Supplemental Table 1. Primers used for RT-PCR analysis of inflammatory cytokines

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>Forward primer</td>
<td>5’-CAAGATGGCCAAAGTTCTCGTGAC-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-GTCTCATGAAGTGAGCCATAGC-3’</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Forward primer</td>
<td>5’-ATGGCAACTGTCTCCTGAACCTCAACT-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-CAGGACAGGTATAGATTCTTTTCTTT-3’</td>
</tr>
<tr>
<td>IL-6</td>
<td>Forward primer</td>
<td>5’-AGGATACCACCTCCAACAGACCT-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-CAAGTGCATCATCGTTGTTACATAC-3’</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Forward primer</td>
<td>5’-TTCTGTCTACTGAACCTTCGAGGTGATCGGTCC-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-GTATGAGATAGCAAATCGGCTGACGGTGGG-3’</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Forward primer</td>
<td>5’-GGCATTGTTCCTCTAATGTCTCCG-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-CCGCTCAGAAGAACCACCTTGG-3’</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Forward primer</td>
<td>5’-TACCTCCGTCATTGAGATATTGG-3’</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>5’-CTCCTTCACACACATAGACTCC-3’</td>
</tr>
</tbody>
</table>
Supplemental Figure 1

Apoptosis and caspase activation in human ulcerative colitis tissues. (A) H&E (left panel), TUNEL (red, middle panel), and active caspase 3 (red, right panel) staining of 3 matched pairs of uninvolved colonic and colitis tissues (200×). (B) TUNEL (brown) staining of a matched pair of uninvolved colonic and colitis tissues (400×). Arrows indicate example TUNEL positive cells. (C) Apoptotic index of the crypts of uninvolved colonic and colitis tissues was determined by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining as in (B). Values were means ± SD (n = 6 in each group). (D) Caspase 3 activation in a matched pair of uninvolved colonic and colitis tissues was detected by active caspase 3 (brown) immunostaining (upper panel; 400×), and active caspase 3 (green) and cytokeratin (red) double staining (lower panel; 400×). Arrows indicate example active caspase 3 positive, or active caspase 3 and cytokeratin double positive cells. (E) Active caspase 3 index of crypts of uninvolved colonic and colitis tissues from UC patients was determined by counting active caspase 3 signals in 20 randomly selected crypts following active caspase 3 staining as in (D). Values were means ± SD (n = 3 in each group).

Supplemental Figure 2

PUMA induction and apoptosis in human ulcerative colitis tissues. (A) PUMA protein expression in 11 uninvolved colonic tissues (N1-N11) and 11 ulcerative colitis (UC1-UC11) tissues was analyzed by Western blotting. (B) A control for PUMA RNA in situ hybridization (ISH). PUMA expression (dark dots) was analyzed by ISH in colonic tissues from WT and PUMA-KO mice at 4 hr after exposure to γ-irradiation at 15 Gy (400×). Arrows indicate example PUMA-expressing cells. (C) A control for PUMA immunostaining. PUMA expression
in colonic tissues from WT and *PUMA*-KO mice was analyzed by immunostaining (200×). Arrows indicate example cells with basal PUMA expression. **(D)** PUMA (red) and TUNEL (green) double staining of an uninvolved and 2 UC tissues (400×). Arrows indicate example PUMA and TUNEL double positive cells. **(E)** Correlation between PUMA expression determined by Western blotting and apoptosis levels analyzed by TUNEL staining in colitis tissues from UC patients. Values were means ± SD (*n* = 9 in each group).

Supplemental Figure 3

Induction of PUMA in mice following DSS or TNBS treatment. WT and *PUMA*-KO mice were treated with 5% DSS for 7 days, or 100 mg/kg of TNBS for 3 days, to induce colitis. **(A)** PUMA (red) staining of colonic tissues from the treated mice (200×). A section from untreated *PUMA*-KO mice was used as the control for staining specificity. **(B)** PUMA (red) and cytokeratin (green) double staining of colonic tissues from the treated mice (200×).

Supplemental Figure 4

Induction of PUMA in colonic epithelial cells and expression of other Bcl-2 family members in colonic mucosa of DSS- and TNBS-treated mice. WT mice were treated with 5% DSS for 7 days, or 100 mg/kg of TNBS for 3 days, to induce colitis. **(A)** Colonic epithelial cells were isolated from colonic mucosa of the treated mice as described in the Methods. The isolated epithelial cells were verified by immunostaining for EpCAM (green), an epithelial marker. **(B)** Western blot analysis of the indicated proteins in colonic epithelial cells isolated as in (A). **(C)** Western blot analysis of Bcl-2 family members in the colonic mucosa of DSS- or TNBS-treated
mice. In (B) and (C), relative expression of each sample normalized to the loading control β-actin is indicated, with that of the untreated animal arbitrarily set as 1.0.

