Supplemental Data

PINCH1 controls Akt1 for regulating radiation sensitivity by inhibiting PP1α

Iris Eke, Ulrike Koch, Stephanie Hehlgans, Veit Sandfort, Fabio Stanchi, Daniel Zips, Michael Baumann, Anna Shevchenko, Christian Pilarsky, Michael Haase, Gustavo B. Baretton, Véronique Calleja, Banafshé Larijani, Reinhard Fässler, and Nils Cordes

Supplemental Methods

Cell culture, radiation exposure and 2D and 3D colony formation assay. Cells were cultured in Dulbecco's Modified Eagle Medium (PAA; plus glutamax-I) supplemented with 10% fetal calf serum (Biochrom) and 1% non-essential amino acids (PAA) (1). Single doses of 200 kV X-rays (Yxlon Y.TU 320; Yxlon; 0.5 mm copper filter; ~1.3 Gy/min, 20 mA) were applied and measured using a Duplex dosimeter (PTW) (1). To evaluate two(2D)- or three(3D)-dimensional clonogenic cell survival, we plated cells on or in laminin-rich extracellular matrix (lrECM (Matrigel™); BD) as published (1).

Antibodies. anti-GSK3β, anti-PINCH1, anti-CD31 (BD), anti-Akt1, anti-pAkt1 S473, anti-pAkt1 T308, anti-FoxO1, anti-pFoxO1 S256 (detects pFoxO1 S256 and pFoxO4 S197), anti-FoxO4, anti-pGSK3β S9, anti-pGSK3α/β S21/9, anti-ILK (Cell Signaling), anti-β-actin (Sigma), anti-GFP, anti-PPP1A (Abcam), anti-Ki-67 (Dako), rabbit polyclonal anti-Pimonidazole (kindly provided by J. Raleigh, University of North Carolina, USA); HRP-conjugated donkey anti-rabbit and sheep anti-mouse secondary antibodies (Amersham), goat anti-rat TRITC and goat anti-rabbit FITC (Jackson ImmunoResearch), Alexa Fluor® 594 goat anti-rabbit IgG (Invitrogen).

Akt1 kinase assay. Akt1 kinase assay was performed according to the manufacturer's protocol (Cell Signaling) (1).
Akt1 or PINCH1 knockdown. Akt1 and PINCH1 siRNA target sequences (Applied Biosystems):

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Sequence (Sense)</th>
<th>siRNA ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAkt1 siRNA #1</td>
<td>5'-GGUAUUUCGAUGAGGAGGUtt-3'</td>
<td>#65681</td>
</tr>
<tr>
<td>mAkt1 siRNA #2</td>
<td>5'-GGCCACUUUCGGCAAGGUGtt-3'</td>
<td>#162426</td>
</tr>
<tr>
<td>hAkt1 siRNA #1</td>
<td>5'-GGCUCUCCCUCUCAACACUUCtt-3'</td>
<td>#633</td>
</tr>
<tr>
<td>hAkt1 siRNA #2</td>
<td>5'-GGCCACUUUCGGCAAGGUGtt-3'</td>
<td>#42811</td>
</tr>
<tr>
<td>mPINCH1 siRNA #1</td>
<td>5'-CGAACAGUGCUCGUAGUGUt-3'</td>
<td>#172029</td>
</tr>
<tr>
<td>mPINCH1 siRNA #2</td>
<td>5'-GGCCUCUCCCUCUCAACACUUCtt-3'</td>
<td>#172030</td>
</tr>
<tr>
<td>hPINCH1 siRNA #1</td>
<td>5'-GGACCUAUAUGAAUUGGUt-3'</td>
<td>#15687</td>
</tr>
<tr>
<td>hPINCH1 siRNA #2</td>
<td>5'-GGCAUUAUCUCAAGCAGUtt-3'</td>
<td>#289501</td>
</tr>
</tbody>
</table>

Non-specific control siRNA: 5'-GCAGCUAUAUGAAUUGGUtt-3' (MWG). siRNA delivery was accomplished as published (2). Forty-eight hours after transfection cells were either irradiated (colony formation assay) or lysed for Western blotting.

