Cardiac conduction system (CCS) disease, which results in disrupted conduction and impaired cardiac rhythm, is common with significant morbidity and mortality. Current treatment options are limited, and rational efforts to develop cell-based and regenerative therapies require knowledge of the molecular networks that establish and maintain CCS function. Recent genome-wide association studies (GWAS) have identified numerous loci associated with adult human CCS function, including TBX5 and SCN5A. We hypothesized that TBX5, a critical developmental transcription factor, regulates transcriptional networks required for mature CCS function. We found that deletion of Tbx5 from the mature murine ventricular conduction system (VCS), including the AV bundle and bundle branches, resulted in severe VCS functional consequences, including loss of fast conduction, arrhythmias, and sudden death. Ventricular contractile function and the VCS fate map remained unchanged in VCS-specific Tbx5 knockouts. However, key mediators of fast conduction, including Na1.5, which is encoded by Scn5a, and connexin 40 (Cx40), demonstrated Tbx5-dependent expression in the VCS. We identified a Tbx5-responsive enhancer downstream of Scn5a sufficient to drive VCS expression in vivo, dependent on canonical T-box binding sites. Our results establish a direct molecular link between Tbx5 and Scn5a and elucidate a hierarchy between human GWAS loci that affects function of the mature VCS, establishing a paradigm for understanding the molecular pathology of CCS disease.

Introduction
The cardiac conduction system (CCS) consists of a network of specialized cardiomyocytes that generate and propagate the electrical impulses that organize cardiac contraction. The CCS is composed of the slowly propagating atrial nodes, including the sinoatrial (SA) and atrioventricular (AV) nodes, and the rapidly propagating ventricular conduction system (VCS), including the AV (His) bundle and right and left bundle branches. The VCS is uniquely adapted for fast conduction in order to rapidly transmit the electrical impulse governing ventricular contraction from the AV node to the ventricular apex. Disorders of the VCS are common, carry significant morbidity, and are poorly understood from a molecular perspective.

The transcriptional networks required to maintain function of the adult CCS are undefined. Our current understanding of the molecular mediators of CCS function stems largely from heritable monogenic disorders and mouse models that have identified a limited number of genes essential for maintaining cardiac rhythm, most of which encode ion channels and their interacting partners (reviewed in ref. 1). Similar approaches have also begun to uncover the transcriptional networks required for CCS development (reviewed in ref. 2). Recent genome-wide association studies (GWAS) have identified loci implicated in ECG interval variation (3–8), providing candidate genes with potentially important roles in CCS function in the general population. Specifically, numerous loci near genes encoding ion channels and transcription factors have been associated with PR and QRS interval variation, reflecting VCS function. Although these data identify a number of candidate loci that may play important roles in VCS function, a challenge for the field is to determine the functional importance of such genomic variation and identify molecular pathways that integrate GWAS loci into a mechanistic understanding of VCS function. Notably, a core set of loci identified consistently by multiple studies has emerged. Specifically, variation near TBX5 and SCN5A has been consistently implicated in VCS function, prioritizing these loci for further functional studies.

TBX5 is a T-box transcription factor that plays a crucial role in heart development (reviewed in ref. 9). Dominant mutations in TBX5 cause Holt-Oram syndrome in humans (10), which is characterized by developmental defects of the upper limb and heart and conduction system disease including age related AV conduction delay. The cardiac phenotype of Holt-Oram disease is largely recapitulated in Tbx5 heterozygous mice (11). Furthermore, numerous GWAS on CCS function have identified genetic variation near TBX5 that associates with PR and/or QRS interval variation (4, 5, 7, 8), which suggests that TBX5 plays a role in CCS function in the general population.

