Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection

Graciela Andonegui,1 Hong Zhou,1 Daniel Bullard,2 Margaret M. Kelly,1 Sarah C. Mullaly,1 Braedon McDonald,1 Elizabeth M. Long,3 Stephen M. Robbins,3 and Paul Kubes1

1Immunology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
2Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
3Departments of Oncology and Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.

Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow–derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow–derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.

Introduction

Localized infection with Gram-negative bacteria activates the local microenvironment and causes the influx of neutrophils into the afflicted tissue. The neutrophils eradicate the pathogen without eliciting any notable systemic innate immune responses. By contrast, when Gram-negative bacteria gain access to blood and disseminate, a systemic, often overwhelming innate immune response ensues (sepsis and septic shock), which continues to elude effective therapy with 30%–40% mortality, translating into the death of approximately 400,000 North Americans per year (1, 2). A consistent finding in rodent models of sepsis and septic patients is that, regardless of the organ in which the sepsis originates, the lungs are generally the first to fail (3). Consequently, pulmonary failure remains the most common cause of sepsis-related death. A key event that, in part, is thought to explain this pathology is the rapid accumulation of neutrophils in the narrow lumen of lung capillaries. The prevailing view is that the shedding of LPS from Gram-negative bacteria into the circulation incites the systemic release of cytokines and chemokines, leading to the so-called “cytokine storm” (4). Whether the sequestration of neutrophils in the lungs and the cytokine storm are a protective program of the innate immune system or a clever survival mechanism of bacteria to hijack the innate immune system and redirect neutrophils to the lung and away from the bacterial source remains unknown.

The discovery of TLRs as pattern recognition receptors for bacterial, fungal, and viral ligands has revolutionized research in the area of innate immunity (5, 6). In the case of the LPS receptor, TLR4, macrophages and various cell lines have served as useful tools to study the signaling pathways downstream of this receptor. Robust responses (cytokine production) are generated in these model systems in vitro, and similar exuberant responses are also elicited in vivo. However, macrophage-deficient mice have robust neutrophil responses to both TLR4 and TLR2 ligands (7, 8), suggesting that other cell types can contribute in a meaningful way to the inflammatory cascade. In this regard, most leukocytes, platelets, and non–bone marrow–derived parenchymal cells (epithelium, endothelium, etc.) have also been reported to express functionally significant amounts of TLR4 (9–12). In fact, chimeric mice lacking TLR4 on bone marrow rapidly recruited neutrophils to lungs (in the first 4 hours following bacterial wall products exposure [LPS]) as effectively as wild-type mice, suggesting important roles for parenchymal cells in this process (13).

When bacteria and bacterial products such as LPS penetrate physical barriers and enter local tissues, there is an extremely well-coordinated series of events that recruit effector neutrophils. The prevailing view is that the LPS binds TLR4 on sentinel cells in the tissue, including macrophages and mast cells, that then become activated and release both pre- and de novo–synthesized factors, including cytokines, chemokines, and lipid mediators. The endothelium, which separates the circulating effector cells from the
tissue resident sentinel cells, is often overlooked. However, endothelium must be activated either directly by LPS or indirectly by mediators released by macrophages to express adhesion molecules necessary for neutrophil recruitment. Since endothelium expresses TLR4 as well as receptors for TNF-α and IL-1β, either scenario is plausible (14). Moreover, the relative importance of endothelial TLR4 versus other cellular sources of TLR4 to the overall local and systemic innate immune response in vivo is completely unknown.

Given the fact that endothelium lines the entire vascular tree of all organs and would be the first cells to come in contact with bacteria and bacterial products like LPS that have disseminated into the bloodstream, it would make sense that the endothelium would actually be the sentinel system for bacteremia and endotoxemia and, thereby, potentially be important in both the detection of invading pathogens and localization of the innate immune response. In this study, to systematically test the importance of endothelial TLR4, we generated mice that had TLR4 exclusively on endothelium (referred to herein as EndotheliumTLR4 mice).

Our results revealed that endothelial TLR4 was entirely sufficient to recruit neutrophils to peripheral tissues when LPS was locally administered. During systemic endotoxemia, neutrophils were hijacked by LPS and sequestered for prolonged periods in lungs of wild-type mice but only transiently in EndotheliumTLR4 mice, thereby freeing effector neutrophils to traffic to target sites in the latter mice. Most importantly, EndotheliumTLR4 mice were far more efficient than wild-type mice at clearing i.p. Gram-negative bacteria, due to increased neutrophil delivery in the first 24 hours to the infectious nidus, while not succumbing at all to a dose of E. coli that caused the immune response to kill 50% of wild-type mice. TLR4 on neutrophils and macrophages is not essential for systemic bacterial recognition and clearance and, in some instances, may even be detrimental.

