Supplemental Figure 1. Generation of Bb914. (A) Cloning strategy for the construction of pMC1916, the suicide vector used to insert the gfp reporter (P_{hof}-gfp) and gentamycin-resistance cassette (P_{hof}-aacC1) into the hbb20-hbb21 intergenic region of cp26 in B. burgdorferi strain 297. (B) Cartoon depicting the double cross-over event between pMC1916 and cp26 in Bb914; gene designations for cp26 are based on the strain B31 genomic sequence (28).
Supplemental Figure 2. Bb914 upregulates expression of OspC in vitro and in vivo. Polypeptide profiles of Bb914 and its parent, CE162, before and after temperature-shift in vitro and following cultivation within dialysis membrane chambers (DMCs). Whole cell lysates were separated on 12.5% SDS-polyacrylamide gels and stained with silver. All samples were separated on the same gel; the scanned gel image was cropped to remove an empty lane.
Supplemental Figure 3. Bb914 burdens in I. scapularis nymphs following acquisition from syringe-inoculated C3H/HeJ or BALB/c SCID mice. Spirochetes were acquired by larvae fed on either C3H/HeJ or BALB/c SCID mice that were syringe-inoculated with 1×10^4 Bb914. Burdens in the resulting nymphs were analyzed before and after feeding on naïve C3H/HeJ mice. Bars represent the means ± SDs from three independent experiments.
Supplemental Figure 4. Induction of OspC expression in Bb914 during the nymphaal blood meal.
Double-labeling indirect immunofluorescence analysis of Bb914 in nymphaal midguts before (Flat Nymph) or 72 h post-placement (Fed Nymph) on naïve C3H/HeJ mice. Immunostaining was performed with monospecific rat and rabbit antisera directed against OspC (red) and FlaB (green), respectively. Scale bars: 25 μm.
Supplemental Figure 5. Spirochetal networks form in fed tick midguts regardless of the mounting medium used.
(A-C) Representative 5 μm composite confocal micrographs of freshly isolated Bb914-infected tick midguts at 72h post-attachment on naïve C3H/HeJ mice mounted in (A) Vectashield (identical to Figure 4G with red channel removed), (B) immersion oil, or (C) CMRL. Representative epifluorescence micrographs of freshly isolated Bb914-infected midguts at 72h post-attachment on naïve C3H/HeJ mice mounted in (D) immersion oil, (E) CMRL, and (F) BSK-II. Scale bars (A-F): 25 μm.
Supplemental Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'- 3')</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBB20ups 5'-'BssH II</td>
<td>TCGCGGCTTTGCTTATGCGATTTAAAATCAAAATT</td>
<td>Clone upstream cp26 insertion fragment</td>
<td>This work</td>
</tr>
<tr>
<td>BBB20 3'-'Aat II</td>
<td>AATTTGTTTAGACGTCTATTAAAATGCTTTAATCTTTAT</td>
<td>Clone upstream cp26 insertion fragment</td>
<td>This work</td>
</tr>
<tr>
<td>BBB21 5'-'Aat II</td>
<td>GCATTAAAATAGACGTCTAAACAAAAATTTGCGATCTAG</td>
<td>Clone downstream cp26 insertion fragment</td>
<td>This work</td>
</tr>
<tr>
<td>BBB22downs 5'-'BssH II</td>
<td>AAGCGCGCTATAGCTTTGGCGAATTGTGCTCAGTC</td>
<td>Clone downstream cp26 insertion fragment</td>
<td>This work</td>
</tr>
<tr>
<td>pBS-'AatII T7</td>
<td>CTGACGTGTAATACGACTCTAGGACG</td>
<td>Subclone pBluescript polylinker</td>
<td>This work</td>
</tr>
<tr>
<td>pBS-'AatII M13rev</td>
<td>TGAACGTACAGAAACGCTATGACCATGATTACG</td>
<td>Subclone pBluescript polylinker</td>
<td>This work</td>
</tr>
<tr>
<td>flgB-aacC1 5'-'Sac I</td>
<td>CGAGCTCCTATACCAGCAGCTTGAGGA</td>
<td>Subclone gentamycin-resistance marker</td>
<td>This work</td>
</tr>
<tr>
<td>flgB-aacC1 3'-'Sac I</td>
<td>GCAGCTCCGATCTCGGCTTGAGGA</td>
<td>Subclone gentamycin-resistance marker</td>
<td>This work</td>
</tr>
<tr>
<td>BBB20 junc F</td>
<td>AAGTCAAGAAAGATTTCTTGCA</td>
<td>Used to confirm orientation of gfp and gentamycin-resistance cassettes relative to the insertion site</td>
<td>This work</td>
</tr>
<tr>
<td>BBB21 junc R</td>
<td>CTCACATAAAACCAAGAAGACTAC</td>
<td>Used to confirm orientation of gfp and gentamycin-resistance cassettes relative to the insertion site</td>
<td>This work</td>
</tr>
<tr>
<td>GFP601-R</td>
<td>GGTAATGTTGTCTGAGCTAAAAGTGGAGCA</td>
<td>Used to confirm orientation of gfp and gentamycin-resistance cassettes relative to the insertion site</td>
<td>(88)</td>
</tr>
<tr>
<td>flaB-rev</td>
<td>CTTTTCTCCTGAGCCGAGCTG</td>
<td>qPCR</td>
<td>(67)</td>
</tr>
<tr>
<td>flaB-for</td>
<td>GCTCCTCTTCTGAGAACCACCC</td>
<td>qPCR</td>
<td>(67)</td>
</tr>
<tr>
<td>flaB-Taqman Probe</td>
<td>FAM-CTTGAAACGTCAGCAGCC TGAAGCA-BHQ1</td>
<td>qPCR</td>
<td>(67)</td>
</tr>
</tbody>
</table>
Supplemental Movies