We hypothesized that TBX5 plays an essential role in the mature VCS. Efforts to identify the role of essential genes such as Tbx5 and unveil the transcriptional networks that establish and maintain mature CCS function have been hampered by the lack of CCS-specific in vivo molecular tools. We recently circumvented this hurdle for VCS study in mice by generating a tamoxifen-inducible VCS-specific Cre BAC transgenic mouse line, minKCreERT2 (12). In the present study, we found that removal of Tbx5 from the VCS in Tbx5minKCreERT2 mice resulted in sudden death, slowing of conduction through the VCS, and arrhythmias including spontaneous
ventricular tachycardia. TBX5 orchestrated a molecular network required for fast conduction in the VCS, including regulation of the gap junction connexin 40 (Cx40; encoded by \textit{Gja5}) and the voltage-gated sodium channel Nav1.5 (encoded by \textit{Scn5a}). Here, we found a direct molecular link between TBX5 and \textit{Scn5a} via a TBX5-responsive downstream enhancer that was sufficient to direct VCS-specific gene expression. Our results identified a TBX5-\textit{Scn5a} molecular network essential for function of the mature VCS. The consistent identification of these genes in GWAS on CCS function highlights the importance of this pathway in regulating CCS function.

Results

Decreased survival in adult VCS-specific Tbx5 mutant mice. The requirement for TBX5 in the mature VCS was tested using a strategy providing normal Tbx5 gene dosage during development, followed by VCS-specific deletion in mature mice. VCS-specific CreER\(_T\) expression from the \textit{minKCreER\(_T\)} BAC transgene (12) was used to recombine conditional (floxed) Tbx5 alleles (11) in the mature VCS. A tamoxifen administration regime at 6 weeks of age inactivated Tbx5 in the mature VCS of \textit{Tbx5\textit{minKCreER\(_T\)}} mice. VCS-selective loss of Tbx5 expression, as evaluated by immunofluorescence 4 weeks after tamoxifen treatment, was observed in the AV bundle of \textit{Tbx5\textit{minKCreER\(_T\)}} adult mice, but not \textit{Tbx5\textit{fl/fl}} littermate controls (Figure 1). Consistent with the VCS selectivity of Cre activity in \textit{minKCreER\(_T\)} mice (12), Tbx5 expression was maintained in atrial myocardium of both \textit{Tbx5\textit{minKCreER\(_T\)}} and \textit{Tbx5\textit{fl/fl}} mice (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI62617DS1).

\textit{Tbx5\textit{minKCreER\(_T\)}} mice demonstrated sudden death (Figure 1K) as early as 5 weeks after tamoxifen administration. Adult \textit{Tbx5\textit{minKCreER\(_T\)}} mice showed significantly increased mortality relative to adult \textit{Tbx5\textit{fl/fl}} mice in longitudinal studies (\(P = 0.03\), log-rank test). These results demonstrated a requirement for Tbx5 in the mature VCS and prompted us to investigate the electrophysiologic consequences of VCS-specific Tbx5 knockout.

Loss of fast conduction in adult Tbx5\textit{minKCreER\(_T\)} mice. To determine the conduction system effects of VCS-specific Tbx5 removal, we performed conscious, ambulatory telemetry ECG analysis on \textit{Tbx5\textit{minKCreER\(_T\)}} animals and littermate controls 4–5 weeks after tamoxifen administration. VCS-specific Tbx5 deletion caused severe conduction slowing. The PR interval, representing the period between atrial and ventricular depolarization, and QRS duration, representing the length of ventricular depolarization and — in the mouse — early repolarization (Figure 2A), were both significantly