Supplemental Figure 5
DSS-induced colonic damage in WT and PUMA-KO mice. (A) H&E staining of colonic tissues from WT and PUMA-KO mice treated with 5% DSS for 1 or 3 days (200×). (B) Histological scores of the treated mice were determined following H&E staining as in (A). Values were means ± SD (n = 3 in each group). (C) Myeloperoxidase (MPO) activities in colonic mucosa from WT and PUMA-KO mice treated with 5% DSS for 7 days were measured as described in the Methods.

Supplemental Figure 6
Apoptosis in colonic tissues from WT and PUMA-KO mice treated with 5% DSS or 100 mg/kg of TNBS. (A) DNA fragmentation in the mice treated with DSS for 7 days was quantified by diphenylamine reaction as described in the Methods. Values were means ± SD (n = 3 in each group). (B) Apoptotic index in the mice treated with DSS for 1 or 3 days was determined by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining. Values were means ± SD (n = 3 mice in each group). (C) TUNEL (green) and cytokeratin (red) double staining of colonic tissues from the mice treated with DSS for 3 days (400×). Arrows indicate example TUNEL and cytokeratin double positive cells. (D) Caspase 3 activity was measured using colonic mucosa extracts from the mice treated with DSS for 7 days. Values were means ± SD (n = 6 mice in each group). (E) TUNEL (green) and cytokeratin (red) double staining of
colonic tissues from the mice treated with 100 mg/kg TNBS for 3 days (400×). Arrows indicate example TUNEL and cytokeratin double positive cells.

Supplemental Figure 7

TNBS-induced inflammation in WT and PUMA-KO mice. WT and PUMA-KO mice were treated with 100 mg/kg of TNBS for 3 days to induce colitis. (A) Expression of the indicated inflammatory cytokines in the treated mice was analyzed by real time RT-PCR. *P*<0.02 compared to the untreated control. (B) Myeloperoxidase (MPO) activities in colonic mucosa of the treated mice were measured as described in the Methods. Values were means ± SD (*n* = 3 in each group).

Supplemental Figure 8

DSS-induced colonic damage and apoptosis in WT and p53-KO mice. WT and p53-KO mice treated with 5% DSS for 7 days. Colonic damage and apoptosis were analyzed. (A) Methylene blue staining of colonic tissues from the DSS-treated mice with arrows indicating ulcers. (B) Colonic ulcers were counted following methylene blue staining as in (A). (C) H&E staining of colonic tissues from the control and DSS-treated mice (200×). (D) TUNEL staining of colonic tissues from the control and DSS-treated mice (200×). (E) Analysis of caspase 3 activation after DSS treatment by Western blotting. (F) Measurement of caspase 3 activities in the intestinal mucosa extracts from the DSS-treated mice. Values in (B) and (F) were means ± SD (*n* = 6 mice in each group).

Supplemental Figure 9
TNBS-induced colonic damage and apoptosis in WT and p53-KO mice. WT and p53-KO mice treated with 100 mg/kg of TNBS for 3 days. Colonic damage and apoptosis were analyzed. (A) H&E staining of colonic tissues from the control and TNBS-treated mice (200×). (B) TUNEL staining of colonic tissues from the control and TNBS-treated mice (200×). (C) Apoptotic index was determined by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining as in (B). Values were means ± SD (n = 6 in each group).

Supplemental Figure 10

Bid-independent colitis induced by DSS or TNBS. WT and Bid-KO mice were treated with 5% DSS for 7 days, or 100 mg/kg of TNBS for 5 days, to induce colitis. (A) H&E staining of colonic tissues from the DSS-treated mice (200×). (B) Histological damage after DSS treatment was scored following H&E staining as in (A). (C) TUNEL (green) staining of colonic tissues from the DSS-treated mice (400×). Arrows indicate example TUNEL-positive cells. (D) Apoptotic index was determined by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining as in (C). (E) H&E staining of colonic tissues from the TNBS-treated mice (200×). (F) Histological damage after TNBS treatment was scored following H&E staining as in (E). (G) TUNEL (green) staining of colonic tissues from the TNBS-treated mice (400×). Arrows indicate example TUNEL-positive cells. (H) Apoptotic index was determined by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining as in (G). Values in (B), (D), (F) and (H) were means ± SD (n = 3 mice in each group).

Supplemental Figure 11
Effects of the TNF antibody infliximib on DSS-induced colitis. WT mice were treated with 5% DSS, alone or in combination with 10 mg/kg of the TNF antibody infliximib for 7 days. (A) Real time RT-PCR analysis of PUMA mRNA expression in colonic mucosa of the treated mice. (B) H&E staining of colonic tissues from the treated mice (200×). (C) Colonic ulcers were counted following methylene blue staining. Values in (A) and (C) were means ± SD (n = 3 in each group).