Results

Characterization of EndotheliumTLR4 mice. Tie-2 promoter and full enhancer, along with the TLR4–internal ribosome entry site-EGFP (TLR4-IRES-EGFP), were microinjected into C57BL/6 mice, which were mated with Tlr4–/– mice, as described in Methods and Supplemental Figure 1 (supplemental material available online with this article; doi:10.1172/JCI36411DS1), to obtain the EndotheliumTLR4 mice. Our EndotheliumTLR4 mice, much like the Tlr4–/– mice, were healthy, fertile, displayed no overt phenotype, and had normal hematocrits, white blood cell counts, and differential counts in our specific pathogen–free mouse facility.

![Bar charts](http://www.jci.org) (A) Neutrophils and (B) monocytes from wild-type, Tlr4–/–, and EndotheliumTLR4 (EndoTLR4) mice were assessed by flow cytometry. (C) Phospho-p38 (p-p38) activation of peritoneal macrophages from wild-type, Tlr4–/–, and EndotheliumTLR4 mice treated for 0, 15, 30, and 60 minutes with LPS was assessed by Western blot. TLR4 expression on the primary culture endothelial cells of (D) lung and (E) heart was assessed by flow cytometry. (F) Lung or (G) heart endothelium was harvested prior to or 4 hours following LPS administration without culturing, and TLR4 expression was immediately measured by flow cytometry. Data are presented as the arithmetic mean ± SEM (n = 3 to 5 in each group). *P < 0.01 versus neutrophils or monocytes from Tlr4–/– and EndotheliumTLR4 mice; **P < 0.05, ***P < 0.01 versus isotype or Tlr4–/– endothelium. UT, untreated.
bution from any minor bone marrow component. In no case were differences noted (data not shown).

Flow cytometry revealed that neutrophils and monocytes from wild-type mice but not EndotheliumTLR4 or Tlr4−/− mice expressed TLR4 (Figure 1, A and B, and Supplemental Figure 2). Moreover, no other bone marrow–derived humoral cells expressed TLR4 (data not shown). Intracellular signaling in peritoneal macrophages, measured as phosphorylation of p38 MAPK, revealed robust and rapid responses to LPS in wild-type mice but not Tlr4−/− and EndotheliumTLR4 mice at 15 minutes (Figure 1C). On occasion, a small level of p38 MAPK phosphorylation was noted in both Tlr4−/− and EndotheliumTLR4 mice (Supplemental Figure 3), but this never translated to a detectable LPS response. Primary culture of lung and heart endothelial cells from wild-type and EndotheliumTLR4 mice but not Tlr4−/− mice expressed TLR4 to a similar extent (Figure 1, D and E).

Finally, in some experiments, endothelium was harvested from lungs (Figure 1F) and hearts (Figure 1G) of wild-type or EndotheliumTLR4 mice prior to or 4 hours after LPS administration, and TLR4 levels were immediately measured (no culturing) using flow cytometry. Very similar levels of TLR4 were noted in wild-type and EndotheliumTLR4 mice under basal conditions. TLR4 expression levels decreased following 4 hours of LPS in both strains of mice. These data demonstrated that endothelial cells but not leukocytes in EndotheliumTLR4 mice do express TLR4 in comparable amounts to wild-type mice and respond similarly to LPS.

Effect of local LPS in the cremaster microcirculation. Neutrophil recruitment is a hallmark feature of the innate immune response. We imaged the response using intravital microscopy. In untreated vessels of all groups of mice imaged, approximately 1–4 leukocytes rolled through postcapillary venules (Figure 2A) at relatively high velocities (40–60 μm/s) (Figure 2B) at any given time. Fewer than 2 cells adhered (Figure 2C) and emigrated (Figure 2D) in the postcapillary venules of untreated mice. Local administration of LPS (for 4 hours at 0.5 μg/kg, intramuscular injection) significantly increased the number of rolling cells in wild-type and EndotheliumTLR4 mice to 10–15 leukocytes/100 μm length venule (Figure 2A). In addition, local administration of LPS decreased leukocyte rolling velocity by 90% in the muscle postcapillary venules of wild-type and EndotheliumTLR4 mice (Figure 2B). Clearly, LPS activation of endothelial TLR4 was sufficient to elicit these rolling effects.