PINCH1 expression constructs and site-directed mutagenesis

Specific primers used:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINCH1-C1-fw</td>
<td>5'-gg-GGTACC-CTGGGCGTGCCGCGCGGAA-3'</td>
</tr>
<tr>
<td>PINCH1-C1-rev</td>
<td>5'-cg-GGATCC-TTATTTCTTTCTAAAGGTCTCC-3'</td>
</tr>
<tr>
<td>PINCH1-C1-LIM5</td>
<td>5'-cg-GGATCC-T-CAAAACATCACCAACAGCTGATTA-3'</td>
</tr>
<tr>
<td>PINCH1-KFAEA-fw</td>
<td>5'-CACACTCAAGAATAAATTGCGGAAGCTGACATGAAAGCGACTG-3'</td>
</tr>
<tr>
<td>PINCH1-KFAEA-rev</td>
<td>5'-CAGACTCGTTTCTAGTCTCAGAAGCGCCATCTTGTGAG-3'</td>
</tr>
<tr>
<td>PINCH1-AFAEA-fw</td>
<td>5'-CTCAGTCTGCTTTGCTTCACGAGGAGCTGACATGAAAGCGACTG-3'</td>
</tr>
<tr>
<td>PINCH1-AFAEA-rev</td>
<td>5'-CAGACTCGTTTCTAGTCTCAGAAGCGCCATCTTGTGAG-3'</td>
</tr>
</tbody>
</table>

Transfection of Akt1 and PINCH1 plasmids. Cells were transiently transfected with different RFP-Akt1 vectors (wt, S473D/T308D, S473A, S473A/T308A, ΔPH) (3) or EGFP-PINCH1 expression constructs as published (4).

Mass spectrometry. IPI database was used as described (5).

Sequence homology search. Sequence homology search for the KFVEF motif in the PINCH1 protein sequence was performed (Homo sapiens Acc.No. NP_004978, Pan troglodytes Acc.No. XP_001136475, Xenopus laevis Acc.No. ABS17667, Danio rerio Acc.No. NP_001019560, Mus musculus Acc.No. NP_080424, Equus caballus Acc.No. XP_001501201, Rattus norvegicus Acc.No.

Immunoprecipitation. Immunoprecipitation was performed as described (1).

Immunofluorescence staining. Immunofluorescence staining was performed and fluorescence images were acquired as described (4).

Identification of allografts in vivo. PCR genotyping and PINCH1 protein expression of tumors was performed as described (6).

Evaluation of local tumor control. Actuarial estimates for time to local tumor recurrence were obtained using the Kaplan-Meier method and compared using Log rank test (GraphPad Prism software 4.03). For analysis of local tumor control data, censored animals were taken into account according to the method described by Walker and Suit (7). Tumor control data were fitted to the Poisson dose-response model. Tumor control probability (TCP) for a radiation dose 'D' is

\[
TCP = \exp \left[-N \cdot \exp \left(\ln n - \frac{D}{D_0} \right) \right]
\]

where 'N' is the number of tumor stem cells at the start of treatment, 'n' is the “extrapolation” number in the two component cell survival model, and 'D_0' is a parameter describing the sensitivity of tumor stem cells to irradiation. The tumor control dose 50% is derived from

\[
TCD_{50} = D_0 (\ln N n + 0.367).
\]