Supplemental Figure 12

Effects of the TNF antibody infliximib on TNBS-induced colitis. WT mice were treated with 100 mg/kg of TNBS, alone or in combination with 10 mg/kg of the TNF antibody infliximib for 3 days. (A) H&E staining of colonic tissues from the treated mice (200×). (B) TUNEL (brown) staining of colonic tissues from the treated mice (200×). (C) Apoptotic index was calculated by counting TUNEL signals in 100 randomly selected crypts following TUNEL staining as in (B). Values were means ± SD (n = 3 in each group).

Supplemental Figure 13

Effects of the TNF inhibitor pentoxifylline on DSS-induced colitis. WT mice were treated with 5% DSS, alone or in combination with 200 mg/kg of the TNF inhibitor pentoxifylline (PTX). (A) Real time RT-PCR analysis of PUMA mRNA expression in colonic mucosa of the mice treated for 24 hr. Values were means ± SD (n = 3 in each group). (B) Western blot analysis of PUMA expression in colonic mucosa of the mice treated for 24 hr. (C) Disease activity index in the mice treated with DSS with or without PTX was measured at indicated time points. * P<0.01 compared to DSS alone (two-way ANOVA). (D) Methylene blue staining of colonic tissues
from the mice treated for 7 days, with the arrow indicating an ulcer (200×). (E) Colonic ulcers were counted following methylene blue staining as in (D). (F) H&E staining of colonic tissues from the mice treated for 7 days (200×). (G) Histological damage in colonic tissues from the mice treated for 7 days was scored following H&E staining as in (F). (H) TUNEL staining (red) of colonic tissues from the mice treated for 7 days. (I) Apoptotic index was calculated by counting TUNEL signals in 100 randomly selected crypts. Values in (C), (E), (G) and (I) were means ± SD (n = 5 in each group).

Supplemental Figure 14

Effects of the TNF inhibitor pentoxifylline on TNBS-induced colitis. WT mice were treated with 100 mg/kg of TNBS, alone or in combination with 200 mg/kg of the TNF-α inhibitor pentoxifylline (PTX). (A) Western blot analysis of the indicted proteins in colonic mucosa from the mice treated for 24 hr. (B) H&E staining of colonic tissues from the mice treated for 3 days (200×). (C) Histological damage in the mice treated with TNBS with or without PTX for 3 days was quantified following H&E staining as in (B). (D) TUNEL (brown) staining of colonic tissues from the mice treated for 3 days. Arrows indicate example TUNEL-positive cells. (E) Apoptotic index in the mice treated as indicated for 3 days was calculated by counting TUNEL signal in 100 randomly selected crypts. Values in (C) and (E) were means ± SD (n = 3 in each group).
Supplemental Figure 2

A

<table>
<thead>
<tr>
<th></th>
<th>Uninvolved</th>
<th>UC</th>
<th>Uninvolved</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td></td>
<td></td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td></td>
<td>N7</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td></td>
<td></td>
<td>N8</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td></td>
<td></td>
<td>N9</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td></td>
<td></td>
<td>N10</td>
<td></td>
</tr>
<tr>
<td>UC1</td>
<td></td>
<td></td>
<td>UC7</td>
<td></td>
</tr>
<tr>
<td>UC2</td>
<td></td>
<td></td>
<td>UC8</td>
<td></td>
</tr>
<tr>
<td>UC3</td>
<td></td>
<td></td>
<td>UC9</td>
<td></td>
</tr>
<tr>
<td>UC4</td>
<td></td>
<td></td>
<td>UC10</td>
<td></td>
</tr>
<tr>
<td>UC5</td>
<td></td>
<td></td>
<td>UC11</td>
<td></td>
</tr>
</tbody>
</table>

- **PUMA**

- **β-actin**

B

- **PUMA-KO**
- **WT**

C

- **PUMA-KO**
- **WT**

D

- **Uninvolved**
- **UC**

E

- **Apoptosis index of crypts (%)**

- **Relative PUMA protein level**

- **P<0.02**
Supplemental Figure 3

A

PUMA-KO untreated WT untreated WT DSS WT TNBS

PUMA/DAPI

B

DSS

PUMA Cytokeratin DAPI Merge

TNBS

PUMA Cytokeratin DAPI Merge
Supplemental Figure 4

A

EpCAM
EpCAM/DAPI
Phase
Merge

Beads

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PUMA</th>
<th>p53</th>
<th>Active caspase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DSS</td>
<td>2.3</td>
<td>0.9</td>
<td>3.5</td>
</tr>
<tr>
<td>TNBS</td>
<td>2.5</td>
<td>1.1</td>
<td>3.6</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Protein</th>
<th>Untreated</th>
<th>DSS</th>
<th>TNBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bax</td>
<td>1.0</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Bak</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Bid</td>
<td>1.0</td>
<td>0.97</td>
<td>1.2</td>
</tr>
<tr>
<td>Bad</td>
<td>1.0</td>
<td>1.1</td>
<td>0.98</td>
</tr>
<tr>
<td>Bim</td>
<td>1.0</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Noxa</td>
<td>1.0</td>
<td>2.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>1.0</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Bcl-X_1</td>
<td>1.0</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Mcl-1</td>
<td>1.0</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Bcl-w</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Bcl-w</td>
<td>1.0</td>
<td>0.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