Figure 1

Removal of Tbx5 from the ventricular CCS reduces survival. (**A–J**) \textit{Tbx5\textit{fl/fl}} and \textit{Tbx5\textit{minKCreER\(_T\)}} littermates were administered tamoxifen at 6–7 weeks of age, and Tbx5 expression in the VCS was evaluated by immunofluorescence at 10–11 weeks of age. (**A–E**) Serial sections demonstrating Tbx5 expression through the AV bundle (positive for acetylcholinesterase [AchE] and contactin-2) of \textit{Tbx5\textit{fl/fl}} mice. (**F–J**) In contrast, Tbx5 was not detected in the AV bundle of \textit{Tbx5\textit{minKCreER\(_T\)}} mice. Boxed areas in **A** and **F** are shown at higher magnification in **B** and **G**. TBX5 and contactin-2 were evaluated on serial sections (merged in **E** and **J**). Nuclei were stained with hematoxylin (**A, B, F, and G**) or DAPI (**C–E and H–J**). Original magnification, \(\times 10\) (**A and F**), \(\times 40\) (**B–E and G–J**). (**K**) \textit{Tbx5\textit{minKCreER\(_T\)}} mice (\(n = 22\)) and \textit{Tbx5\textit{fl/fl}} littermates (\(n = 15\)) were followed longitudinally after tamoxifen administration at 6–7 weeks of age. Kaplan-Meier survival estimates demonstrated significantly decreased survival after Tbx5 removal. \(^{*}P < 0.05\), log-rank test.
increased (Figure 2, B and C, and Table 1). To specifically localize the anatomic region of slowed conduction, we performed invasive electrophysiologic (EP) studies. Removal of Tbx5 resulted in moderate prolongation of the atrio-Hisian (AH) interval (representing conduction through the AV node and proximal His bundle), severe widening of the His duration (Hd), and severe prolongation of the Hisioventricular (HV) interval, demonstrating slowed conduction through the His bundle, bundle branches, and Purkinje network (Figure 2, D–F, Tables 1 and 2, and Supplemental Figure 2). Non-VCS function was not altered, with normal heart rate, sinus node, and AV node recovery times and atrial and ventricular effective refractory periods (Table 2). Collectively, these findings indicated an essential role for Tbx5 as a regulator of fast conduction in the VCS.

The autonomic nervous system can play an important role in modulating cardiac conduction. Specifically, activation of the sympathetic nervous system can increase heart rate and contractility and accelerate conduction through the AV node, whereas parasympathetic stimulation via the vagus nerve can act at the SA and AV nodes to decrease heart rate and slow AV conduction. To determine whether slowed conduction in Tbx5minKCreERT2 mice is secondary to increased vagal tone, we administered atropine, a cholinergic antagonist, to tamoxifen-treated Tbx5minKCreERT2 and Tbx5fl/fl mice and evaluated conduction intervals by EP studies. Cholinergic blockade did not result in accelerated conduction in Tbx5minKCreERT2 or Tbx5fl/fl mice (Supplemental Table 1), which suggests that slowed conduction in the absence of Tbx5 in the VCS is not secondary to effects on the autonomic nervous system.

Cardiac arrhythmias in Tbx5minKCreERT2 mice. Removal of TBX5 from the VCS resulted in significant arrhythmias. Observed rhythm disturbances that occurred exclusively in Tbx5minKCreERT2 mice included Mobitz type II second-degree AV block (Figure 2G), indicative of defects in the His bundle and/or bundle branches (13), and spontaneous ventricular tachycardia (Figure 2, I and J) in ambulatory recordings. Occasional second-degree AV block was observed in
both $Tbx5^{fl/fl}$ and $Tbx5^{minKCreERT2}$ mice (Supplemental Table 2). However, Mobitz type II AV block, a sign of infranodal conduction system disease characterized by one or more dropped QRS complexes without changes in the PR interval, was observed exclusively in $Tbx5^{minKCreERT2}$ mice. In contrast, AV block in $Tbx5^{fl/fl}$ mice was characterized by a shortened PR interval after the dropped beat, indicative of Wenckebach (Mobitz type I) AV block, considered a benign AV nodal block unlikely to progress to complete AV block. Premature ventricular contractions (PVCs) were also much more common in $Tbx5^{minKCreERT2}$ than control $Tbx5^{fl/fl}$ mice (Figure 2H), with a maximum of 7 PVCs per 24-hour recording in $Tbx5^{fl/fl}$ mice compared with greater than 100 in 6 of 10 $Tbx5^{minKCreERT2}$ mice.

