Loss of nuclear pro–IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma

Clara Curiel-Lewandrowski,¹,² Hisato Yamasaki,³ Chuan Ping Si,³ Xiaoyi Jin,³ Yujun Zhang,³ Jillian Richmond,³ Marina Tuzova,³ Kevin Wilson,³ Beth Sullivan,⁴ David Jones,⁵ Natalia Ryzenko,³ Frederick Little,³ Thomas S. Kupper,⁶ David M. Center,³ and William W. Cruikshank³

¹Department of Dermatology, Cutaneous Oncology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. ²Section of Dermatology, and The Arizona Cancer Center Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA. ³The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA. ⁴Department of Molecular Genetics and Microbiology, Duke Medical School, Durham, North Carolina, USA. ⁵Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro–IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent–kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro–IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro–IL-16 levels. Sequence analysis identified the presence of mutations in the S′ end of the PDZ1 region of pro–IL-16, a domain required for association of pro–IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro–IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro–IL-16, which directly regulates Skp2 synthesis.

Introduction
Primary cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of extranodal non-Hodgkin lymphomas whose pathogenesis is poorly understood. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. In vivo expansion of CTCL cells is thought to be attributable to an increased proliferative response in combination with greater resistance to apoptotic stimulation (1–4). In CTCL T cells, apoptosis resistance appears to be related to the lack of T receptor–induced Fox (CD95) expression as well as loss of TRAIL-2 receptor expression (5–7); however, specific signaling pathway mechanisms that result in hyperproliferation of the malignant cells are only partially understood. Several T cell growth factors have been investigated in the setting of CTCL, including IL-2, IL-7, IL-15, IL-16, and IL-18 (8–14), although not all have been shown to function as a competence growth factor for normal primary T cells, it has been shown to function as a complete growth factor for T cell lines (24).

Along those lines, we have recently identified an intracellular protein that is involved in regulating T lymphocyte proliferation. The protein, pro–IL-16, is derived from the precursor protein (IL-16), comprised of 631 amino acids, and is present at very high levels in approximately 90%–97% of all T cells (16). After cell activation via the T cell receptor, precursor IL-16 is cleaved by caspase-3, which produces mature IL-16 (derived from the C-terminal 121 AA) and pro–IL-16 (17–20). Mature IL-16 is well characterized as a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells (21–23). While IL-16 can function as a competence growth factor for normal primary T cells, it has been shown to function as a complete growth factor for T cell lines (24).

Conversely, the fate and biologic activity of pro–IL-16 has only recently been investigated. Zhang and colleagues have identified that in primary T cells nuclear presence of pro–IL-16 results in a resting state, while loss of nuclear expression is associated with cell cycle progression (18, 20, 25). This is accomplished by virtue of a classical bipartite nuclear localization sequence as well as differential phosphorylation of a CKII and cdc2 kinase substrate site; all 3 components comprising a Ccn motif. In H9 cells, a cell line derived from a patient with Sézary syndrome, pro–IL-16 was detected only in the cytoplasm, and the lack of nuclear expression was attributed to sequence mutations in the nuclear localization sequence (18, 20, 25). Functionally, there are a number of potential regulatory domains within pro–IL-16. Pro–IL-16 has been shown to function as a scaffold protein that directly associates with GABP-binding protein β (GABPβ), histone deacetylase 3 (HDAC-3), and heat shock cognate protein 70 (HSC70) and binds directly to

Conflict of interest: The authors have declared that no conflict of interest exists.
Citation for this article: J Clin Invest. 2011;121(12):4838–4849. doi:10.1172/JCI41769.
The expression of IL-16 in patients with CTCL has been reported (13, 29). Both studies demonstrate an increased expression of IL-16 mRNA in skin biopsies obtained from patients with CTCL mycosis fungoides. Furthermore, the magnitude of increase for IL-16 correlated with disease severity. Protein expression was evaluated by immunohistochemistry analysis and also shown to correlate with disease progression, and, recently, it has been shown that serum IL-16 levels may represent a biomarker for disease severity (30). Assesment of IL-16 protein levels was determined using antibodies targeting the IL-16 C-terminal domain, and, therefore, the regulatory function of pro–IL-16 is independent of transcription but accomplished through an ubiquitin-mediated degradation, allowing for elevated protein kinase inhibitor p27Kip1 (27, 28). Therefore, increased cell cycle progression is due to a lack of p27Kip1, allowing for elevated Skp2 expression. As anticipated, Skp2 protein levels were elevated in all patients participating in the study. The magnitude of increase for Skp2 was observed with disease progression. The LDH value was elevated in all patients participating in the study. The following treatment modalities were used during the 2 years of blood sample acquisition: extracorporeal photopheresis (11 out of 11), IFN-α 2B (7 out of 11), prednisone (1 out of 11), methotrexate (1 out of 11), oral Targretin (2 out of 11), Ontak (1 out of 11), and vorinostat (1 out of 11).

The presence of p27Kip1 inhibition and Skp2 overexpression in CTCL T cells. While levels of the cyclin kinase-dependent inhibitor p27Kip1 have been reported to be altered in several hematological cancers (31, 32), this type of assessment has not been reported in CTCL. Therefore, we investigated whether cell cycle dysregulation in patients with advanced CTCL is associated with alterations in the levels of the CDK inhibitor p27Kip1. Eleven patients with advanced CTCL, 2 patients with T cell acute lymphocytic leukemia (T-ALL), and 10 healthy controls were included in the study. As shown in Figure 1, a marked reduction in the expression of p27Kip1 was observed for all examined patients with CTCL as compared with that in normal controls or cells from 2 patients with T-ALL. All 10 normal subjects demonstrated elevated levels of p27Kip1 similar to those of the 2 subjects shown in the figure. Loss of regulation of p27Kip1 expression would suggest a hyperproliferative state. In normal T lymphocytes, the primary mechanism for regulating p27Kip1 protein expression is independent of transcription but accomplished through an ubiquitin-mediated degradation, facilitated by Skp2 (33). To confirm this process in CTCL peripheral cells, we investigated whether decreased levels of p27Kip1 correlated with increased levels of Skp2. As anticipated, Skp2 protein levels were not explored.