Model parameters were estimated by maximum likelihood analysis. The non-parametric bootstrap method was used to determine 95% confidence intervals for TCD_{50}. All calculations were performed using the STATA/SE 8.0 software (STATA Corporation) (8).
Histology. Methods to assess vasculature, hypoxia and perfusion in transplanted tumors have been described previously (7, 9). The hypoxic marker Pimonidazole (Natural Pharmacia International) was injected i.p. (0.1 mg/g body weight, dissolved at 10 mg/ml in 0.9% NaCl) 1 hour before tumor excision and the perfusion marker Hoechst 33342 (0.05 ml/mouse, dissolved at 6 mg/ml in PBS; Sigma) was injected into the tail vein 1 minute before tumor excision (Figure S4A). After excision, tumors were cut into halves. One half was shock frozen in liquid nitrogen and stored at -80°C and the other half was fixed in formalin and embedded in paraffin. Frozen central whole tumor cross-sections were air dried at room temperature for 1 hour, then fixed in ice-cold acetone for 10 minutes, air dried, and rehydrated in PBS. One section per tumor was simultaneously incubated overnight with anti-mouse CD31 monoclonal antibody (blood vessels) and rabbit polyclonal anti-Pimonidazole antibody (hypoxia). Goat anti-rat TRITC and goat anti-rabbit FITC were used as secondary antibodies (controls were secondary antibodies only). For immunofluorescence, whole tumor cross-sections were scanned sequentially for Hoechst 33342, TRITC and FITC fluorescence at 100-fold magnification using a Zeiss Axioplan 2 fluorescence microscope (Carl Zeiss) equipped with a scanning stage (Maerzhaeuser) and a digital camera (AxioCam MRm; Carl Zeiss), resulting in congruent digital images consisting of 110 - 240 visual fields per image. The scanning process and the subsequent image analysis were performed using the KS300 image analysis software (Kontron Elektronik). After scanning of the fluorescence signals, the sections were stained with hematoxyline and eosine (H&E). Binary images from the blinded samples were created by one investigator (U.K.) defining segmentation thresholds interactively considering signal-background intensity. A typical staining pattern for blood vessels (CD31) and for hypoxia (Pimonidazole) was found in all tumor sections. The procedure of threshold setting is arbitrary but reproducible (7). After scanning, the total tumor area and necrotic area were delineated with the computer mouse. The relative vascular area and Pimonidazole hypoxic fraction were determined as the CD31 and Pimonidazole positive area per viable tumor area, respectively. The fraction of perfused vessels was calculated from the ratio of CD31 staining overlapping with the Hoechst 33342 perfusion signal in 6 PINCH1fl/fl and 8 PINCH1−/− tumors, respectively. Moreover, we performed immunohistochemistry (Animal Research Peroxidase Kit; Dako) by staining paraffin embedded tumors (6 PINCH1fl/fl and 6 PINCH1−/− tumors) with anti-Ki-67 antibodies. The index for Ki-67 staining was determined in 10 randomly selected high-power fields (400-fold magnification) per
tumor. For evaluation of the histological parameters, mean values, standard deviation were calculated and compared using the unpaired, 2-sided t-test (GraphPad Prism software 4.03).
Supplemental References
(Methodology without Microarray analysis)

Supplemental References

(Microarray analysis)

Adrenal

Brain

Breast
Colon

Esophagus

Kidney

Lung

Ovary

Pancreas

Prostate

Thyroid

Supplementary Figure Legends

Figure S1. PINCH1 determines cellular radio- and chemosensitivity in vitro. (A and B) Clonogenic cell survival of PINCH1^{fl/fl}, PINCH1^{-/-}, EGFP-PINCH1 or EGFP MEF grown on Fibronectin (FN) after irradiation (0 – 6 Gy) or after 1-h Cisplatin treatment (0.1, 1 and 10 µM). Results show mean ± s.d. (n = 3; * P < 0.05, ** P < 0.01; t-test).

Figure S2. Tumor allograft identification. (A and B) Various excised tumors (#, number of animal) were subjected to PCR genotyping and protein expression (Western blotting) for PINCH1 as described previously in comparison to normal mouse tissues (6). β-actin served as loading control. bp, base pairs.

Figure S3. Tumor growth delay and tumor control probability of PINCH1^{fl/fl} and PINCH1^{-/-} allografts. (A) Accessory tumor volume data sets plotted against time. Comprehensive data sets of tumors irradiated with single doses of 26, 32, 38, 44, 50, 56 or 62 Gy (mean ± s.e.m. of 10 - 18 mice). (B) Direct comparison of growth characteristics of non-irradiated and 32-Gy irradiated tumors plotted in a semi-logarithmic scale. Median values for the time to grow to 2 and 5 times the starting volume (large symbols) of PINCH1^{fl/fl} and PINCH1^{-/-} tumors were compared using the Mann Whitney U test (* P < 0.05) (compare Supplemental Table S2). (C) Tumor control probability as a function of radiation dose in PINCH1^{fl/fl} and PINCH1^{-/-} tumors growing in immunocompromised mice. Tumor control rates (symbols) were obtained from 11 to 18 animals per dose group. Lines represent tumor control probability for PINCH1^{-/-} tumors calculated using maximum likelihood analysis. Error bars represent 95% confidence interval of the tumor control dose 50% (TCD_{50}). The non-parametric bootstrap method was used to determine 95% confidence intervals for TCD_{50}.