Episodes of spontaneous, monomorphic ventricular tachycardia were observed in 3 of 10 $Tbx5^{minKCreERT2}$ mice versus 0 of 9 littermate controls in ambulatory studies and 1 of 6 $Tbx5^{minKCreERT2}$ mice versus 0 of 6 littermate controls in EP studies. In addition to the observation of spontaneous tachyarrhythmias in both ambulatory monitoring (Figure 2, I and J) and EP (Supplemental Figure 3) studies, $Tbx5^{minKCreERT2}$ mice showed significantly increased susceptibility to ventricular tachycardia after burst stimulation in EP studies (Table 2). Episodes of ventricular tachycardia induced by programmed stimulation in $Tbx5^{minKCreERT2}$ mice resembled those that occurred spontaneously (Figure 2, I and J, and Supplemental Figure 3), but were of shorter duration. In contrast, $Tbx5^{fl/fl}$ mice exhibited only nonsustained episodes of polymorphic ventricular tachycardia observed after programmed stimulation (Supplemental Figure 4). Furthermore, the $Tbx5^{minKCreERT2}$ mouse that developed spontaneous ventricular tachycardia during EP studies died suddenly, prior to any electrophysiological testing. Although we cannot rule out the possibility that nonarrhythmic or bradyarrhythmic causes contributed to the reduced survival of $Tbx5^{minKCreERT2}$ mice, the observation of sudden death after an episode of spontaneous ventricular tachycardia strongly suggests that ventricular tachycardia may contribute to sudden death after selective removal of $Tbx5$ from the VCS.

Normal contractile function in $Tbx5^{minKCreERT2}$ mice. To distinguish between a primary conduction system abnormality and secondary conduction system defects caused by primary contractile dysfunction, we assessed cardiac contractility via echocardiography. Transthoracic echocardiography demonstrated that LV function was indistinguishable between $Tbx5^{fl/fl}$ and $Tbx5^{minKCreERT2}$ mice (Figure 3, A and B, and Table 3). Furthermore, the mutant mice demonstrated immediate recovery of normal cardiac function after episodes of spontaneous ventricular tachycardia (Figure 3C). Together, these data indicate that the conduction defects observed in $Tbx5^{minKCreERT2}$ mice did not derive from a secondary consequence of myocardial dysfunction.

$Tbx5$ is not required for survival of VCS cells. Based on the known requirement for $Tbx5$ for cell survival in other contexts (14, 15), we hypothesized that the conduction abnormalities in $Tbx5^{minKCreERT2}$ mice may be caused by decreased survival of VCS cells. However, the VCS fate map was not affected by deletion of $Tbx5$. Simultaneously deleting $Tbx5$ from the VCS and marking cells with the Cre-dependent lacZ reporter ROSA-26R (R26R$^{minKCreERT2/-}$/Tbx5minKCreERT2 mice) generated a fate map indistinguishable from that generated in the presence of $Tbx5$ (R26R$^{minKCreERT2/-}$/Tbx5$^{--}$ mice) (Figure 4). This result demonstrated that the conduction defects in $Tbx5^{minKCreERT2}$ mice could not be attributed to loss of VCS cells.

$Tbx5$ is required for VCS expression of Cx40 and N a1.5 to modulate fast conduction. We investigated the hypothesis that $Tbx5$ is required for a functional molecular pathway mediating fast VCS conduction. We analyzed the molecular basis for loss of fast conduction in $Tbx5^{minKCreERT2}$ mice by examining expression of known mediators of fast conduction in the VCS of $Tbx5^{minKCreERT2}$ mutant and $Tbx5^{fl/fl}$ control hearts. Fast conduction in the VCS requires a high degree of cell-cell electrical coupling and rapid depolarization (16), which are substantially mediated by Cx40 and Nav1.5 (activity 12, 17–19), and connexin-2 expression (20). $Tbx5^{fl/fl}$ controls demonstrated high Cx40 and N a1.5 expression throughout the molecularly defined VCS, whereas $Tbx5^{minKCreERT2}$ animals demonstrated dramatic

