Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen

Zhong Chen,1 Ivan S. Yuhanna,1 Zoya Galcheva-Gargova,2 Richard H. Karas,2 Michael E. Mendelsohn,2 and Philip W. Shaul1

1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
2Molecular Cardiology Research Institute, New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111, USA

Address correspondence to: Philip W. Shaul, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9063, USA. Phone: (214) 648-2015; Fax: (214) 648-2481;
E-mail: pshaul@mednet.swmed.edu

Received for publication September 28, 1998, and accepted in revised form December 15, 1998.

Estrogen is an important vasoprotective molecule that causes the rapid dilatation of blood vessels by activating endothelial nitric oxide synthase (eNOS) through an unknown mechanism. In studies of intact ovine endothelial cells, 17β-estradiol (E2) caused acute (five-minute) activation of eNOS that was unaffected by actinomycin D but was fully inhibited by concomitant acute treatment with specific estrogen receptor (ER) antagonists. Overexpression of the known transcription factor ERα led to marked enhancement of the acute response to E2, and this was blocked by ER antagonists, was specific to E2, and required the ERα hormone-binding domain. In addition, the acute response of eNOS to E2 was reconstituted in COS-7 cells co-transfected with wild-type ERα and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of tyrosine kinases or mitogen-activated protein (MAP) kinase kinase prevented the activation of eNOS by E2, and E2 caused rapid ER-dependent activation of MAP kinase. These findings demonstrate that the short-term effects of estrogen central to cardiovascular physiology are mediated by ERα functioning in a novel, nongenomic manner to activate eNOS via MAP kinase–dependent mechanisms.

Introduction
The hormone estrogen classically exerts its effects by modifying gene expression (1–3). However, there are also important rapid, presumably nongenomic, effects of estrogen and other related steroid hormones in a variety of tissues including the vasculature, brain, and bone (4–9). Recent evidence suggests that the vascular effects of estrogen play a critical role in the atheroprotective properties of the hormone (10, 11). Premenopausal women have very little coronary artery disease compared to men, the incidence of the disease rises markedly after menopause, and hormone replacement therapy reduces the risks to premenopausal levels (12–15). In addition, acute estrogen administration rapidly restores the endothelium-dependent dilation of atherosclerotic arteries in primate models, and it acutely improves endothelium-dependent responses in healthy postmenopausal women (16–19). The rapid vasodilatory effect of estrogen is at least partially related to its ability to enhance the bioavailability of nitric oxide (NO) (10, 11, 16–19), which is a potent regulator of blood pressure, platelet aggregation, leukocyte adhesion, and vascular smooth muscle mitogenesis (20). Endothelial NO is produced by the endothelial isoform of NO synthase (eNOS) upon the conversion of the substrate L-arginine to L-citrulline (20). To better understand the mechanism(s) by which estrogen acutely increases endothelial NO production, the present experiments were performed in cultured endothelial cells to determine the potential role of estrogen receptor (ER) α in this process. We and others have recently shown that estrogen rapidly stimulates eNOS activity in endothelial cells and that ERα is expressed in endothelium (21–24). ERα and the second, more recently discovered ER isoform, ERβ, are known to function as transcription factors mediating estrogen-induced gene expression in both reproductive and nonreproductive tissues (10, 11, 25). However, ER may also be involved in acute, nongenomic physiologic responses because the rapid effects of estrogen in certain cell types are inhibited by ER antagonists (4, 5, 7, 8).

Methods
Cell culture. Pulmonary artery endothelial cells (PAEC) were obtained from the intrapulmonary arteries of fetal lambs at 125–135 days gestation (term = 144 days) by collagenase digestion and were propagated as described previously (26). These cells have been used previously to evaluate the acute effects of varying oxygenation on eNOS activation (26). Animal care and euthanasia procedures were approved by the Institutional Review Board for Animal Research. Near-confluent PAEC were studied at passage 4–6. COS-7 cells (American Type Culture Collection, Rockville, Maryland, USA) were grown in DMEM (Life Technologies Inc., Grand Island, New York, USA) supplemented with 10% heat-inactivated FBS plus 200 U/ml penicillin and 200 μg/ml streptomycin.

