhea induced by i.p. injection of CRF and urocortin 1 but did not prevent delayed gastric emptying (106, 112–114). The mechanisms by which peripherally administered CRF and urocortin 1 stimulate colonic motor activity might involve direct activation of colonic myenteric neurons that lie between the longitudinal and circular muscles. Indeed, in rats, high levels of FOS expression are induced in neurons of the colonic myenteric ganglia by CRF injected i.p., and this is blocked by peripheral injection of astressin and CP-154,526 (115). These data are consistent with the expression of CRF1 by rat colonic myenteric neurons (101, 104).

CRF receptors in the periphery and gut motility. Analysis of the motility changes underlying gut transit alterations showed that i.v. injection of urocortin 1 or CRF reduces the amplitude of postprandial gastric contractions, inhibits jejunal motility induced by i.v. injection of motilin, and increases propulsive colonic motility in experimental animals (54, 113, 116, 117). The motor alterations induced by CRF and urocortin 1 were reproduced in vitro in isolated stomach tissue and distal segments of the colon, which both have functional enteric neurons; this supports the idea of local peripheral action (102, 105, 113, 118, 119). Studies in healthy humans revealed that i.v. injection of CRF increases nonpropulsive postprandial duodenal motor activity and stimulates propulsive motor contractions in the descending colon (108, 109). Of interest is the report that patients with IBS show enhanced colonic motility in response to i.v. injection of CRF as compared with healthy volunteers, which indicates that they are hyperresponsive to CRF1, and this might be linked by upregulation of colonic CRF1 (108). Stress, CRF receptors in the periphery, and gut transit. Pharmacological studies support the notion that gut CRF signaling occurs under stress (6, 19, 112, 113). Several reports showed that the delayed gastric emptying induced by abdominal surgery can be blocked by peripheral injection of α-helical CRF9–41, D-Phe14CRF12–41, and astressin (111, 120, 121). CRF1 antagonists injected i.v. also prevented the inhibition of gastric emptying induced by acute wrap-restraint stress, whereas the selective CRF1 antagonist CP-154,526 did not (112). With respect to stress-related stimulation of colonic motor function, peripheral administration of α-helical CRF9–41, astressin, and CP-154,526, but not of astressin1-B, prevented or blunted the stimulation of distal colonic transit and defecation induced by acute wrap-restraint and water-avoidance stress (6, 83, 112, 113, 122). In patients with IBS, compared with healthy subjects, the administration of α-helical CRF9–41 improves colonic motility, visceral perception, and the negative mood elicited by rectal transmural electrical stimulation, without affecting the HPA axis (20).
The cellular origins of the CRF and CRF-related peptides that activate peripheral CRF receptors present in the gut remain to be elucidated. CRF ligands have been detected in the gut myenteric nervous system, as well as in enteroendocrine cells and lamina propria macrophages in rodents and humans (103, 123, 124). Because both central and peripheral administration of CRF receptor antagonists is able to counteract the impact of stress on gut motility, this supports the concept that stress influences the release of CRF ligands in the gut through autonomic pathways, where they can then function as local effectors of altered gastrointestinal motility.

Conclusions and future perspectives
CRF signaling in the brain, established as a leading mediator of the biochemical effect on the endocrine and anxiogenic behaviors, is also part of the underlying mechanisms through which stress inhibits gastric transit and stimulates colonic transit in experimental animals. In addition to the brain, the gut through which stress inhibits gastric transit and stimulates colonic secretion, in patients with spastic constipation. Experimental production of sigmoid spasm and related alterations of gut motility and sensitivity.

Address correspondence to: Yvette Taché, Center for Neurovisceral Function, Building 11S, Room 117, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, California 90073, USA. Phone: (310) 312-9275; Fax: (310) 268-4963; E-mail: ytache@mednet.ucla.edu.

Acknowledgments
The authors’ work was supported by the National Institute of Diabetes, Digestive and Kidney Diseases (grants R01 DK33061, R01 DK57236, DK41301 [Animal Core], and P50 AR049550) and by Veterans Affairs Merit and Senior Scientist Awards. The help of Teresa Olivas in preparing the manuscript is gratefully acknowledged.

37. Gulyas, J. et al. 1995. Potent, structurally con-

39. Bale, T.L. and Vale, W.W. 2004. CRF and CRF recep-

40. Nazarloo, H.P., Buttrick, P.M., Saadat, H., and Dunn, A.J. 2006. The roles of corticotropin-releas-

41. Gravanis, A., and Margioris, A.N. 2005. The corti-
ocotropin-releasing factor (CRF) family of neuro-

43. Ruhmann, A., Bonk, I., Lim, C.R., Rosenfeld, M.G., and Spiess, J. 1998. Structural requirements for pep-
tidic antagonists of the corticotropin-releasing fac-
tor receptor family: development of CRF20-select-

44. Rivier, J. et al. 2002. Potent and long-acting cor-
ticotropin releasing factor (CRF) receptor 2 selec-

peptide agonist of the CRH1 receptor: a review. CNS Drug Rev. 9:57–96.

tive CRF; receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motility in rats. Brain Res. 985:32–42.

47. Habib, K.E. et al. 2000. Oral administration of a corticotropin-releasing hormone receptor antago-
nist significantly attenuates behavioral, neuroen-
docrine, and autonomic responses to stress in pri-

49. Hausner, R.L., Richrough, V., Brauns, O., and Daust-

50. Bale, T.L. 2000. Mice deficient for corticotro-
in-releasing hormone receptor-2 display anxiety-

51. Rivier, C.L., Grigoreidis, D.E., and Rivier, J.E. 2003. Role of corticotropin-releasing factor receptors type 1 and 2 in modulating the rat adrenocor-

53. Taché, Y. and Million, M. 2000. Central corticotro-
in-releasing factor and the hypothalamic-pitu-

54. Kihara, N. et al. 2001. Effect of central and peri-
pheral urocortin 2 on fed and fasted gastrointestinal motor activity in conscious rats. Am. J. Physiol. Gas-
trointest. Liver Physiol. 280:G406–G419.

57. Cizmmer, J., Million, M., and Taché, Y. 2006. Urocort-

60. Bitten-Wagner, S., and Cao, Y. 2000. Do cen-
trally administered neuropeptides access cognate receptors?: an analysis in the central corticotropin-

65. Saito, K., Kimura, M., and Fujikado, S. 1997. Involvement of the LHSC-547 receptor in CRH-induced def-

68. Million, M., Wang, L., Martínez, V., and Taché, Y. 2000. Differential Fos expression in the paraven-
tricular nucleus of the hypothalamus, sacral para-

70. Lu, L., Liu, D., Ceng, X., and Ma, L. 2000. Differ-
tial roles of corticotropin-releasing factor recep-

71. Martínez, V. and Taché, Y. 2001. Role of CRF recep-

72. Bale, T.L. et al. 2002. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior.