The presence of p27Kip1 inhibition and Skp2 overexpression in CTCL T cells. While levels of the cyclin kinase-dependent inhibitor p27Kip1 have been reported to be altered in several hematological cancers (31, 32), this type of assessment has not been reported in CTCL. Therefore, we investigated whether cell cycle dysregulation in patients with advanced CTCL is associated with alterations in the levels of the CDK inhibitor p27Kip1. Eleven patients with advanced CTCL, 2 patients with T cell acute lymphocytic leukemia (T-ALL), and 10 healthy controls were included in the study. As shown in Figure 1, a marked reduction in the expression of p27Kip1 was observed for all examined patients with CTCL as compared with that in normal controls or cells from 2 patients with T-ALL. All 10 normal subjects demonstrated elevated levels of p27Kip1 similar to those of the 2 subjects shown in the figure. Loss of regulation of p27Kip1 expression would suggest a hyperproliferative state. In normal T lymphocytes, the primary mechanism for regulating p27Kip1 protein expression is independent of transcription but accomplished through an ubiquitin-mediated degradation, facilitated by Skp2 (33). To confirm this process in CTCL peripheral cells, we investigated whether decreased levels of p27Kip1 correlated with increased levels of Skp2. As anticipated, Skp2 protein levels were not explored.

Table 1
Clinical characteristics, laboratory data, and treatment modalities of patients with CTCL

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Gender</th>
<th>Age</th>
<th>Stage</th>
<th>Yr/Dx</th>
<th>CD4/CD8</th>
<th>CD4 Ab</th>
<th>%CD4+/CD7−</th>
<th>Large cell</th>
<th>LDH</th>
<th>Therapeutics interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>71</td>
<td>III</td>
<td>0.2</td>
<td>8.12 ± 0.8</td>
<td>2,243 ± 403</td>
<td>28.4 ± 26.2</td>
<td>18%</td>
<td>549</td>
<td>ECP, topical corticosteroid protopic</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>76</td>
<td>IIIB</td>
<td>3.3</td>
<td>1.4 ± 0.6</td>
<td>66.7 ± 36.2</td>
<td>7.6 ± 2.1</td>
<td>60%</td>
<td>826</td>
<td>ECP, prednisone, IFN</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>95</td>
<td>IV</td>
<td>2</td>
<td>76.2 ± 32.18</td>
<td>673 ± 189.3</td>
<td>47</td>
<td>92%</td>
<td>942</td>
<td>ECP, IFN, Targettin</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>81</td>
<td>III</td>
<td>4</td>
<td>29.6 ± 32.5</td>
<td>1,451 ± 621.2</td>
<td>36.8 ± 28.8</td>
<td>91%</td>
<td>635</td>
<td>ECP, IFN</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>78</td>
<td>IV</td>
<td>0.3</td>
<td>20.25 ± 3</td>
<td>2,312 ± 67</td>
<td>63</td>
<td>43%</td>
<td>901</td>
<td>ECP, IFN</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>61</td>
<td>IIIA</td>
<td>2.2</td>
<td>0.76 ± 0.075</td>
<td>380.5 ± 87.5</td>
<td>54 ± 55.2</td>
<td>51%</td>
<td>693</td>
<td>ECP, IFN</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>63</td>
<td>IIIA</td>
<td>0.2</td>
<td>14.86 ± 7.88</td>
<td>2,426 ± 122</td>
<td>NA</td>
<td>28%</td>
<td>750</td>
<td>MTX, ECP</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>90</td>
<td>IV</td>
<td>0.1</td>
<td>31.1 ± 11.9</td>
<td>6,577.3 ± 3,215</td>
<td>7.6 ± 3.5</td>
<td>30%</td>
<td>1211</td>
<td>ECP</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>78</td>
<td>IV</td>
<td>1</td>
<td>86 ± 2</td>
<td>3,874 ± 228.7</td>
<td>14 ± 1</td>
<td>84%</td>
<td>965</td>
<td>ECP, IFN, Ontak</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>63</td>
<td>IVA</td>
<td>9</td>
<td>11.5 ± 0.5</td>
<td>1,838 ± 110</td>
<td>83</td>
<td>24%</td>
<td>540</td>
<td>ECP</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>71</td>
<td>IVA</td>
<td>4</td>
<td>12.67 ± 1.1</td>
<td>1,558 ± 221</td>
<td>Pending</td>
<td>NA</td>
<td>672</td>
<td>ECP, Targettin, IFN, Zolinza</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>73</td>
<td>IV</td>
<td>1</td>
<td>5.67 ± 2</td>
<td>1,204</td>
<td>NA</td>
<td>195%</td>
<td>NA</td>
<td>Fluocinonide</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>63</td>
<td>IV</td>
<td>2</td>
<td>1.94 ± 0.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>208</td>
<td>NA</td>
</tr>
</tbody>
</table>