Figure 3
Effect of intratracheal LPS on neutrophil sequestration into the lungs. Mice were treated with LPS (intratracheal aerosol) for 24 hours, and the lungs were prepared for histology (esterase staining). Intratracheal aerosol of LPS was administered to (A) wild-type and (C) EndotheliumTLR4 mice or saline was administered to (B) wild-type mice. (B) Representative sections show alveolar spaces and capillaries mainly devoid of neutrophils in the saline-treated lungs, (A) while many alveolar spaces contain neutrophils (arrows), with some neutrophils still within capillaries (arrowheads), in the LPS-treated wild-type mice. (C) In contrast, LPS treatment in EndotheliumTLR4 mice resulted in very few neutrophils collecting in the pulmonary capillaries or alveolar spaces. (D) BAL was performed, and number of neutrophils was quantified. Data are expressed as the mean ± SEM (n = 3 to 8 mice in each group). ND, not detectable. Original magnification, ×400 (A–C). In B, the black line represents 100 μm. *P < 0.001 versus saline-treated mice.

Figure 2
Effect of local LPS in the cremaster microcirculation of wild-type, Tlr4−/−, and EndotheliumTLR4 mice. Mice were treated with LPS (0.5 μg/kg) locally for 3.5 hours. At this time, for 1 hour, the cremasteric venules were visualized by intravital microscopy. Results represent the leukocyte kinetics observed at 4 hours and show (A) number of rolling cells, (B) leukocyte rolling velocity, (C) leukocyte adhesion, and (D) leukocyte emigration in postcapillary venules of wild-type, Tlr4−/−, and EndotheliumTLR4 mice. Data are represented as the arithmetic mean ± SEM (n = 4 to 6 mice in each group). *P < 0.05, **P < 0.01, ***P < 0.001 versus untreated mice.
responses, consistent with endothelial selectins regulating these effects (16). The activation of the endothelium by LPS in Endothelium-TLR4 mice was sufficient to recruit significant numbers of adhering (Figure 2C) and emigrating (Figure 2D) neutrophils in a timely and robust manner, and surprisingly, the magnitude of response observed in Endothelium-TLR4 mice relative to wild-type mice. In concordance with previous data shown in TLR4-deficient mice (17), local LPS administration did not induce neutrophil infiltration into the lungs of these mice (Supplemental Figure 4), consistent with the complete lack of response observed in Endothelium-TLR4 mice. Clearly, neither endothelial nor epithelial TLR4, for that matter, was required/necessary for neutrophil recruitment into lungs in response to systemic LPS. We previously used the spontaneous TLR4-deficient, C57BL/10scSnJ (TLR4<sup>−/−</sup>) to determine that bone marrow–derived cells were not necessary for the recruitment of neutrophils into lung capillaries in response to systemic LPS (13). Chimeric mice were made, in which wild-type mice received bone marrow from TLR4<sup>−/−</sup> mice. In these mice, TLR4 was expressed only on parenchymal cells (epithelium, endothelium). In striking contrast to systemic LPS treatment, intratracheal LPS treatment did not induce neutrophil infiltration into the lungs of these mice (Supplemental Figure 4), consistent with the complete lack of response observed in Endothelium-TLR4 mice. Clearly, neither endothelial nor epithelial TLR4, for that matter, was required/necessary for neutrophil recruitment into lungs in response to intratracheal LPS. By contrast, in chimeric mice, in which TLR4<sup>−/−</sup> mice received bone marrow from wild-type mice, intratracheal LPS induced a statistically significant increase in neutrophils infiltrating the alveolar air space of the lungs (Supplemental Figure 4), suggesting that the activation of hematopoietic immune cells by LPS plays a critical role in this response. As expected, TLR4<sup>−/−</sup> mice had no response to intratracheal LPS (Supplemental Figure 4).

