Supplementary Materials

Progerin and telomere dysfunction collaborate to trigger cellular senescence

Kan Cao1,2, Cecilia D. Blair1, Dina A. Faddah1, Julia E. Kieckhaefer2, Michelle Olive1, Michael R. Erdos1, Elizabeth G. Nabel1,3, and Francis S. Collins1*

1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8004, USA
2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
3Current address: Brigham and Women’s Hospital, Boston, MA 02116, USA

* Corresponding author:
Francis S. Collins, M.D., Ph.D.
National Institutes of Health
One Center Drive, Room 126
Bethesda, Maryland 20892-0148
Phone: 301-496-2433
e-mail: Francis.Collins@nih.gov
Figure S1: a. Live cell imaging of normal primary fibroblasts (AG06299) transfected with the progerin-splicing reporter. Arrow: an example of a DsRed-only cell; Arrowhead: an example of a double-positive cell. b. Immunoprecipitation followed by western blotting analysis with an anti-GFP antibody in whole cell lysates from an un-transfected fibroblast line (-), and a reporter-transfected cell lines (+). GAPDH was used as a loading control.
Figure S2: The percentage of fibroblast cells that utilize the cryptic LMNA splice site increases with cell passage number, but not with age of the skin biopsy donor.
Figure S3: Validation of progerin and lamin A specific primers. a RT-PCR analysis of normal and HGPS fibroblasts using primers detecting either lamin A or progerin. N1: HGADFN168 (normal); N2: HGADFN090 (normal); H1: HGADFN003 (HGPS); H2: HGADFN167 (HGPS). Final PCR products after 40 amplification cycles were shown, so this is not a quantitative analysis. b PCR analysis using purified progerin or lamin A cDNA as template. c Amplification efficiency of progerin and lamin A primers on purified cDNA. The efficiencies are 93.3% and 61.3% for progerin and lamin A primers, respectively.
Figure S4: Box plot presentation of the significant elongation of telomere length in hTERT-immortalized fibroblast cells AG09838 in comparison to untreated primary parent cells (p < 0.0001).
Figure S5: DNA sequencing confirms the heterozygous point mutation (K902N, C=>G) in the hTERT gene in cell lines JH-1 and JH-2.
Figure S6: Immunostaining of a normal fibroblast cell line AG08470 with anti-lamin A/C and anti-progerin antibody.
Figure S7: Immunofluorescence staining with an anti-progerin antibody on HeLa cells transfected with GFP-lamin A or GFP-progerin. The pictures were taken with the sample exposure time. The progerin antibody only stains the cells with GFP-progerin signals, and does not label the GFP-lamin A expressing cells.
Figure S8: Images of lamin A/C cytoplasmic stainings under over-exposure condition. We observed some co-localization of signals from progerin and lamin A/C antibodies. Scale bar: 20µm.
Table S1: Gene lists as described in Figure 7A. Quantitative RT-PCR assays were carried out to validate these changes: out of the 8 randomly-selected genes, 5 were validated (62.5%).

Table S2: The 82 overlapping genes from Figure 7B that exhibit significant changes in alternative splicing as cells senesce.

Table S3: The cell lines used in this study.