1Patient 5 died after 6 months participation. ECP, extracorporeal photopheresis; IFN, IFN-α; MTX, methotrexate. NA, not available; Yr/Dx, years from diagnosis to entry into the study. The patients were clinically staged preceding the 2007 ISCL/EORTC classification. LDH units are LDH-U/L. CD4 abs units are cell number per microliter.
was detected at very low to undetectable levels in normal resting T cells (Figure 1). In T cells from advanced CTCL subjects, Skp2 levels were elevated. Using β-actin protein for normalization, p27Kip1 levels decreased on average by 5.6 fold as compared with those of normal controls, and Skp2 levels increased from undetectable in normal cells to detectable in all Sezary samples. As an additional control for these findings, T cells from 2 individuals with T-ALL were also investigated. Cell cycle regulation in primary T-ALL cells has been shown to be more dependent on cyclin-dependent kinase inhibitor p21Cip rather than on p27Kip1 levels (34, 35). As shown in Figure 1, there were no detectable alterations in expression levels of either p27Kip1 or Skp2, indicating a fundamental difference in the mechanism for dysregulated T cell growth in these 2 diseases. Results from only 1 patient with T-ALL are shown, but similar results were obtained for both patients. To determine whether loss of p27Kip1 was specific in advanced CTCL, levels of p21Cip1 were also assessed. Quantification of p21Cip1 levels in advanced CTCL cells indicated a slight decrease as compared with that in normal T cells; however, the loss was not as pronounced as that for p27Kip1 (Figure 1). As expected from previous studies (34, 35), the p21Cip1 levels in normal T cells obtained from the individuals with T-ALL were significantly lower than levels found in normal T cells. These data indicate that there is not a general loss of cyclin kinase-dependent inhibitors but suggest some specificity for p27Kip1.

Circulating T lymphocytes from patients with CTCL express decreased levels of pro−IL−16. Skp2 protein synthesis has recently been shown to be regulated transcriptionally through the interaction of its core promoter region with HDAC-3 in the context of the scaffold protein pro−IL−16 (26). The absence or presence of nuclear pro−IL−16 determines binding efficiency of HDAC-3 to the core promoter region. As such, intracellular pro−IL−16 levels should positively correlate with p27Kip levels and negatively correlate with Skp2 levels. As previously published (16), assessment of intracellular pro−IL−16 expression in normal T lymphocytes demonstrated a homogeneous expression level for all cells, with 95%–98% of the cells positive for pro−IL−16, with a mean fluorescence index of 206.89 ± 50.1 (Figure 2). This has been consistent for all normal samples (n = 10) investigated thus far. When CD4+ T cells from the patients with advanced CTCL were investigated, there was a distribution in expression level, with a decrease in total pro−IL−16 levels ranging from more than 1% to more than 81%, with a range of expression patterns (Figure 2). Most patients demonstrated a homogeneous loss of total intracellular IL−16; however, the profile for patients no. 2, no. 6, and no. 8 depicted bimodal or multimodal loss, suggesting the potential preferential loss of pro−IL−16 in selected T cell subsets. The homogeneous loss of IL−16 indicates that all T cells have been affected, independent of subset selectivity or changes in surface phenotype, such as CD25 expression. Assessment of T-ALL cells for intracellular pro−IL−16 indicated normal expression levels of 98% (Figure 2). This was consistent for both patients investigated.

Figure 1
Detection of Skp2, p27Kip1, and p21Cip1 in primary CD4+ T cells from individuals with advanced CTCL and T-ALL and normal individuals. (A) Cell lysates from 7 × 10^6 cells from each sample were run on SDS-PAGE prior to probing with antibodies to p27Kip1 or Skp2. β-Actin was used for protein normalization. Due to the timing for patient recruitment, the gels were run at separate times, and the lanes were compiled for the figure. (B) P21Cip1 levels from 2 patients with CTCL (no. 2 and no. 6) and from both patients with T-ALL were detected by ELISA and compared with levels from control individuals (n = 8). *P < 0.03, compared with control cells. The error bars represent standard deviation.

Figure 2
Intracellular detection of pro−IL−16. Primary CD4+ T cells obtained from normal controls, patients with T-ALL, or patients with advanced CTCL were isolated and intracellularly labeled for pro−IL−16 protein by antibody staining. Isotype control staining is shown in the open curves, while IL−16 detection is shown in the filled curves. Numbers represent the percentage of pro−IL−16+ cells based on the gating strategy, as indicated by the dashed lines. The patient numbers are shown in the top left corners and match patient numbers as identified in Figure 1.
Figure 3
Detection of nuclear pro–IL-16 protein by confocal microscopy and Western blotting. T cells from a normal control and selected patients with CTCL were isolated and intracellularly labeled using anti–C-terminal (anti-C-term) and anti–N-terminal (anti-N-term) antibodies to pro–IL-16. Images were taken at a depth of 5 μm. Nuclei were identified using DAPI staining (top panel). Nuclear fractions from normal, T-ALL, and CTCL CD4+ T cells were used for Western blotting for pro–IL-16 (N-term). Due to timing of patient recruitment, the samples were run on separate gels and compiled for the figure (middle panel). The bottom panel depicts the ratio of pro–IL-16/tubulin for each of the Western samples.
Lower expression of total pro–IL-16 correlates with loss of nuclear pro–IL-16 protein. Pro–IL-16 in normal T cells is present in both the cytoplasmic and nuclear compartments; however, its role in regulating T cell proliferation is dependent on nuclear expression (20, 26, 36). To determine whether loss of total pro–IL-16 reflected a change in nuclear levels, T cells from selected samples were analyzed for pro–IL-16 intracellular distribution by confocal microscopy. Samples were selected based on total intracellular levels and were classified as near-normal pro–IL-16 expression (patient no. 7, 19% loss), substantial loss of pro–IL-16 (patients no. 1 and 3, 36% and 57% loss, respectively), and almost complete loss of pro–IL-16 (patients no. 5, 8, and 10, with 97%, 82%, and 99% loss, respectively). As indicated in Figure 3, patients no. 1, 3, and 7 had detectable pro–IL-16, based on both the N- and C-terminal antibodies, in the nucleus. This level, however, appeared to be less than that detected in normal T cells (normal control). Detection levels were further reduced in patients no. 5, 8, and 10, for which pro–IL-16 protein was not evident by confocal microscopy. To quantify the decrease of pro–IL-16, T cells from all patients were subjected to nuclear fractionation, and nuclear pro–IL-16 levels were assessed by Western blotting. As shown in Figure 3, all patients expressed lower detectable levels of pro–IL-16 than either normal control cells or cells obtained from a patient with T-ALL. For patients no. 5, 8, 9, and 10 pro–IL-16 was not detectable, confirming the images obtained by confocal microscopy. Densitometric analysis based on tubulin expression indicated that nuclear pro–IL-16 levels were reduced in all patients by 6 to 10 fold compared with those in normal control cells (Figure 3). As the starting cell population was not fractionated, based on phenotypic subsets, the complete loss of nuclear pro–IL-16, in several of the patients’ T cells by Western blot analysis, further suggests that this aberration is not clonally restricted but present in the majority of the T cell population.