Figure S4. Assessment of Ki-67-positivity, vasculature, perfusion and hypoxia in PINCH1^{fl/fl} and PINCH1^{-/-} allografts. (A) Subcutaneous allograft PINCH1^{fl/fl} and PINCH1^{-/-} tumors were grown in immunocompromised mice. After tumor formation (diameter 6 - 8 mm), one experimental arm consisted of Pimonidazole and Hoechst 33342 injection at indicated time points prior to tumor excision. (B) Haematoxylin and eosin (H&E; panels a, b) or Ki-67 (panels c, d) stained sections of
PINCH1

PINCH1 and **PINCH1** tumors, respectively, at a tumor diameter of 6 - 8 mm (bars, 50 µm). (C) Assessment of Ki-67 positive cells among total cells was performed using 10 randomly selected high-power fields (400-fold magnification) per tumor and plotted in percentage scale. Results show mean ± s.d. Statistics compared **PINCH1** versus **PINCH1** tumors using the unpaired, 2-sided t-test (* $P < 0.05$). (D) Representative images of Pimonidazole/Hoechst 33342 co-labeled tumors are shown.

According to the experimental design described in A, fixed central whole tumor cross-sections were stained against CD31 and Pimonidazole prior to scanning of fluorescence-labeled cross-sections for Hoechst 33342, TRITC and the FITC fluorescence at 100-fold magnification using a Zeiss Axioplan 2 fluorescence microscope. (E) After scanning, image analysis was performed using the KS300 image analysis software. Results show mean ± s.d. ($n = 12$ **PINCH1**; $n = 9$ **PINCH1**). Statistics comparing **PINCH1** versus **PINCH1** tumors were calculated with an unpaired, 2-sided t-test.

Figure S5. **PINCH1** regulates Akt1 and FoxO1 phosphorylation. (A) Densitometry was performed from data sets presented in Figure 2A and normalized to total expression of corresponding proteins (mean ± s.d.; $n = 3$; * $P < 0.05$, ** $P < 0.01$; t-test). (B) Western blot analysis of total and S9 phosphorylated GSK3β. β-actin served as loading control.

Figure S6. **PINCH1** determines cellular sensitivity to ionizing radiation and chemotherapeutics in human colorectal carcinoma cell lines. Cells (DLD1, HCT15, HCT116 as indicated) were exposed to 0 – 6 Gy X-rays (A) or treated for 1 h with increasing concentrations of Cisplatin (B) or 5-FU (C) under **PINCH1** depletion (P1 siRNA #1, #2; co, non-specific siRNA control). Data show mean ± s.d. ($n = 3$; * $P < 0.05$, ** $P < 0.01$; t-test).

Figure S7. (A) Western blot analysis of indicated proteins from DLD1 and HCT15 **PINCH1** knockdown cultures (P1 siRNA #1, #2; co, non-specific siRNA control). (B) Densitometry was performed from data sets presented in Figure 3E and Figure S7A and normalized to total expression of corresponding proteins (mean ± s.d.; $n = 3$; ** $P < 0.01$; t-test). (C) Western blot analysis of total and S9 phosphorylated GSK3β DLD1 **PINCH1** knockdown cultures (P1 siRNA #1, #2; co, non-specific siRNA control).
Figure S8. Focal adhesion co-localization of PINCH1, Akt1 and PP1α. EGFP-PINCH1 and EGFP cells were stained for Akt1 and PP1α (nuclei stained with DAPI) and confocal images were obtained. Arrows indicate Akt1 or PP1α in focal adhesions.

Figure S9. Titration curves for measurement of protein phosphatase activity. (A) Representative curves of protein phosphatase activities of different amounts of cell lysates (0 - 12.5 µg) from PINCH1^{fl/fl}, PINCH1^{−/−}, EGFP-PINCH1 and EGFP MEF measured according to the manufacturer’s protocol. For calculation of data shown in Figure 5F, fluorescence intensities of 0.78 µg, 1.56 µg, 3.13 µg and 6.25 µg total protein amounts were used (n = 4). (B) Western blot analysis of PP1α expression. (C) Representative curves of protein phosphatase activities of different amounts of cell lysates (0 – 6.25 µg) from DLD1 control and PINCH1 knockdown cells measured as described in A.
Supplemental Tables

Table S1. Numbers of animals in the radiation experiment. Data sets for Kaplan-Meier analysis of actuarial estimates for time to local tumor recurrence.