eNOS activation in whole cells. eNOS activation was assessed in whole cells by measuring [3H]L-arginine conversion to [3H]L-citrulline during acute incubations, using methods reported previously (21). This procedure provides a direct evaluation of the acute activation of existing eNOS, keeping signal transduction mechanisms intact (27). Adherent cells grown in 24-well plates were placed in L-arginine–deficient, serum-free endothelial-SFM Growth Media (Life Technologies Inc.) for 6 h and then preincubated in PBS (pH 7.4) containing 120 mM NaCl, 4.2 mM KCl, 2.5
Full inhibition was also observed with 10^{-6} M ICI 182,780 (13). Acetylcholine has been used previously in this cell culture model to mimic mechanisms in intact arteries (21, 28), and it has also been used by others in studies of nitric oxide (NO)-release processes in a variety of endothelial cell types (29–31). Both basal and stimulated eNOS activity were fully inhibited by 2.0 mM nitro-l-arginine methyl ester. To determine if the effect of E2 on PAEC eNOS is mediated at the level of gene transcription, cells were treated with 25 μg/ml actinomycin D for 120 min, and eNOS activation was then determined in the continued presence of actinomycin D for 15 min. Studies of cyclooxygenase type 1 and malate dehydrogenase gene expression have revealed that such treatment fully inhibits gene transcription in the PAEC (32). The role of ER in the rapid response to E2 was determined during 15-min incubations done in the absence or presence of 10^{-8} M E2 with or without 10^{-6} M tamoxifen or 10^{-5} M ICI 182,780 added simultaneously (33).

Cell transfection studies. To determine the specific role of ERα in the acute endothelial cell response to E2, the abundance of functional ERα was augmented by transiently transfecting the expression plasmid pCMV-ERα, or pCMV3 alone, into PAEC using Lipofectamine (Life Technologies Inc.) (34). pCMV-ERα was constructed by cloning full-length human ERα cDNA (35) as an EcoRI fragment into the CMV-driven plasmid pCDNA 3.1 (Invitrogen Corp., San Diego, California, USA). The construct was confirmed by sequencing in both directions. Cotransfection with a plasmid containing SV40-driven β-galactosidase was performed to normalize for transfection efficiency (34). Transfected cells were placed in phenol red-free, estrogen-free media. Seventy-two hours after transfection, acute E2-stimulated eNOS activation was examined. Enhanced ER-mRNA expression was documented in reverse transcription-PCR assays (21), and greater ERα protein abundance was confirmed by both immunocytochemistry and immunoblot analysis with the mouse monoclonal antibody AER 320 directed against amino acids 495–595 of human ERα (Neomarkers Inc., Fremont, California, USA), using methods described previously (34). Immunocytochemistry for β-galactosidase revealed successful expression of the protein in 15%–20% of cells, and immunostaining for ERα confirmed enhanced expression in 20%–40% of cells transfected with ERα cDNA. To determine the effects of ERα overexpression on estrogen-induced transcriptional transactivation, cotransfection was performed with a luciferase reporter plasmid that contains three copies of the Xenopus vitellogenin estrogen-response element (ERE), ERE-Luc, or the control plasmid TK-Luc (34). After transfection, cells were placed in either phenol red-free, estrogen-free media, or phenol red–free media containing 10^{-4} M E2 for 48 h, and reporter activity was measured (34).

Additional experiments were performed to delineate the role of the hormone-binding domain of ERα. Acute eNOS activation was assessed in PAEC transfected with pCMV3, pCMV-ERα, or pCMV-ERα–271-NTF. The latter expression plasmid was constructed by first cloning full-length human ERα cDNA into the pCDNA3.1 plasmid, followed by insertion of the coding sequence for the 8–amino acid “Flag” epitope (NTF), recognized by M2 monoclonal antibody (Kodak, Rochester, New York, USA), immediately after the initiation codon at the 5′ end of the ERα coding sequence to yield pCMV3-ERα–NTF. Then pCMV3-ERα–NTF was digested with XhoI and XbaI to remove all coding sequence distal to amino acid 271, which excludes the hormone-binding domain (HBD), followed by blunt-end cloning constructs and religation to yield pCMV3-ERα–271-NTF. Expression from these plasmids of both full-length and truncated epitope-tagged proteins of the predicted size was demonstrated by transient transfection of COS-1 cells followed by immunoprecipitation and immunoblot analysis.