Loss of pro–IL-16 nuclear translocation is not related to mutations in the nuclear localization sequence. In previous studies using transfected T cell lines, nuclear translocation of pro–IL-16 was dependent on an intact consensus nuclear local sequence (NLS) (19, 20). Loss of nuclear pro–IL-16 in the CTCL-derived (Sezary-derived) H9 cells was also attributed to an identified sequence mutation in the NLS (20). To determine whether a similar mutation in the NLS was present in the primary T cells, mRNA was obtained, cloned, and expressed for each patient, and the resultant cDNA was assessed for predicted protein sequence. A comparison map of the total IL-16 sequence for each patient is shown in Figure 4. As depicted, only 1 patient demonstrated a sequence mutation in the NLS region, patient no. 10. All other patients exhibited normal sequence in that region. Consistent mutations were, however, detected in a region that corresponds to the N-terminal region of PDZ1 (37, 38). Further analysis indicates that a consistent sequence mutation from G-S-A to W-N-G or W-N-S was detected in all patients investigated thus far (Figure 5). PDZ1 is of particular interest, as this region has been shown to facilitate binding to the transcription factor GABPB as well as the nuclear chaperone HSC70 (26).

Chaperone effect of HSC70 for pro–IL-16. While HSC70 has been shown to be a chaperone protein for nuclear transport of other proteins, this has not been demonstrated for pro–IL-16. To address this potential, Jurkat cells, which do not express IL-16 protein, were infected with lentivirus to stably express a GFP–pro–IL-16 fusion protein. Using siRNA technology, HSC70 protein synthesis was then inhibited, and loss of HSC70 protein was confirmed by Western blot analysis (Figure 6). Two different primer sets were used, and the primer set exhibiting greatest efficiency for loss of HSC70 protein was used for intracellular distribution analysis. The cells were then assessed for intracellular distribution of pro–IL-16 by confocal microscopy. As shown in Figure 6, cells infected with siRNA for HSC70 demonstrated a lack of nuclear pro–IL-16, while cells infected with either an empty vector (data not shown) or a control (nontargeting) vector demonstrated both nuclear and cytoplasmic pro–IL-16. To confirm the direct relationship between pro–IL-16 and p27Kip1, Western blot analysis was performed for both p27Kip1 and Skp2 after siRNA treatment. As shown in Figure 7, the ratio, as determined by densitometric analysis, for the loss of nuclear pro–IL-16 correlates with elevated Skp2 synthesis and reduction in levels of p27Kip1, consistent with what was observed in the primary Sezary T cells. Expression of GFP–pro–IL-16 was also associated with a significant reduction of Jurkat cell proliferation (Figure 7), as has been previously reported (20). After siRNA treatment, proliferative responses
were restored to control levels. This effect was not detected in cells expressing the control siRNA plasmid (Figure 7). Proliferation was determined by using both tritiated thymidine uptake as well as cell counts (Figure 7).

Loss of HSC70 binding to pro–IL-16 in advanced CTCL T cells. Taken together, we have demonstrated that HSC70 binds to pro–IL-16 isolated from normal T cells (26) and that the presence of HSC70 is required for nuclear translocation of pro–IL-16. We then investigated whether mutations in pro–IL-16 PDZ1, with loss of nuclear expression of pro–IL-16 in advanced CTCL peripheral T cells, could be associated with loss of HSC70 binding to CTCL pro–IL-16. To initially investigate this, a construct of pro–IL-16 was generated that contained a W-N-G substitution mutation in the 5’ region of wild-type PDZ1, positioned identically where the native mutation was located. The WNG-mutated pro–IL-16 construct was expressed in Jurkat cells and then immunoprecipitated using anti–IL-16 antibody followed by Western blotting for HSC70 protein. As shown in Figure 8, the wild-type sequence (G-S-A) demonstrated a high level of HSC70 binding, while the WNG substitution demonstrated a reduction in binding by more than 90%. These data confirm that the association of HSC70 with pro–IL-16 is dependent on an intact G-S-A sequence in this region of PDZ1.

We next investigated whether mutations detected in this region of PDZ1 found in advanced CTCL T cells could alter normal HSC70 binding. For these studies, cell lysates from CTCL peripheral cells were generated by detergent lysis, and then Western blot analysis was performed to establish total HSC70 protein levels. As shown in Figure 8, total HSC70 protein levels were present in all cell samples, with a small degree of variability. Out of the 11 patients samples, 7 samples had HSC70 levels that were comparable to those in normal controls, while 4 samples had levels that were 10%–25% less than those found in normal T cells. Immunoprecipitation studies were conducted to determine whether binding interactions between pro–IL-16 and HSC70 were altered in these cells. Cell lysates were incubated with Protein A-conjugated anti–pro–IL-16 antibody, and then Western blots were probed for the presence of HSC70. Out of the 11 CTCL subject samples, interaction between pro–IL-16 and HSC70 could be detected in 6 of the samples; however, the levels were markedly reduced. In the remaining 5 samples, there was no detectable binding, despite relatively normal levels of total HSC70 protein.