**Systemic effects of LPS in cytokine levels and endothelial activation in vivo.** It is clear that endothelial TLR4 was sufficient for normal neutrophil recruitment, following local administration of LPS in muscle but not in lungs. We next examined the responses to systemic LPS. Animals received 25 μg per mouse of LPS (i.v. for 4 hours or 24 hours). This was the optimal dose to examine innate immune responses without causing any mortality. Plasma levels of both TNF-α and IL-1β increased in a very significant manner in wild-type mice but not Endothelium-TLR4<sup>−/−</sup> or TLR4<sup>−/−</sup> mice in response to LPS at 4 hours (Figure 4, A and B). Due to the relatively low level of LPS used, the LPS was cleared rapidly and cytokine levels decreased toward control levels by 24 hours (Figure 4, A and B). Endothelium can be activated directly by LPS or indirectly by IL-1β, TNF-α, and other cytokines released following endotoxemia.
P selectin expression was used as a marker of endothelial activation in all vasculatures of wild-type and Endothelium$^{-/-}$ mice, following LPS administration (18, 19). In several tissues examined, including lung, heart, and small and large bowel, there was a significant increase in P selectin following systemic LPS treatment (for 4 hours) in Endothelium$^{-/-}$ mice but not to the same level as in wild-type mice (Figure 4, C–F). Interestingly, LPS-induced pulmonary endothelial P selectin levels in Endothelium$^{-/-}$ mice were about 30%–40% of the value in wild-type mice and only 20%–25% in heart, 50% in small bowel, and 70%–80% in large bowel (Figure 4, C–F). Clearly, LPS activation of pulmonary endothelium was sufficient to directly express adhesion molecules but to a lesser degree than when all other cell types also expressed TLR4 and cytokines became elevated systemically.

Systemic effects of LPS in neutrophil trafficking in vivo. LPS i.v. resulted in a profound drop in the number of circulating leukocytes (Figure 5A) and neutrophils (data not shown) in both wild-type and Endothelium$^{-/-}$ mice. This was accompanied by a robust increase in the number of neutrophils that sequestered into the lungs, assessed as myeloperoxidase activity (Figure 5B). The neutrophils sequestered in the capillaries, but, unlike with intratracheal administration of LPS, did not emigrate significantly into the lung parenchyma or the alveoli (Figure 5C). Wild-type mice retained neutrophils in the pulmonary vasculature at 24 hours (Figure 5B), excluding them from the peripheral circulation (Figure 5A). By contrast significant numbers of neutrophils were released from the lung capillaries in Endothelium$^{-/-}$ mice (Figure 5B) into the peripheral circulation by 24 hours (Figure 5A). Circulating and pulmonary neutrophil numbers were identical under baseline conditions in wild-type, Tlr4$^{-/-}$, and Endothelium$^{TLR4}$ mice and remained unchanged following LPS treatment in Tlr4$^{-/-}$ mice over the entire experimental period (Figure 5, A and B). Instead of i.v., i.p. administration of LPS also induced a systemic response, including a profound drop in circulating leukocytes after 4 hours LPS treatment (i.p. injection of 25 $\mu$g/mouse) and a large infiltration of neutrophils into the lungs (Supplemental Figure 5). The slightly higher numbers of neutrophils in the circulation of Endothelium$^{TLR4}$ mice than wild-type mice following i.p. LPS administration may actually be important, as the former mice were able to recruit some neutrophils into the peritoneum, whereas wild-type mice did not (Supplemental Figure 5).

These data led us to hypothesize that LPS and/or bacteria that sequester neutrophils into the pulmonary vasculature prevent their access to peripheral tissues in which the focus of the infection may lie (e.g., abscess in muscle). To test this possibility, we delivered local chemokine (MIP-2) injection that causes profound neutrophil recruitment into muscle in otherwise healthy mice i.e., no LPS (Figure 5, D–F, first and second bars of each graph). Many cells rolled both before and after MIP-2 administration. There was a very large increase in adhesion (Figure 5E) and emigration (Figure 5F) following MIP-2 administration. By contrast, endotoxemic
mice had very low numbers of rolling cells that remained low after MIP-2 administration (Figure 5D, third and fourth bars of each graph). No adhesion (Figure 5E) or emigration (Figure 5F) could be seen in the endotoxemic wild-type mice. By contrast, large numbers of rolling cells were seen in endotoxemic EndotheliumTLR4 mice. The EndotheliumTLR4 mice did respond to MIP-2, despite the presence of endotoxia (Figure 5, D–F, fifth and sixth bars of each graph). Clearly, retention of neutrophils in lungs and away from the peripheral vasculature prevents neutrophil recruitment to peripheral sites.