To generalize the findings in the native endothelial cells, further studies were done to reconstitute the ERα–mediated activation of eNOS in a cell type that does not constitutively express either ER.

Figure 1

Rapid activation of eNOS in endothelial cells. (a) Effect of E2 on eNOS activity in intact PAEC. [3H]-arginine conversion to [3H]-citrulline was measured over 5–15 min in the presence of 10^{-8} M E2. (b) Effect of actinomycin D (Act D) on the rapid activation of eNOS. After 120 min preincubation in the absence or presence of 25 μg/ml Act D, 15 min incubations were done with or without continued Act D and either 10^{-8} M E2 or the calcium ionophore A23187 (10^{-5} M). (c) Effect of tamoxifen on E2-stimulated eNOS activity. Fifteen-minute incubations were performed in the absence or presence of 10^{-8} M E2, with or without 10^{-6} M tamoxifen (Tam) added simultaneously. Partial inhibition (50%–70%) was also noted with 10^{-8} M Tam (13). (d) Effect of ICI 182,780 on E2-stimulated eNOS activity. Fifteen-minute incubations were performed in the absence or presence of 10^{-8} M E2, with or without 10^{-5} M ICI 182,780 added simultaneously. Full inhibition was also observed with 10^{-8} M ICI 182,780 (13). Values are mean ± SEM; n = 4–6. * P < 0.05 vs. basal. E2 estradiol-17β, eNOS, endothelial nitric oxide; PAEC, pulmonary artery endothelial cells.
or eNOS and that is not estrogen responsive. COS-7 cells were cotransfected with human eNOS cDNA (36) and either ERα cDNA or sham plasmid, and the acute effects of E2 were assessed.

Results

eNOS activation by E2. The time period over which physiologic concentrations of E2 cause changes in eNOS activity in PAEC is shown in Fig. 1a. E2 (10^{-8} M) stimulated an increase in eNOS activity, which reached maximal levels within 5 min of exposure to the hormone. The response was specific to E2, because 17β-estradiol (10^{-12} to 10^{-6} M) had no effect (data not shown). The responses to both E2 and the calcium ionophore A23187 were not altered by the inhibition of gene transcription with actinomycin D (Fig. 1b). To determine if this acute process involves rapid ER activation, the effect of concomitant treatment with the ER antagonist tamoxifen was determined (Fig. 1c). Tamoxifen caused no change in basal eNOS activity but fully inhibited the acute response to E2. In addition, simultaneous treatment with the pure ER antagonist ICI 182,780 also completely negated the rapid, E2-stimulated increase in eNOS activity but did not alter basal activity (Fig. 1d).

Effect of ERα overexpression. The potential role of ERα in acute eNOS activation was evaluated in overexpression studies. To first confirm the overexpression of functional ERα, estrogen-induced transcriptional transactivation was assessed by cotransfection of the estrogen-responsive reporter plasmid ERE-Luc or the control plasmid TK-Luc into PAEC with either ERα cDNA or the sham plasmid. In the absence of estrogen, reporter activity was assessed by cotransfection of the estrogen-responsive reporter plasmid ERE-Luc or the control plasmid TK-Luc into PAEC with either ERα cDNA or the sham plasmid. In the absence of estrogen, reporter activity was eightfold greater than TK-Luc in intact cells. In the continued presence of genistein, herbimycin A, or PD98059 over a 15-min period.

Tyrosine kinase–MAP kinase inhibition and measurement of MAP kinase activity. Additional studies were performed to begin to elucidate the signal transduction mechanisms involved in acute E2 stimulation of eNOS. In nonendothelial cell types, E2 can cause the rapid activation of several signaling pathways, including those involving c-src–related tyrosine kinases and mitogen-activated protein (MAP) kinases (7, 8). Therefore, the effects of specific inhibitors of these signaling pathways on E2-stimulated eNOS activation were assessed in intact PAEC. Cells were treated with either the tyrosine kinase inhibitors genistein (10^{-6} M) or herbimycin A (10 μM) for 20 h, or with the MAP kinase kinase (MEK) inhibitor PD98059 (50 μM) for 45 min (37, 38). Acute E2-induced eNOS activation was then evaluated in the continued presence of genistein, herbimycin A, or PD98059 over a 15-min period.