As noted in Figures 1 and 2, the intracellular levels of pro–IL-16 varied within patients; however, this variability does not appear to account for the loss of HSC70 association, as patients with relatively high levels of pro–IL-16 (i.e., patient no. 7) had low levels of associated HSC70. Further, quantification of the interaction between pro–IL-16 and HSC70 by densitometric analysis indicated a direct relationship between the levels of nuclear pro–IL-16 (shown in Figure 4) and HSC70 binding. To further confirm this finding and to address whether the loss of HSC70 binding to pro–IL-16 was limited to those cells classified as tumor cells, 2 additional patients (stage IV) were recruited, and their CD4+ T cells were sorted based on presence or loss of CD26 expression where tumor cells have been characterized as CD26– (30, 39). For these studies, the reverse protocol was used, whereby anti-HSC70 antibody was used for immunoprecipitation and pro–IL-16 was probed on the Western blot. As shown in Figure 9, for both patients, immunoprecipitated pro–IL-16 was primarily detected in the CD26+ cell fraction, while pro–IL-16 was detected in both the CD26+ and CD26– fractions for normal controls. Taken together, these data indicate that mutations in the PDZ1 domain of pro–IL-16, found primarily in tumor cells, are associated with loss of HSC70–pro–IL-16 binding, thereby preventing pro–IL-16 nuclear translocation and adequate regulation of T cell proliferation.

Figure 5
Comparison of the PDZ1 region of the predicted sequence for CTCL pro–IL-16 with the consensus wild-type sequence. cDNA sequences were cloned and expressed, and protein sequences were generated from CD4+ CTCL T cells from each of the 11 subjects. Amino acids required for binding pocket formation are underlined and designated by the arrows. Mutations are designated in bold, with consistent mutations shown within the box.
The increase in the number of skin-associated and circulating malignant T cells in advanced CTCL is likely a combination of both dysregulated T cell proliferation as well as a decrease in the apoptotic response. Resistance to apoptosis has been shown to relate to defective T receptor signaling pathways, resulting in either loss of Fas (CD95) or TRAIL-2 (DR5) expression (5–7, 40). In addition, overexpression of the apoptosis inhibitor cFLIP (7) or the inability to upregulate CD95L expression (5) further support a defect in apoptosis. The mechanisms related to dysregulated growth, however, have been less well defined. Changes in the proliferative state of CTCL T cells have thus far been attributed to inactivation or loss of translation resulting from methylation of the tumor suppressors BCL7a (41), p15, and p16INK4 (42, 43), which inhibit the retinoblastoma protein via interaction with cyclin D. However, deactivation of p16INK4 by bim-1 and ras oncogenes appears to occur primarily during latter stages of disease. In an attempt to further identify alterations in the regulation of CTCL neoplastic cell growth, we investigated potential changes in expression levels of another cyclin kinase-dependent inhibitor, p27Kip1 (44, 45). Our studies indicate that in 11 out of 11 primary T cell samples obtained from patients with CTCL there was a reduction in p27Kip1 levels, consistent with a hyperproliferative state. The loss of p27Kip1 was not detected in cells obtained from patients with T-ALL, and therefore the reduction in nuclear p27Kip1 levels in CTCL T cells suggests a potential difference between this disease and T-ALL for regulation of T cell proliferation.

P27Kip1 is regulated through a degradative process mediated by the SCFSkp2 ubiquitin E3 ligase complex (46–48). The complex-associated protein Skp2 has been shown to be required for ubiquitination and subsequent degradation of p27Kip1 both in vivo and in vitro. Elevated levels of Skp2 expression, with subsequent decreases in p27Kip1, are required for G1-S transition in most cell types and in particular have been shown to have a critical participation in cell cycle regulation in lymphomas (31, 46, 49). This is particularly evident in the setting of diffuse cutaneous B cell lymphomas, in which Skp2 serves as an independent marker in predicting clinical outcome (50). In T cell lymphomas, loss of CBP and p27Kip1 insufficiency has been associated with fatal T cell lymphomas in CBP conditional knockout mice (51), which may also relate to the ability of Skp2 to enzymatically degrade other tumor suppressors, such as FoxO1A and FoxO3 (52, 53). Due to the importance of Skp2-mediated degradation on p27Kip1 for regulation of cell growth, determination of intracellular Skp2 levels along with factors that can regulate Skp2 synthesis are of particular interest for the understanding of pathogenesis and progression of hematological malignancies.

Assessment of Skp2 levels in the T cells from our cohort of patients with advanced CTCL indicated that in all cases Skp2 levels were elevated as compared with those in normal controls. Despite the importance of both p27Kip1 and Skp2 for regulating T cell growth, sequence mutations in either of these proteins have not been reported in association with any T cell cancer. This suggests that alterations in either p27Kip1 or Skp2 activity can be attributable to other proteins involved in regulating their activity. Regulation of Skp2 expression has recently been reported to be mediated by a protein complex comprised of the transcription factor GABPβ, HDAC-3, and a scaffold protein, pro–IL-16. Pro–IL-16 contains 2 PDZ domains whereby PDZ1 interacts selectively with GABPβ, while the PDZ2 domain interacts with HDAC-3. As a scaffold protein, pro–IL-16 facilitates GABPβ and HSC70 binding to the core promoter region of Skp2 in association with a GABPβ binding site on the Skp2 promoter. Loss of nuclear pro–IL-16 prevents HDAC-3 interaction with the Skp2 promoter and allows for active transcription. Dependence on nuclear pro–IL-16 to maintain quiescent T cells has been demonstrated in both T cell lines as well as primary T cells (34). When CTCL peripheral T cells were analyzed...

Figure 6

Effect of HSC70 deletion on nuclear pro–IL-16. IL-16–expressing Jurkat cells were transfected with HSC70 siRNA, control siRNA, or empty vector. The effect of siRNA treatment on HSC70 protein expression is shown in **A**, using 2 different siRNA constructs (1 and 2, respectively). Distribution of pro–IL-16, as compared with nuclear staining, after siRNA treatment is shown in **B**. Original magnification, ×400.
for the presence of intracellular pro–IL-16, all patients demonstrated reduced total levels, as determined by FACS analysis. Using Western blotting, 4 out of the 11 patients demonstrated a total loss of intracellular IL-16 greater than 85% (patients no. 5, 8, 9, and 10).