Table 1

<table>
<thead>
<tr>
<th>Ambulatory telemetry</th>
<th>$Tbx5^{fl/fl}$</th>
<th>$Tbx5^{minKCreERT2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>548.91 ± 37.61</td>
<td>547.21 ± 37.77</td>
</tr>
<tr>
<td>PR interval duration (ms)</td>
<td>34.35 ± 1.63</td>
<td>51.77 ± 1.21*</td>
</tr>
<tr>
<td>QRS complex width (ms)</td>
<td>11.45 ± 0.27</td>
<td>15.33 ± 2.59*</td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Invasive EP data summary</th>
<th>$Tbx5^{fl/fl}$</th>
<th>$Tbx5^{minKCreERT2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus cycle length (ms)</td>
<td>151.4 ± 18.4</td>
<td>148.8 ± 24.8</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>401.7 ± 81.7</td>
<td>358.2 ± 67.6</td>
</tr>
<tr>
<td>AH interval (ms)</td>
<td>28.5 ± 2.6</td>
<td>35.3 ± 1.9*</td>
</tr>
<tr>
<td>AV interval (ms)</td>
<td>42.1 ± 3.3</td>
<td>61.8 ± 4.6*</td>
</tr>
<tr>
<td>AV nodal block cycle length (ms)</td>
<td>53.9 ± 8.4</td>
<td>65.8 ± 12.4</td>
</tr>
<tr>
<td>atrial ERP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial ERP</td>
<td>41.3 ± 4.8</td>
<td>35.8 ± 4.9</td>
</tr>
<tr>
<td>Ventricular ERP</td>
<td>41.3 ± 4.8</td>
<td>40.0 ± 6.1</td>
</tr>
<tr>
<td>Atrial tachycardia episodes (no.)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration (s)</td>
<td>1.64 ± 0.9</td>
<td>23.0 ± 28.6</td>
</tr>
<tr>
<td>Cycle length (ms)</td>
<td>53.3 ± 6.6</td>
<td>50.8 ± 11.0</td>
</tr>
<tr>
<td>Episodes (no.)</td>
<td>3</td>
<td>8*</td>
</tr>
</tbody>
</table>

Values are mean ± SD. *P < 0.001. #P < 0.01.
research article

TGAGCC, chr9:119,379,020–119,379,031; TGGGG enhancer contains 3 conserved T-box binding sites (CAG GTG - NCBI build 37/mm9) in vitro (Figure 6B). This TBX5-responsive upregulation from this genomic region (chr9:119,378,051–119,379,479; GCAGTGAAG, chr9:119,379,008–119,378,997; GGAGGTGTGAAT, chr9:119,378,918–119,378,929). The core of the TBX5 binding motif is GTG (22, 25, 26), a sequence conserved in each of the 3 TBX5 binding sites present in the defined enhancer. Individual mutation of single TBX5 binding sites from GTG to AAA at the core of each of the 3 conserved TBX5 consensus motifs significantly decreased TBX5-mediated activation of the enhancer in vitro, and mutation of all 3 TBX5 binding sites completely abolished TBX5-responsive enhancer activation (Figure 6B).

TBX5-responsive activity in vitro identified this enhancer as a candidate VCS enhancer. We tested whether this enhancer was sufficient for VCS-specific expression in vivo. The WT enhancer proved sufficient to drive in vivo VCS expression of lacZ from a minimal promoter in 13 of 16 transgenic embryos (Figure 6, C–E). Specifically, the enhancer reproducibly drove robust lacZ expression in the VCS, including the AV bundle and bundle branches as well as the dorsal wall of the atria, in an overall pattern closely resembling native Scn5a expression (27, 28). The VCS-specific activity of the Scn5a enhancer was T-box dependent: VCS-specific lacZ expression was severely diminished by mutation of the 3 conserved T-box sites in the enhancer. Cardiac lacZ expression in T-box mutant transgenic embryos was weak and variable, with only 3 of 12 transgenic embryos demonstrating detectable VCS lacZ expression (Figure 6, F–H, and Supplemental Figure 6). These results indicate that TBX5 directly regulates an enhancer downstream of Scn5a sufficient for patterning VCS-specific gene expression.