Figure 2

Effect of ERα overexpression on transcriptional transactivation and on basal and E2-stimulated eNOS activity. (a) Effect of ERα overexpression on ERE-mediated gene transcription in PAEC. Transient transfections were performed with either the estrogen-responsive reporter plasmid ERE-Luc or the control plasmid TK-Luc, in combination with either sham plasmid or ERα cDNA. Reporter activity was then determined in control cells (upper panel) and cells exposed to 10^{-8} M E2 for 48 h (lower panel). Reporter activity is expressed as luciferase activity/β-galactosidase activity (LUC/β-gal). *P < 0.05 vs. TK-Luc, †P < 0.05 vs. control cells, ‡P < 0.05 vs. sham. Similar findings were obtained in three independent experiments. (b) Effect of ERα overexpression on basal eNOS activity in PAEC. Cells were transfected with sham plasmid or ERα cDNA, and 72 h later [3H]-arginine conversion to [3H]-citrulline was measured over 15 min in nonstimulated, intact cells. (c) Effect of ERα overexpression on acute eNOS activation by E2. PAEC were transiently transfected with sham plasmid or ERα cDNA, and 72 h later [3H]-arginine conversion to [3H]-citrulline was measured in intact cells over 15 min in the absence or presence of 10^{-8} M E2, with or without 10^{-5} M ICI 182,780 added simultaneously. Values are mean ± SEM; n = 4–6. *P < 0.05 vs. basal, †P < 0.05 vs. sham. ERα, estrogen receptor α; ERE, estrogen response element.
In this study we have demonstrated that E2 causes acute activation of eNOS in cultured endothelial cells (within five minutes). The response is specific to E2 because 17α-estradiol had no effect. When the rapidity of the response is considered along with the observation that it was not altered by the inhibition of gene transcription with actinomycin D, this suggests that the process does not require the classical nuclear effects of the hormone. However, the acute response was fully inhibited by concomitant acute treatment with the ER antagonists tamoxifen and ICI 182,780, suggesting that this occurs via rapid ER activation. The specific level of E2 that was studied is readily achieved during pregnancy (39, 40), and we have previously shown that the response observed in this model is also evident at concentrations that are well below those found in normal cycling women (21, 41, 42). These cumulative observations are consistent with a novel, nongenomic physiologic role for ER in endothelial cells.

To specifically define the role of ERα in the rapid response to E2, overexpression studies were performed. Overexpression of ERα resulted in augmented estrogen-induced transcriptional transactivation as expected, and it had no effect on the level of basal eNOS activity or eNOS protein abundance in the intact cells. However, the acute response to E2 was augmented four- to fivefold in cells transfected with ERα compared with sham-transfected cells, and the enhanced rapid response was inhib-
Role of tyrosine kinase–MAP kinase signaling pathway. (a) Role of tyrosine kinase in acute eNOS activation by E2. [3H]-arginine conversion to [3H]-citrulline was measured over 15 min in intact PAEC in the absence or presence of 10−8 M E2, with or without treatment with the tyrosine kinase inhibitor (TKI) genistein (50 μM). (b) Role of MEK in acute eNOS activation by E2. eNOS activity was measured in the absence or presence of 10−8 M E2, with or without treatment with the MEK inhibitor (MEKI) PD98059 (50 μM). Values are mean ± SEM; n = 4–6. *P < 0.05 vs. basal. (c) Effect of E2 on MAP kinase activity in PAEC. Cells were treated for 5 min with 10−8 M E2 in the absence or presence of 10−5 M tamoxifen (TAM) or 10−5 MICI 182,780, or with serum to serve as a positive control. Endogenous kinase was immunoprecipitated with anti-Erk2 antibody, and protein kinase activity was measured by evaluating the capacity to phosphorylate myelin basic protein. Quantification by PhosphorImager yielded values of 1, 2.6, 1, 1, 1, and 7.5, respectively, relative to untreated cells. Results shown are representative of five independent experiments. MAP, mitogen-activated protein; MEK, mitogen-activated protein kinase.