The mechanism for loss of IL-16 protein has not been identified; however, loss of mRNA was also detected (data not shown) and may suggest that epigenetic factors, such as methylation, or microRNA regulation may account for a reduction in pro–IL-16 protein synthesis. Studies are underway to address this hypothesis. Even in patients for which intracellular IL-16 was detected, the presence of nuclear pro–IL-16 was either completely absent or significantly reduced, as indicated by both confocal microscopy and Western blot analysis of nuclear fractions. Previous reports identified that nuclear translocation of pro–IL-16 was facilitated by a nuclear localization sequence (20). However, predicted amino acid sequencing of pro–IL-16 from the patients with Sezary syndrome indicated that all but 1 patient had a normal NLS sequence. Further sequence analysis did indicate the presence of mutations in the 5’ region of PDZ domain 1, distant from the binding pocket defined by the D-T-G-F sequence. In addition to binding GABPβ, PDZ1 was also shown to associate with the HSC70 (26). HSC70, unlike GABPβ, does not contain the consensus C-terminal sequence required to bind to the D-T-G-F pocket. This indicates that HSC70 binds to a different region of PDZ1 than GABPβ and further suggested that HSC70 binding to pro–IL-16 in CTCL peripheral T cells may be affected by the predicted sequence mutations. Mutational studies that inserted the predominant W-N-G sequence into the 5’ end of wild-type pro–IL-16, the region in which mutations were present in patients with Sezary syndrome, resulted in marked reductions in HSC70 binding. This identifies the importance of the G-S-A sequence in pro–IL-16 for HSC70 binding. This concept was confirmed, as all patients demonstrated either a lack of HSC70 binding to pro–IL-16 or a substantial reduction. The extent of loss of HSC70 binding to pro–IL-16 correlated with the extent of loss of nuclear pro–IL-16, indicating a nuclear chaperone role for HSC70 (54). To investigate this further, we

Figure 7
Effect of siRNA treatment on thymidine incorporation, total cell numbers, and ratio of p27Kip1/Skp2 levels, as determined by densitometry of Western blots (n > 4). *P < 0.05, compared with values obtained from Jurkat cell alone. The error bars represent standard deviation.

Figure 8
Association of pro–IL-16 with HSC70. (A) Pro–IL-16 protein was expressed with either the wild-type G-S-A or mutated W-N-G sequence in Jurkat cells and then immunoprecipitated with anti–pro–IL-16 and probed on a Western blot with anti-HSC70 antibody. (B) Primary T cells from normal controls or subjects with T-ALL or CTCL were lysed and immunoprecipitated with anti-HSC70 antibody for total protein (lane 1) or with anti–pro–IL-16 antibody (lane 2). All lanes were probed with anti-HSC70 antibody for protein presence (top panel). The ratio of total HSC70 protein to pro–IL-16–associated HSC70 protein is depicted in the bottom panel. (C) Patient no. 13 was included to demonstrate total HSC70 protein immunoprecipitated with anti-HSC70 antibody (lane 1), HSC70 protein immunoprecipitated with anti–pro–IL-16 antibody (lane 2), and HSC70 protein immunoprecipitated with control rabbit antibody (lane 3).
performed siRNA HSC70 studies in which HSC70 knockdown resulted in loss of nuclear pro–IL-16 with associated increases in Skp2 protein, decreases in p27Kip1, and significant increases in proliferative responses as indicated by thymidine uptake and absolute cell numbers.

Over the past decade, several studies have analyzed genetic aberrations in CTCL at the level of chromosomal alterations, candidate regions, and gene mutations (55–58). As compared with most hematological malignancies, the information on genetic aberrations in CTCL is still limited, and a consistent pattern has not been identified, most likely as a result of the phenotypic variety among patients and rarity of the disease. However, recent studies suggest higher levels of chromosomal imbalances (CI ≥ 5), as those observed with advanced CTCL are associated with decreased survival (59). Of interest, abnormalities on the long arm of chromosome 15, in which pro–IL-16 is encoded (60), have been observed in patients with stage III and IV disease (59).

These data indicate that dysregulated growth in Sezary T cells results in part from the lack of the nuclear presence of a scaffold protein, pro–IL-16, which functions to regulate Skp2 transcription. The lack of nuclear expression of pro–IL-16 is related to sequence mutations in PDZ1, which prevent binding of a functional chaperone protein, HSC70. These studies begin to identify, for what we believe to be the first time, a novel mechanism for dysregulated T cell growth in patients with advanced CTCL and suggest that reconstitution of wild-type intracellular pro–IL-16 may facilitate T cell quiescence.

Methods

Blood samples (patient population)

Peripheral blood samples were obtained from patients diagnosed with stage III and IV CTCL. Once patients provided written consent, blood samples were drawn at the time of follow-up diagnostic laboratory evaluations or immediately preceding extracorporeal photopheresis treatment. A total of 11 patients were initially enrolled, 3 males and 8 females. Patients were classified as stage III CTCL (5 patients) and stage IV CTCL (6 patients), according to the TNM staging system and recommended guidelines by the International Society for Cutaneous Lymphomas (61). Control samples were obtained from 10 healthy volunteers (normal controls) and 2 T-ALL patients. To complete some studies, an additional 2 patients with CTCL (1 male and 1 female, both stage IV) as well as 2 additional control subjects were added. All protocols and procedures have been approved by the IRB committees at Boston Medical Center (Boston, Massachusetts, USA), Arizona Medical Center (Tucson, Arizona, USA), and Dana-Farber Cancer Institute (Boston, Massachusetts, USA).