Bacterial eradication in wild-type, EndotheliumTLR4, and Tlr4−/− mice. To determine whether similar mechanisms are at play in a more physiologic bacterial model of sepsis, a dose of E. coli (1 x 10⁷ CFUs) in log phase of growth was injected into the peritoneum. There was an approximately 10-fold increase over the first 4 hours in wild-type and EndotheliumTLR4 mice (Figure 6A). In both strains of mice, bacteria disseminated to the lungs as early as 30 minutes after i.p. injection (Figure 6B, first value). Over the first 48 hours of infection, more than half of the wild-type mice died (Figure 6C). The remaining mice cleared the pulmonary bacteria within the first 70 hours (Figure 6B), but the peritoneal infection was not cleared until 1 week (Figure 6A). In striking contrast, all EndotheliumTLR4 mice cleared bacteria from the peritoneum within the first 72 hours of infection (Figure 6A). In fact, most of these mice had cleared the infection within the first 48 hours from both peritoneum as well as the lungs (Figure 6B). Most importantly, no EndotheliumTLR4 mice died during this time frame (Figure 6C).

To be thorough, Tlr4−/− mice were also injected with E. coli, and the bacteria persisted for at least as long in the peritoneum (Figure 6A) and for much longer in lungs (Figure 6B). By 168 hours, about 50% of the Tlr4−/− mice cleared bacteria (data not shown). The strain of E. coli used was not lethal, so that even very high titers in Tlr4−/− mice failed to cause mortality (data not shown). Wild-type mice died despite lower levels of bacteria in lungs than Tlr4−/− mice, likely due to an inappropriate or overexuberant TLR4-dependent immune response in wild-type mice. Indeed, Figure 6, D and E, revealed increased levels of plasma TNF-α and IL-1β in response to E. coli in wild-type mice between 4 and 24 hours of infection but not in EndotheliumTLR4 mice.

In addition, we measured chemokine production in the lungs, blood, and peritoneum of wild-type and EndotheliumTLR4 mice and observed that the neutrophil-selective chemokine, MIP-2, did not increase in lungs of all 3 strains of mice (Supplemental Figure 6). There was an increase in MIP-2 levels in the peritoneum of all 3 strains of mice, and the largest increase was in wild-type mice (Supplemental Figure 6).

The luminescence of these bacteria allowed us to track these infections over time in the same mice. The luminescence correlated with the bacterial load in these organs. In untreated wild-type mice, luminescence was never observed, and the cultures of both the peritoneal lavage and lungs were negative. After E. coli treatment for 4 and 24 hours, wild-type mice had luminescence in the peritoneum and the lungs, and the cultures from peritoneal lavage and the lungs verified increased bacterial load in both (Supplemental Figure 7).

To test for an altered immune response, we also tracked neutrophils in the E. coli infection model. A very robust increase in neutrophil sequestration into the lungs was observed in wild-type mice that slowly decreased with time (Figure 7A). Simultaneously, a subtle 2 to 3-fold increase in neutrophil number in peritoneum was observed at 4 hours in wild-type mice (Figure 7B). Circulating neutrophil counts were significantly decreased at 12 and 24 hours but returned to normal levels at 48 hours in both groups of mice (Supplemental Figure 10).

Although the EndotheliumTLR4 mice also had an increase in neutrophil number in the lungs (Figure 7A), it was not as profound, and peritoneal neutrophil counts were dramatically enhanced at both 4 and 24 hours above wild-type values. To verify that neutrophils from EndotheliumTLR4 mice could respond to chemoattractants despite having bacteremia, MIP-2 was placed into the cremaster muscle and neutrophil recruitment was examined. Much like in the endotoxemia model, neutrophils rolled, adhered, and emigrated in response to MIP-2, despite the presence of a systemic infection (Supplemental Figure 8). The Tlr4−/− mice had small numbers of neutrophils in the lungs and peritoneum over the first 72 hours (data not shown). Clearly, complete absence of TLR4 impairs the detection mechanism present in EndotheliumTLR4 mice.
Endothelium
to "sentinel" cells could be a very efficient sentinel cell, at least in the

...macrophages are implicated in many stages of innate immunity and, specifically, as it pertains to TLR4 and Gram-negative sepsis remains unappreciated.