Discussion

The function of the VCS is rapid conduction of electrical impulses from the AV node to the apical ventricular myocardium to establish coordinated ventricular contraction with apex-to-base polarity. The consequences of VCS failure have long been apparent in the clinical setting and include AV block, bundle branch/inter-ventricular conduction defects, and ventricular tachycardia, all of which carry significant morbidity and mortality (29–32). To our knowledge, it was not previously possible to evaluate the specific role for TBX5 within the conduction system, given its broad cardiac expression in the adult heart, its requirement during cardiac development, and the structural heart defects frequently associ-
ated with Tbx5 haploinsufficiency (11, 33). By selectively removing Tbx5 from the adult VCS in this study, we identified a role for Tbx5 in the mature VCS of structurally normal hearts. Removal of Tbx5 from the mature VCS resulted in a significant increase in mortality accompanied by arrhythmias, including ventricular tachycardia, and a dramatic slowing of conduction through the VCS. Slowed VCS conduction was manifest as AV block with dramatic increases in H	extsubscript{4} and HV interval as well as a prolonged QRS interval, indicative of interventricular conduction delay. We further demonstrated that loss of fast conduction in the VCS was not secondary to loss of contractile function or loss of VCS cells, but rather was associated with reductions in Cx40 and Na	extsubscript{v}1.5 expression in the VCS. Tbx5 directly regulated Na	extsubscript{v}1.5 expression via an enhancer downstream of the Scn5a locus that possessed T-box element–dependent VCS-specific expression in vivo. Our results are the first to our knowledge to establish a transcripational pathway required for function of the mature VCS, and further establish Tbx5minKCreERT2 mice as a model for the pathogenesis of VCS disease.

Based on the present findings, we propose a model whereby Tbx5 serves as an essential regulator of VCS function and is required for Cx40 and Na	extsubscript{v}1.5 expression in the VCS (Figure 6I). Cx40, a high-conductance gap junction expressed in the atria and VCS, mediates tight cell-cell coupling (34), and Gja5 knockout mice demonstrate functional VCS slowing similar to, but less severe than, that of Tbx5minKCreERT2 mice (18, 35–41). Neither spontaneous ventricular tachycardia nor sudden death (both of which were observed in our Tbx5minKCreERT2 mice) have been reported in Gja5 knockout mice. Our observation that Tbx5 was required for expression of Cx40 in the adult VCS extends previous work identifying Gja5 as a Tbx5 target in the embryonic heart (11).

Rapid depolarization in the VCS is mediated by the voltage-gated sodium channel Na	extsubscript{v}1.5 (28, 38). Mutations in SCN5A, as well as alterations in its expression levels, are associated with numerous human cardiac disease conditions, yet regulation of its conduction system expression has been unknown (42). Scn5a haploinsufficiency in mice causes conduction slowing in the VCS (38) and, on occasion, spontaneous ventricular arrhythmias, including ventricular tachycardia (37). Furthermore, GWAS have consistently linked genetic variations downstream, in the distal introns, and in the 3′ untranslated region of SCN5A to variation in PR and QRS interval variation (4–8). Recent CCS GWAS have uncovered numerous loci linked to cardiac conduction function in the general population (3–8). An ongoing challenge is to identify the source of functional variation tagged by GWAS. TBX5, TBX3, NKKX2-5, and SCN5A have all been implicated in PR and/or QRS interval variation (4–8). TBX5 is in close genomic proximity to Tbx3, a related transcription factor expressed throughout the central CCS (43, 44). SNPs have been identified in cardiac conduction GWAS upstream of TBX3 that correlate with PR and QRS interval variation (5, 8). TBX3 is a potent transcriptional repressor capable of repressing Scn5a, as well as Gja1 (encoding Cx43) and Gja5, and is essential for development and function of the SA and AV nodes as well as the VCS (45–47). Tbx3 may thereby contribute to repression of Gja5 and Scn5a in the VCS after Tbx5 removal in Tbx5minKCreERT2 mice, possibly by acting directly on the downstream Scn5a enhancer identified in this study. Perinatal removal of Nkkx2-5 results in loss of Na	extsubscript{v}1.5 in the ventricles, whereas Na	extsubscript{v}1.5 expression is preserved in the atria and VCS (48), areas with high levels of Tbx5 expression. These data suggest that a balance of Tbx5, Tbx3, and NKKX2-5 activities is essential for regional regulation of Na	extsubscript{v}1.5, with a strict requirement for Tbx5 for maximal Na	extsubscript{v}1.5 expression in the VCS. Furthermore, GWAS have identified genetic variations downstream, in the distal introns, and in the 3′ untranslated region of SCN5A that correlate with PR and/or QRS interval variation (4, 5, 8). The enhancer identified in the present study is in linkage disequilibrium with this region. An exciting possibility is that the reported GWAS SNPs tag functional enhancer variants that influence SCN5A expression by disrupting the Tbx5-responsive conduction system enhancer identified in the current study.