Figure 9
Association of pro–IL-16 with HSC70. Primary CD4+ T cells from patients with Sezary syndrome (patients no. 12 and no. 13) and 2 normal controls were sorted into CD26+ and CD26− subsets, lysed, and immunoprecipitated with anti-HSC70 antibody (lane 1) or isotype control antibody (lane 2). All lanes were probed with anti–pro–IL-16 antibody for Western blotting.

Flow cytometry analysis and antibodies

Peripheral lymphocytes from patients and controls were isolated from blood samples by Ficoll (Pharmacia) gradient centrifugation. CD4+ T cells were enriched by magnetic bead separation using positive selection with anti-CD4 antibodies (R&D Systems) as reported previously (62, 63). The resultant cell population was routinely greater than 90% CD4+ T cells. Subsequently, the CD4+ cells were evaluated for expression of pro–IL-16 using the monoclonal antibody (clone 14.1) as previously described (64). Briefly, 1 × 10^6 CD4+ cells were permeabilized using 0.1% Triton X 100 for 15 minutes, prior to adding 10 ng anti–IL-16 antibody for 30 minutes at 4°C. After extensive washing with PBS, a FITC-conjugated rabbit anti-mouse IgG (5 μg) was then added to the cells for 30 minutes at 4°C. The cells were washed 3 times with PBS with 0.1% azide, and then IL-16 expression was assessed by flow cytometry.

Western blot

Primary tumor cells (7 × 10^6 cells/sample) were harvested by centrifugation, washed twice with cold PBS, and lysed in 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1.5 mM EDTA, and 0.5% Nonidet P-40, plus a mixture of proteinase inhibitors (protein lysis buffer). Protein concentrations were determined by the Bradford assay, and equal amounts of protein were used for each experiment. Proteins were subjected to electrophoresis through a 12% SDS-PAGE gel, electrotheroretically transferred to nitrocellulose membrane, and probed with various antibodies as indicated in each experiment (Skp2, p27Kip1, and pro–IL-16). The secondary antibodies labeled with HRP (Santa Cruz Biotechnology Inc.) were used at a dilution of 1:5,000. Protein bands were visualized by ECL (Pierce). Densitometry was used for quantifying Western blots with NIH Image 1.63 software (http://rsbweb.nih.gov/ij/).
Tris-HCl, 0.5 mM DTT, 10 mM β-glycerol-phosphate, 300 mM sucrose, 0.2 mM EGTA, 5 mM MgCl, and 10 mM KCl; buffer II, 10 mM Tris-HCl, 0.5 mM DTT, 10 mM β-glycerol-phosphate, 0.2 mM EGTA, 5 mM MgCl, 350 mM KCl, and 25% glycerol; both buffers contain the protease inhibitors aprotinin, chymostatin, antipain, and pepstatin at 10 μg/ml and PMSF at 1 mM).

ELISA
Quantitation of IL-16 protein in the serum of patients and controls as well as supernatant from CD3-stimulated and nonstimulated cultures of peripheral lymphocytes was accomplished by ELISA as previously described (64). Briefly, anti-IL-16 monoclonal antibody was coated directly onto 96-well ELISA plates (Costar) at a concentration of 1 μg/ml in coating buffer (0.1 M sodium bicarbonate, pH 8.8) and incubated overnight at 4°C. To eliminate nonspecific binding by the primary antibody, the plates were blocked with 300 μl blocking buffer (PBS containing 10% FBS and 0.05% NaN3) for 2 hours at ambient temperature. The plates were then washed twice with PBS Tween (PBS containing 0.05% Tween 20). A standard curve was generated using serial dilutions of recombinant IL-16. Samples (100 μl) were incubated in duplicate in the 96-well plates (Nunc) at 37°C for 1 hour. After the 1-hour incubation, the protein was removed, and the wells were washed with PBS containing 0.1% Tween 20. Nonspecific binding was reduced by blocking with 1% bovine serum albumin for 1 hour. After washing, 100 μl rabbit polyclonal anti–IL-16 antibody (10 μg/ml) diluted in PBS containing 0.05% Tween 20 was added to each well. The presence of IL-16 was then detected by incubating for 1 hour with biotinylated goat anti-rabbit IgG diluted 1:500 in PBS. The lower limit of detection for the ELISA is routinely 10–15 pg/ml. Linearity was in the range of 12–500 pg/ml (coefficient of 0.993 in that range).
P21 ELISAs were conducted on isolated peripheral T cells from patients with advanced CTCL and normal controls after cell lysis using 1% NP-40. P21 levels were determined using an ELISA Kit (Invitrogen) and conducted according to the manufacturer’s instructions.

Pro–IL-16 mRNA sequencing
Total RNA was isolated from 3 × 10⁶ CD4+ T cells from either patients with advanced CTCL or normal controls using the RNA Miniprep Kit (Stratagene) as detailed by the manufacturer. The RNA was quantified (Bioxate, Thermo Electron Corporation), and RT-PCR was generated using the OneStep RT-PCR Kit (Qiagen). Briefly, RT-PCR reactions were composed of 1 μg cDNA template, 100 ng each of sense (5′-CGGGGTACCAAGAGGCAGATGTTTC[GCCGTTCCA]ATTTGC) and antisense (5′-CCGGAAATCTTGCTTGTTCAAGCTGCAAAT[TGGAACGGCGACTCAGCTCGGATG-3′) oligonucleotide primers, and Qiagen OneStep RT-PCR reagents. The primers were designed to cover 18 nucleotides upstream of the translational start codon and 18 nucleotides downstream of the translational stop codon, producing a predicted 1.9-KB product. PCR products were separated by electrophoresis (1% agarose gel) and were detected by ethidium bromide staining, and expected PCR products were verified by reference to a 1.9-kilobase DNA ladder.