Many groups have demonstrated potent endothelial responses to LPS in vitro (24–29), as a result of not just the expression of TLR4, but also membrane CD14 (27), MD2 (30), and Myd88 (31). In fact, primary endothelial monolayers in vitro have all of the necessary machinery to increase expression of adhesion molecules (32) and chemokines (33) to allow neutrophils to roll, adhere, and emigrate across the endothelium. Whether this is important in vivo, with tissue macrophages and mast cells also present, remains unclear. Herein, we demonstrated that the endothelium is sufficient on its own to respond to the bacterial product LPS to initiate the effector phase of innate immunity in peripheral tissues, like muscle. Moreover, TLR4 on neutrophils and macrophages was not essential for their recruitment by endothelium. Clearly, the endothelium must release chemokines abluminally to induce neutrophils to emigrate out of the vasculature, a phenomenon also seen on activated endothelial mononuclears in vitro (33). Simply getting neutrophils to the abluminal side of vessels may not translate to functional eradication of bacteria. However, our data would suggest that the neutrophil recruitment was productive, since Endothelium
to the lungs just to cause pulmonary dysfunction and injury. Indeed, even in the Endothelium
with the pathogen. However,
large net-like structures or NETs composed of DNA loaded with proteases, which greatly increase bacterial trapping and killing capacity but also increase injury to underlying endothelium (38). Why the lung is the target organ is unclear, but perhaps the capillaries have the right geometry to allow neutrophils to sequester and optimally trap bacteria as they flow through these conduits. The initial mobilization of neutrophils into the lungs was dependent upon endothelial TLR4. However, with time the Endothelium

TLR4

mice mobilized neutrophils back into the circulation, whereas wild-type mice did not. Clearly, at some point, the retention mechanism may apply to numerous, if not all forms of sepsis (8).

and bacterial clearance was not affected. The key difference is similar, rapid growth and dissemination of bacteria to other organs, neutrophils were unable to detect bacterial ligands and enter the alveoli, where the host is in direct contact with the external environment. Indeed, without bone marrow–derived TLR4, neutrophils were unable to detect bacterial ligands and enter the alveoli and perhaps other sites such as the intestinal tract, skin, the eyes, mouth, and reproductive organs. Our data also suggested little or no role for TLR4 on pulmonary epithelium in the presence of Gram-negative ligands.

Using live animal imaging, we observed that in Tlr4

–/–

wild-type, and Endothelium

TLR4

mice, the initial injection of E. coli resulted in a similar, rapid growth and dissemination of bacteria to other organs, including the lung parenchyma, suggesting that the initial phase of bacterial kinetics was quite similar among the 3 strains. However, while bacteria in the Tlr4

–/–

mice continued to grow and disseminate with limited neutrophil recruitment, the Endothelium

TLR4

mice were able to resolve the infection, with a robust neutrophil response in all afflicted organs studied. In fact the Endothelium

TLR4

mice were much more efficient than their wild-type counterparts, eliminating the bacteria from the original site in less than half the time, with no mortality. This suggests that rather than being beneficial, the net contribution of nonendothelial sources of TLR4 in systemic sepsis were detrimental, delaying bacterial clearance and killing half the mice. Although we only tested E. coli in this study, we have evidence that both TLR2 ligands and gram-positive bacteria also induce neutrophil sequestration into lungs, suggesting this mechanism may apply to numerous, if not all forms of sepsis (8).

In a recent report, Ye et al. (39) showed that selective inhibition of NF-κB in endothelium also revealed an important role for this cell, but in this case, the mortality and morbidity were lowered and bacterial clearance was not affected. The key difference is that whereas we examined the role of a single TLR, namely TLR4, and showed it was sufficient to help clear bacteria, Ye et al. (39) inhibited NF-κB downstream of many inflammatory receptors on endothelium, which might have a much greater immunosuppressive effect and as such prevent bacterial clearance. Indeed, our data suggested that fully responsive endothelium is of great benefit in clearing unwanted pathogens without harming the host.

However, it is worth mentioning a few caveats with respect to the Endothelium

TLR4

mice. Although the endothelium from these mice had similar levels of TLR4 as endothelium from wild-type mice in vitro and in vivo and responded similarly in vivo, as assessed by P selectin expression, we cannot exclude the possibility that the lack of TLR4 on nonendothelial cell types may prevent LPS detoxification and increased LPS levels for endothelium stimulation. Also, although similar downregulation of TLR4 occurred on endothelium in Endothelium

TLR4

and wild-type mice, we cannot exclude the possibility that one or more signaling pathways downstream of TLR4 might have altered responses. Finally, the complete lack of response to intratracheal LPS in the Endothelium

TLR4

mice does not necessarily mean there is no role for endothelial TLR4. For example, increased permeability to LPS across epithelium may be required to allow activation of endothelial TLR4 and neutrophil recruitment. This intriguing possibility cannot be discounted. These issues will require further investigation in the future, perhaps in mice lacking TLR4 just on endothelium.