Supplemental Movie 1. *Borrelia* within 72 h fed midguts are non-motile. An intact midgut, freshly isolated from a Bb914-infected nymph 72 h post-placement, was mounted in Vectashield and imaged by time-lapse confocal microscopy for 1.5 hours (see the lower right hand corner for time stamp). The movie is arranged into segments depicting spirochetal networks within the epithelium and individual organisms in the luminal space. Identical results were obtained from midguts mounted in immersion oil, CMRL or BSK-II; a minimum of 7 midguts were imaged using each mounting medium. Movies presented here and elsewhere within the Supplement were generated using ImageJ (95) and QuickTime Pro software.

Supplemental Movie 2. *Borrelia* within unfed midguts are non-motile. An intact midgut, freshly isolated from a Bb914-infected flat nymph, was mounted in Vectashield and imaged by time-lapse confocal microscopy for 1.5 hours (see lower right hand corner for time stamp). Identical results were obtained from 7 flat nymphs.

Supplemental Movie 3. *Borrelia* within unfed nymphal midguts respond poorly to culture medium. Time-lapse epifluorescence microscopy was used to image Bb914 within intact and nicked, unfed midguts immersed in CMRL. The movie is arranged into three segments: (i) intact midgut; (ii) nicked midgut; and (iii) a spirochete released from a nicked midgut. Each segment shows the last 30 s of a 30 min viewing period (see the lower left hand corner for the time stamp). In the first two segments, a white line is used to delineate the periphery of the imaged diverticulum; in the second segment, an arrow indicates the location of the nick site. Identical results were obtained with midguts immersed in BSK-II; a minimum of 10 midguts were imaged in each medium.
Supplemental Movie 4. *Borrelia* within fed nymphal midguts rapidly become motile upon exposure to culture medium. Time-lapse epifluorescence microscopy was used to image Bb914 within intact and nicked 72 h fed midguts immersed in CMRL. The movie is arranged into three segments: (i) intact midgut; (ii) nicked midgut, near the nick site; and (iii) nicked midgut, ~5 mm away from the nick site. Each segment shows the first 30 s of a 30 min viewing period (see the lower left hand corner for the time stamp). In the first two segments, white lines are used to delineate the periphery of the imaged diverticula; in the second segment, arrows indicate the nick sites. Identical results were obtained with midguts immersed in BSK-II; a minimum of 10 midguts were imaged in each medium.

Supplemental Movie 5. *Borrelia* within a gelatin matrix exhibit three distinct motility patterns: non-motile, motile/non-translational, and motile/translational.

Supplemental Movie 6. *Borrelia* in the hemolymph are vigorously motile. Hemolymph collected from Bb914-infected nymphs at 72 h post-placement on naïve C3H/HeJ mice was imaged by time-lapse confocal microscopy for 30 min (see lower right hand corner for time stamp). Spirochete movement was noted throughout the entire viewing period and was consistently observed in samples collected from 8 nymphs.