<table>
<thead>
<tr>
<th>Dose in Gy</th>
<th>PINCH1<sup>fl/fl</sup></th>
<th>PINCH1<sup>−/−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>26</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>38</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>56</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>62</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Table S2. Growth of unirradiated and irradiated (32 Gy) PINCH1fl/fl and PINCH1−/− tumors in nude mice. Additional data related to Figure S3B. Tumor growth time (TGT) is the time needed after start of experiments to reach 2 and 5 times the starting volume (TGT\textsubscript{V2}, TGT\textsubscript{V5}). SE, standard error.

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Experimental arm</th>
<th>Median TGT\textsubscript{V2} (days) [SE]</th>
<th>P-value for PINCH1fl/fl vs PINCH1−/−</th>
<th>Median TGT\textsubscript{V5} (days) [SE]</th>
<th>P-value for PINCH1fl/fl vs PINCH1−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINCH1fl/fl</td>
<td>non-irradiated</td>
<td>1.5 [0.12]</td>
<td>0.01</td>
<td>3.9 [0.32]</td>
<td>0.02</td>
</tr>
<tr>
<td>PINCH1−/−</td>
<td>non-irradiated</td>
<td>1.9 [0.23]</td>
<td>0.01</td>
<td>5.0 [0.55]</td>
<td>0.02</td>
</tr>
<tr>
<td>PINCH1fl/fl</td>
<td>32 Gy</td>
<td>19.0 [0.29]</td>
<td>0.01</td>
<td>24.0 [0.58]</td>
<td>0.05</td>
</tr>
<tr>
<td>PINCH1−/−</td>
<td>32 Gy</td>
<td>23.5 [0.58]</td>
<td>0.01</td>
<td>27.0 [2.6]</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table S3. Microarray data sets from Oncomine (www.oncomine.org) for analysis of PINCH1 expression data in tumor tissue versus corresponding normal tissue. References are listed in Supplemental References.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>No. of studies</th>
<th>Normal</th>
<th>Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal</td>
<td>1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Brain</td>
<td>4</td>
<td>37</td>
<td>162</td>
</tr>
<tr>
<td>Breast</td>
<td>4</td>
<td>25</td>
<td>143</td>
</tr>
<tr>
<td>Colon</td>
<td>4</td>
<td>66</td>
<td>97</td>
</tr>
<tr>
<td>Esophagus</td>
<td>3</td>
<td>47</td>
<td>22</td>
</tr>
<tr>
<td>Kidney</td>
<td>3</td>
<td>21</td>
<td>44</td>
</tr>
<tr>
<td>Lung</td>
<td>7</td>
<td>99</td>
<td>364</td>
</tr>
<tr>
<td>Ovary</td>
<td>4</td>
<td>16</td>
<td>196</td>
</tr>
<tr>
<td>Pancreas</td>
<td>5</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>Prostate</td>
<td>14</td>
<td>189</td>
<td>413</td>
</tr>
<tr>
<td>Thyroid</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>All</td>
<td>50</td>
<td>559</td>
<td>1528</td>
</tr>
</tbody>
</table>
Table S4. List of hits identified by mass spectrometry in anti-GFP and anti-Akt1 antibody pulldowns from EGFP-PINCH1 MEF. Hits identified in anti-GFP Ig IP from EGFP MEF served as a control and were excluded from further analysis performed on EGFP-PINCH1 MEF samples.

<table>
<thead>
<tr>
<th>N</th>
<th>Protein accession number</th>
<th>Gene name</th>
<th>anti-GFP Ig</th>
<th>anti-Akt1 Ig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of matched peptides</td>
<td>Sequence coverage %</td>
</tr>
<tr>
<td>1</td>
<td>IPI00130185</td>
<td>PPP1ca</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>IPI00876048</td>
<td>PPP1R12A</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>IPI00229080</td>
<td>HSP90AB1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>IPI00759925</td>
<td>LIMA1</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>IPI00116668</td>
<td>ILK</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>IPI00470003</td>
<td>Alpha-Parvin</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>IPI00555071</td>
<td>Rsu1</td>
<td>11</td>
<td>38</td>
</tr>
</tbody>
</table>
Figure S2