Methods

Materials. All reagents were from Sigma-Aldrich unless otherwise stated. E. coli (011:B4) LPS was from Calbiochem EMD Biosciences. LPS was used at a concentration of 1 mg/ml and diluted in pyrogen-free saline. The total dose of LPS administered per aerosolization was 50 μg. For i.p. or i.v. injection, 1 mg/kg of LPS was administered.

Mice. C57BL/6 mice were purchased from The Jackson Laboratory. Tlr4

–/–

mice were provided by Douglas T. Golenbock (University of Massachusetts Medical School, Worcester, Massachusetts, USA). Mice (20–35 g, 4–6 weeks old) were maintained in a pathogen-free environment. The mice had access to food and water ad libitum. All procedures performed were approved by the University of Calgary Animal Care Committee and were in accordance with the Canadian Guidelines for Animal Research.

Methodology. Standard methodology for Western blots, circulating neutrophil/leukocyte counts, quantitation of cytokines, and determination of tissue myeloperoxidase activity as a measure of neutrophil influx are previously published (8, 13, 17) and details are found in Supplemental Methods.

Generation of transgenic mice expressing endothelial TLR4. TLR4 was amplified by RT-PCR from total RNA obtained from mouse blood cells, using 2 sets of primers, as outlined in Supplemental Methods. TLR4 was cloned into PCR2.1TOPO, digested with BamHI/ScaI, and subcloned in pDrive-IRESEGFP yielding, plasmid pDrive-TRL4-IRESEGFP. Tie-2 promoter and Tie-2 full enhancer, both indispensable to have specific endothelial expression of TLR4, were taken from pT2HLacZpA1L7 vector (provided by Thomas N. Sato, University of Texas, Southwestern Medical Center, Dallas, Texas, USA). The transgene, a 15.8-Kb fragment containing Tie-2 promoter–TRL4-IRESEGFP–Tie-2 enhancer (Supplemental Figure 1), was released from the plasmid and microinjected into fertilized eggs derived from the matings of inbred C57BL/6 mice (at the University of Alabama at Birmingham Transgenic Mouse Facility). Positive female founder lines were mated with Tlr4

–/–

males to obtain Tie-2–TRL4 transgenic mice. The mice were bred and screened by PCR to confirm double heterozygosity. Three lines of mice were then set up as breeding pairs. All the offspring were screened for Tlr4

–/–/EGFP/EGFP, and line 3 revealed optimal endothelial TLR4 expression.

Bone marrow transplantation. Briefly, bone marrow chimeras were generated following a standard protocol previously described by our laboratory (40, 41). Bone marrow was isolated from mice euthanized by spinal cord displacement.Recipient mice were irradiated with 2 doses of 5 Gy (Gammacell 1000; Nordion International Inc.). An interval of 3 hours was allowed to pass between the first and second irradiations. Next, 8 × 10^6 donor bone marrow cells were injected into the tail vein of recipient irradiated mice. The mice were kept in microisolator cages for 8 weeks to allow.
full humoral reconstitution. This protocol previously confirmed that 99% of leukocytes from Thy1.1 into Thy1.2 congenic recipient mice were from donor bone marrow (40).

Expression of TLR4. Expression of TLR4 on neutrophils, monocytes, and endothelium from wild-type, TLR4−/−, and EndotheliumTLR4 mice was determined using a BD FACScan Flow Cytometer (BD Biosciences) and CellQuest Pro software (Becton Dickinson — Immunocytometry Systems).

Intratracheal aerosolization and BAL. Mice were anesthetized with isoflurane (MTC Pharmaceuticals) and suspended from their upper front teeth in a vertical, upright position. Oral intratracheal intubation was achieved under direct visualization, using an operating microscope and a Small Animal Laryngoscope (PennCentury). Solutions were aerosolized directly into the distal trachea using a MicroSprayer (model IA-1C; PennCentury) into the tissue of otherwise healthy mice (42).