Figure 4

<table>
<thead>
<tr>
<th>% of Basal eNOS activity</th>
<th>% of Basal eNOS activity</th>
<th>% of Basal eNOS activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>TKI</td>
<td>MEKI</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

To generalize the findings in the native endothelial cells, experiments were performed to reconstitute the ERα-mediated nongenomic activation of eNOS in a cell type that does not constitutively express either ER or eNOS and that is not estrogen responsive. In COS-7 cells transfected with both eNOS and ERα, there was a more than threefold increase in eNOS activity upon acute stimulation with E2, whereas there was no response in cells transfected with eNOS alone. As in native endothelial cells, the rapid activation of eNOS by E2 in the COS-7 cells transfected with both eNOS and ERα was completely inhibited by concomitant ICI 182,780 treatment, indicating that the response is mediated by acute ERα activation. Thus, the cotransfection of ERα into cells expressing only eNOS confirms the ability of E2 to rapidly activate eNOS, confirming the role of ERα in this process.

Because E2 can cause the rapid activation of signaling pathways involving c-erb-related tyrosine kinases and MAP kinases in nonendothelial cells (7, 8), the potential role of tyrosine kinase–MAP kinase signaling in acute ERα-mediated eNOS activation was evaluated. The tyrosine kinase inhibitors genistein and herbimycin A completely inhibited the response to E2. In addition, the specific MEK inhibitor PD98059 also fully negated the stimulatory effect of E2. Furthermore, E2 caused a rapid increase in MAP kinase activity in the PAEC, and this effect was prevented by both tamoxifen and ICI 182,780. These data indicate that the acute stimulation of eNOS by E2 and ERα entails the activation of tyrosine kinase/MAP kinase. It has been shown that calcium signaling in endothelial cells in response to agonists such as bradykinin involves tyrosine kinase/MAP kinase activation (44). We therefore postulate that the rapid stimulation of eNOS by E2 is due to an increase in intracellular calcium that is mediated by tyrosine kinase/MAP kinase activation.

There is strong evidence from both human and animal studies that estrogen is protective against vascular injury and atherosclerosis. This occurs both indirectly by an effect on lipoprotein metabolism and directly through effects on the vessel wall, including alterations in vascular cell gene expression, mediated at least in part by ERα acting as a ligand-activated transcription factor. However, the beneficial effects of estrogen also have an important rapid component in the vasculature, which includes the acute activation of endothelial NO production (10, 11, 16–19). The present observations indicate that ERα may mediate the latter
process, revealing for the first time that this protein regulates physiologic responses in a nongenomic fashion independent of its known ability to control transcription. As such, our current conceptualization of steroid hormone receptor function may be too narrow.

Along with the implications regarding estrogen and vascular endothelial function, the present findings are important to the mechanisms underlying the rapid effects of estrogen in a variety of other cell types. For example, the effects of opioids on hypothalamic neurons are acutely blunted by E₂, and this response is attenuated by ER antagonism (5). In addition, E₂ rapidly inhibits acid production and alters cell shape in osteoclasts in a receptor-dependent manner (45). Similarly, there are rapid, nongenomic, receptor-mediated effects of the hormone that ultimately regulate the growth of oncogenic cells (7, 8). Thus, the acute activation of ERα is likely to be important in a myriad of cellular responses to estrogen. Further studies of the rapid activation of ERα in endothelium, using models such as the ERα knockout mouse, will enhance both our specific knowledge of the role of estrogen in the vasculature and in other tissues and our general understanding of the nongenomic functions of steroid hormone receptors.

Acknowledgments

We are indebted to Marilyn Dixon for preparing this manuscript. This work was supported by National Institutes of Health grants HL58888, HL53546, and HD30276 (to P.W. Shaul), HL30386 (to R.H. Karas), and HL56069 and HL59953 (to M.E. Mendelsohn). This work was supported by National Institutes of Health grants 1RO1-HL47519 to P.W. Shaul and E92627 to R.H. Karas; and HL58888, HL53546, and HD30276 (to P.W. Shaul), HL56069 and HL59953 (to M.E. Mendelsohn). The project was supported, in part, by the Lowe Foundation and was done during the tenure of Established Investigatorships of the American Heart Association (P.W. Shaul and M.E. Mendelsohn).

Circulation. 89:52–60.