Cloning of the RT-PCR products. The RT-PCR products were digested with KpnI and EcoRI, separated on 0.8% agarose gel, excised, purified (Qiagen, MinElute Gel Extraction Kit, catalog no. 28604), and ligated into pCDNA 3.1(+) (Invitrogen) vector using the Stratagene DNA Ligation Kit.

E. coli transformation. The vectors were transformed into a competent E. coli strain, DH5XTM (Life Technologies), and transformants were selected on LB plates containing 100 μg/ml ampicillin. DNA was purified from selected clones (Promega Wizard Plus Minipreps DNA Purification System) and sequenced. Correct orientation of the gene was confirmed using T7 and BGH reverse primers (Invitrogen).

HSC70 siRNA
Stealth siRNA duplexes for silencing of human HSC70 were designed by Block-it RNAi designer (Invitrogen) and purchased from Invitrogen. The sense sequence used was 5′-UAAUCAUGUACAUUGACCCGACG-3′. Stably transfected IL-16–expressing cells were transiently transfected using oligo-gofectamine (Invitrogen), with or without a final concentration of 100 nM for the siRNAs. Forty-eight to seventy-two hours after transfection, when protein levels of HSC70 decreased to 10% to 20% of those in control cells, cells were subjected to immunofluorescence studies. Nontargeting siRNA duplexes were also obtained from Invitrogen (Stealth RNAi Negative Control Med GC, catalog no. 12935-300). Confirmation for selective HSC70 targeting was achieved using a second siRNA primer pair, for which the sense sequence was 5′-UCCUACCAAGCCAACAGACAGACC-3′ (Invitrogen). Jurkat cell transfections were conducted in a similar fashion as described above.

Confocal microscopy
Primary lymphocytes were isolated and then fixed and permeabilized using a methanol fix solution (Sigma-Aldrich) as previously described (36) The cells were then incubated with fluorescently labeled anti–IL-16 antibodies; FITC-conjugated mouse monoclonal antibody (clone 14.1) directed to the C-terminal, and PE-conjugated rabbit polyclonal antibody directed to the N-terminal region. Intracellular IL-16 protein was visualized using a Nikon deconvolution wide-field Epifluorescence confocal microscope.

Generation of HSC70 mutant constructs for in vitro expression
A 1.24-kb segment of human N-terminal pro–IL-16 that includes the PDZ1 domain, with the 3′-amino acid wild-type HSC70 binding site covering 18 nucleotides of the 5′ end to PDZ1 core DTGF motif, was cloned into the pXM vector. Using site-directed mutagenesis (QuikChange II, Stratagene), according to manufacturer’s instructions, the HSC70 binding site was mutated to WNG using the following primers (mutated nucleotides are shown in brackets): forward, 5′-GACTCAGCTCGAAT[TTGAAAGGC]GAAAACATCTGGCTTTG; reverse, 5′-CCCGAGCATGTTTCG[CGCGTTCCA]ATTTGCAGCTGAGTC. Mutated plasmids were expanded and purified by standard techniques (Qiagen), and the success of mutation confirmed by sequencing prior to transfection. To confirm success of mutagenesis, wild-type and WNG mutant constructs of N-terminal IL-16 were sequenced at the Boston University Molecular Genetics Core Facility prior to transfection.

Transfection. Jurkat cells from ATCC were transfected with 4 μg of the construct using the TransIT-Jurkat Reagent (Mirus Bio) per the manufacturer’s protocol. Cells were harvested 24–48 hours after transfection for use in immunoprecipitation assays.

Immunoprecipitation and Western blotting. Five to eight million transfected or control cells were lysed with buffer (Cell Signaling Technology) containing RNase A (Sigma-Aldrich) and protease inhibitors (Roche). Lysates were pre- cleared by incubating with 3 μg rabbit isotype antibody (Invitrogen) and 40 μg Protein A-agarose beads (Sigma-Aldrich) for 2 hours at 4°C on a rotator. Samples were centrifuged at 3,000 g for 1 minute at 4°C, and supernatants were collected into new tubes. These precleared supernatants were then incubated with 1.5 μg rabbit anti–N-terminal IL-16 antibody (in-house reagent) or control rabbit antibody, or for some studies with 1.5 μg mouse anti-HSC70 antibody or isotype control antibody, for 2 hours before 40 μg Protein A-agarose beads were added and incubated overnight at 4°C. The beads were washed 3 times with equal volumes of complete lysis buffer, and pellets were resuspended in SDS Sample buffer with reducing agent (Invitrogen). Samples were boiled and run on a 4%–12% Bis-Tris gel (Invitrogen) and transferred to PVDF membranes (Millipore). Membranes were blocked with 4% milk in Tris-buffered saline with 0.1% Tween 20 and probed with mouse anti-HSC70 antibody (Thermo Scientific, clone 13D3) and goat anti-mouse HRP conjugated secondary antibody (Cell Signaling Technology). Detection was per-
formed with an ECL Reagent Kit (GE Healthcare), and films were scanned for densitometry analysis with ImageJ Software (http://rsweb.nih.gov/ij/).

Statistics

All statistics were conducted using a Student’s t-test analysis, with significant differences established at a 5% confidence level. P values of less than 0.05 were considered significant.

Acknowledgments

This work was supported by NIH NCI institutional support (to W.W. Cruikshank) and Harvard University, SPORE in Skin Cancer, Development Career Award from the NCI (to T.S. Kupper) and the Alan and Janice Levin endowed chair in Cancer Research, University of Arizona (to C. Curiel-Lewandrowski).

Received for publication November 16, 2009, and accepted in revised form September 21, 2011.

Address correspondence to: William Cruikshank, Pulmonary Center, R-3, Boston University School of Medicine, 715 Albany St., Boston, Massachusetts 02118, USA. Phone: 617.638.5295; Fax: 617.638.5227; E-mail: bcruiushk@bu.edu.