This dose of MIP-2 induces optimal neutrophil emigration for 4 hours with LPS (0.5 μg/kg; Rogar/STB). The jugular vein was cannulated in a vertical, upright position. Oral intratracheal intubation was achieved under direct visualization, using an operating microscope and a Small Animal Laryngoscope (PennCentury). Solutions were aerosolized directly into the distal trachea using a MicroSprayer (model IA-1C; PennCentury) into the tissue of otherwise healthy mice (42).

Intravital microscopy. Mice were anesthetized by i.p. injection of a mixture of xylazine hydrochloride (10 mg/kg; MTC Pharmaceuticals) and ketamine hydrochloride (200 mg/kg; Roget/STB). The jugular vein was cannulated and used to administer additional anesthetic, fluorescent dyes, and various drugs. Animals were then prepared for the viewing of the skeletal muscle microcirculation, as previously reported by our laboratory (13). Wild-type and EndotheliumTLR4 transgenic mice were treated either locally for 4 hours with LPS (0.5 μg/kg) or systemically with LPS (1 mg/kg, i.v.) for 4 or 24 hours. At this time the cremaster was exteriorized and visualized by intravital microscopy. In additional systemic LPS experiments at 24 hours, the cremaster muscle was exteriorized and superinfused with MIP-2 (Cxcl2; R&D Systems) at 5 nM in superfusion buffer at 37°C, mimicking a second-ary abscess site in the periphery that might require neutrophil recruitment. The neutrophil recruitment was monitored at different time points for up to 90 minutes. This dose of MIP-2 induces optimal neutrophil emigration into the tissue of otherwise healthy mice (42).

Quantitation of endothelial activation. To determine the degree of endothelial activation in vivo, P selectin, which is known to contribute to leukocyte recruitment in endotoxemia, was measured. We used a modified dual-radio-labeled Ab technique that permits quantification of in vivo measurements of P selectin as previously described (43, 44).

P selectin expression was calculated per gram of tissue, by subtracting the accumulated activity of the nonbinding Ab (125I-labeled Ab) from the accumulated activity of the binding Ab (131I-labeled Ab). Data for P selectin were represented as the percentage of the injected dose of Ab per gram of tissue. It has been previously demonstrated that this approach provides reliable quantitative values of adhesion molecule expression and that radiolabeled binding Ab can be displaced specifically with sufficient amounts of unlabeled Ab. The technique is sufficiently sensitive that very small, basal levels of P selectin can be detected in wild-type mice relative to P selectin–deficient mice, in which values are true 0 (43, 44).

Induction of bacterial infection and monitoring of clearance by bioimaging. Briefly, E. coli (Caliper Life Sciences) were grown to mid-log, washed, and then suspended in saline. Mice were anesthetized and had their hair removed by chemical depilation, and approximately 1 × 10^7 CFUs of the bacterial preparation was injected i.p. in a volume of 1 ml. The rate of spread and clearance of the bacteria was then monitored using an IVIS Lumina (Caliper Life Sciences), with imaging conducted 30 minutes, 4 hours, 12 hours, and 24 hours after infection and every 24 hours thereafter until the infection was cleared. Clearance was defined as 3 consecutive readings with no detectable luminescence.

Statistics. Data were analyzed using GraphPad Prism (version 4, GraphPad Software Inc.). Reported values are expressed as mean ± SEM unless otherwise described. We assessed the statistical significance of the difference between 2 sets of data using an unpaired, 2-tailed t test. Where the difference between more than 2 sets of data was analyzed, we used a 1-way analysis of variance, followed by Bonferroni multiple-comparisons test. All comparisons were 2-tailed, and P values of less than 0.05 were considered to be significant.

Acknowledgments

We would like to acknowledge the Canadian Institute of Health Research (CIHR) operating and group grants for support of D. Knight, D. Brown, K. McRae and T. MacRae, who provided technical support, and the University of Alabama at Birmingham Transgenic Mouse Facility, which is supported by NIH grants P30 CA13148 and P30 AR48311, for the pronuclear injections used in these studies. P. Kubes is an Alberta Heritage Foundation for Medical Research Scientist, Canada Research Chair, and the Snyder Chair in Critical Care Medicine. G. Andonegui is a Canadian Association of Gastroenterology Postdoctoral fellow, and E.M. Long is an Alberta Heritage Foundation for Medical Research student.

Received for publication June 5, 2008, and accepted in revised form May 6, 2009.

Address correspondence to: Paul Kubes, Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada. Phone: (403) 220-8558, Fax: (403) 270-7516; E-mail: pkubes@ucalgary.ca.