β-actin
Supplemental Figure 5

A
WT	PUMA-KO
DSS 1 Day |
DSS 3 Days |
H&E

B

<table>
<thead>
<tr>
<th>Histological score</th>
<th>WT</th>
<th>PUMA-KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS 1 day</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DSS 3 days</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

P<0.01

C

<table>
<thead>
<tr>
<th>Relative activity/mg protein</th>
<th>WT</th>
<th>PUMA-KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DSS</td>
<td>3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

P>0.05
Supplemental Figure 7

A

Relative mRNA level

<table>
<thead>
<tr>
<th>Gene</th>
<th>WT untreated</th>
<th>WT TNBS</th>
<th>PUMA-KO untreated</th>
<th>PUMA-KO TNBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCAM-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

MPO

Relative activity/mg protein

Control | TNBS

WT untreated | PUMA-KO

P > 0.05
Supplemental Figure 8

A. Images showing the effect of DSS on wild-type (WT) and p53-KO mice stained with TUNEL/DAPI. WT controls show minimal ulceration, while DSS induces more prominent ulceration in p53-KO mice.

B. Bar graph showing the number of ulcers per animal between WT and p53-KO mice under DSS treatment. The difference is not statistically significant (P>0.05).

C. Histological images of WT and p53-KO mice stained with H&E. WT controls show normal tissue architecture, while DSS treatment induces ulceration in both WT and p53-KO mice.

D. TUNEL/DAPI staining images for WT and p53-KO mice under DSS treatment. The staining highlights cell death, with more prominent staining in p53-KO mice.

E. Western blot analysis showing the expression levels of active caspase 3 and β-actin in WT and p53-KO mice under control and DSS conditions. The expression of active caspase 3 is higher in p53-KO mice under DSS treatment.

F. Bar graph comparing the relative caspase 3 activity/mg protein in WT and p53-KO mice between control and DSS conditions. The activity is significantly higher in p53-KO mice under DSS treatment (P<0.01).
Supplemental Figure 9

A

WT

Control

TNBS

H&E

p53-KO

B

WT

Control

TNBS

TUNEL

p53-KO

C

Apoptotic index (%)

WT

p53-KO

Control

TNBS

P>0.05
Supplemental Figure 10

A. WT and Bid-KO mice were treated with DSS. H&E staining showed a higher histological score in Bid-KO mice compared to WT mice.

B. Bar graph showing the histological score for WT DSS and Bid-KO DSS. The score is significantly higher in Bid-KO mice (P>0.05).

C. WT and Bid-KO mice were treated with DSS. TUNEL/DAPI staining revealed a higher apoptotic index in Bid-KO mice compared to WT mice.

D. Bar graph showing the apoptotic index for untreated and DSS-treated mice. The index is significantly higher in DSS-treated mice (P>0.05).

E. WT and Bid-KO mice were treated with TNBS. H&E staining showed a higher histological score in Bid-KO mice compared to WT mice.

F. Bar graph showing the histological score for WT TNBS and Bid-KO TNBS. The score is significantly higher in Bid-KO mice (P>0.05).

G. WT and Bid-KO mice were treated with TNBS. TUNEL/DAPI staining revealed a higher apoptotic index in Bid-KO mice compared to WT mice.

H. Bar graph showing the apoptotic index for untreated and TNBS-treated mice. The index is significantly higher in TNBS-treated mice (P>0.05).
Supplemental Figure 11

A

Relative PUMA mRNA level

P<0.01

0 2 4 6 8 10 12

Untreated DSS DSS+ infliximab

B

DSS

DSS + infliximab

H&E

C

P<0.05

0 1 2 3 4 5 6

Untreated DSS DSS+ infliximab

P<0.05

Ulcer #/animal
Supplemental Figure 12

A

H&E

TNBS

TNBS+infliximab

B

TUNEL

TNBS

TNBS+infliximab

C

Apoptotic index (%)

Control

TNBS

TNBS+infliximab

P<0.01
Supplemental Figure 14

A

<table>
<thead>
<tr>
<th>PTX</th>
<th>TNBS</th>
<th>PUMA</th>
<th>p-p65</th>
<th>p65</th>
<th>β-actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

TNBS

TNBS+PTX

H&E

C

Histology score

P<0.01

D

TNBS

TNBS+PTX

TUNEL

E

Apoptotic index (%)

P<0.01