A

PINCH1^{fl/fl}

<table>
<thead>
<tr>
<th>Normal Tissue</th>
<th>#749</th>
<th>#81</th>
<th>#831</th>
<th>#851</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PINCH1^{-/-}

<table>
<thead>
<tr>
<th>Normal Tissue</th>
<th>#747</th>
<th>#94</th>
<th>#837</th>
<th>#5</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

PINCH1^{fl/fl}

PINCH1^{-/-}

| #743 | #941 | #931 | #95 | #49 | #40 |

<table>
<thead>
<tr>
<th>β-Actin</th>
<th>PINCH1</th>
</tr>
</thead>
</table>

Figure S2 Eke et al.
Figure S3

A

PINCH1^{fl/fl} Tumors (n=99)

PINCH1^{−/−} Tumors (n=113)

Relative Tumor volume vs. Time after irradiation [d]

B

PINCH1^{fl/fl} (n=27)

PINCH1^{−/−} (n=26)

Relative Tumor volume vs. Time after irradiation [d]

C

Tumor control [%] vs. Radiation dose [Gy]

PINCH1^{fl/fl} (n=85)

PINCH1^{−/−} (n=99)
Figure S4

A

Diagram showing the timeline of tumor growth, implantation, injection of Pimonidazole and Hoechst, and tumor excision.

B

Images of H&E and Ki-67 staining for PINCH1^fl/fl^ and PINCH1^-/-^ tumors.

C

Bar graph showing Ki-67 positive cells [%] for PINCH1^fl/fl^ and PINCH1^-/-^ tumors.

D

Immunofluorescence images of PINCH1^fl/fl^ and PINCH1^-/-^ tumors.

E

Graphs showing relative vascular area, fraction of perfused vessels, hypoxic fraction, and necrotic fraction for PINCH1^fl/fl^ and PINCH1^-/-^ tumors, with n.s. indicating nonsignificant differences.
Figure S5

A

B

PINCH1fl/fl
PINCH1+/−
EGFP-PINCH1
EGFP

PINCH1fl/fl
PINCH1+/−
EGFP-PINCH1
EGFP

pAkt1 S473
pAkt1 T308
pFoxO1 S256
pFoxO4 S197

Rel. phosphorylation

PINCH1fl/fl
PINCH1+/−
EGFP-PINCH1
EGFP

PINCH1fl/fl
PINCH1+/−
EGFP-PINCH1
EGFP

pGSK3β S9
GSK3β
β-Actin
Figure S6

A

Surviving fraction

Radiation dose [Gy]

B

Surviving fraction

Cisplatin conc. [µM]

C

Surviving fraction

5-FU conc. [µM]

- co siRNA
- P1 #1 siRNA
- P1 #2 siRNA
Figure S7

A

<table>
<thead>
<tr>
<th></th>
<th>DLD1</th>
<th>HCT15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>co #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PINCH1
- pAkt1 S473
- pAkt1 T308
- Akt1
- pFoxO1 S256
- FoxO1
- pFoxO4 S197
- FoxO4
- β-Actin

B

Relative phosphorylation

DLD1

- pAkt1 S473
- pAkt1 T308
- pFoxO1 S256
- pFoxO4 S197

HCT15

- pAkt1 S473
- pAkt1 T308
- pFoxO1 S256
- pFoxO4 S197

C

<table>
<thead>
<tr>
<th></th>
<th>DLD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>siRNA</td>
<td></td>
</tr>
</tbody>
</table>

- pGSK3β S9
- GSK3β
- β-Actin
Figure S8

EGFP-PINCH1

- EGFP-PINCH1
- Akt1
- merged/DAPI

- EGFP-PINCH1
- PP1α
- merged/DAPI

EGFP

- EGFP
- Akt1
- merged/DAPI

- EGFP
- PP1α
- merged/DAPI

Scale bar: 20 µm
Figure S9

A

MEF

![Graph showing fluorescence vs. total protein for different conditions: PINCH1\(^{+/+}\), PINCH1\(^{+-}\), EGFP-PINCH1, and EGFP.](image)

B

![Western blot showing PP1α and β-Actin](image)

C

DLD1

![Graph showing fluorescence vs. total protein for different conditions: co siRNA and P1 #1 siRNA.](image)