We here identified a molecular link between TBX5 and Scn5a, a gene implicated in one of the few existing mouse models of spontaneous ventricular tachyarrhythmia, Scn5a^{−/−} mice (37, 49). Future studies will determine the degree to which this molecular pathway mediates the pathogenesis of these lethal arrhythmias. Given the essential role for Na	extsubscript{v}1.5 in cardiac conduction (38), the consequences of SCN5A mutations for human disease (50), and the consistent association of the SCN5A locus with variation in VCS function in diverse populations (4–8), understanding the regulation of SCN5A — particularly in the VCS — is of crucial importance. This study identified a direct molecular pathway between TBX5 and Scn5a, demonstrated that CCS GWAS anticipate a molecular pathway required for normal CCS function, and established a molecular paradigm for understanding the pathology of VCS disease.

Recent CCS GWAS have uncovered numerous loci linked to cardiac conduction function in the general population (3–8). An ongoing challenge is to identify the source of functional variation tagged by GWAS. TBX5, TBX3, NKKX2-5, and SCN5A have all been implicated in PR and/or QRS interval variation (4–8). TBX5 is in close genomic proximity to Tbx3, a related transcription factor expressed throughout the central CCS (43, 44). SNPs have been identified in cardiac conduction GWAS upstream of TBX3 that correlate with PR and QRS interval variation (5, 8). TBX3 is a potent transcriptional repressor capable of repressing Scn5a, as well as Gja1 (encoding Cx43) and Gja5, and is essential for development and function of the SA and AV nodes as well as the VCS (45–47). Tbx3 may thereby contribute to repression of Gja5 and Scn5a in the VCS after Tbx5 removal in Tbx5minKCreERT2 mice, possibly by acting directly on the downstream Scn5a enhancer identified in this study. Perinatal removal of Nkkx2-5 results in loss of Na	extsubscript{v}1.5 in the ventricles, whereas Na	extsubscript{v}1.5 expression is preserved in the atria and VCS (48), areas with high levels of Tbx5 expression. These data suggest that a balance of Tbx5, Tbx3, and NKKX2-5 activities is essential for regional regulation of Na	extsubscript{v}1.5, with a strict requirement for Tbx5 for maximal Na	extsubscript{v}1.5 expression in the VCS. Furthermore, GWAS have identified genetic variations downstream, in the distal introns, and in the 3′ untranslated region of SCN5A that correlate with PR and/or QRS interval variation (4, 5, 8). The enhancer identified in the present study is in linkage disequilibrium with this region. An exciting possibility is that the reported GWAS SNPs tag functional enhancer variants that influence SCN5A expression by disrupting the Tbx5-responsive conduction system enhancer identified in the current study.
Methods

Transgenic mice. Tbx5minKCreERT2, Tbx5fl/fl, and ROSA-26R-LacZ mice have all been previously described (11, 12, 51). Mice were maintained on a mixed genetic background, and littermates were used as controls in all experiments except for the fate map studies shown in Figure 4, in which age-matched controls were used because of the prohibitive number of mice that would be necessary to generate littermate controls. Tamoxifen was administered at a dose of 0.167 mg/g body weight for 5 consecutive days by oral gavage at 6–7 weeks of age, as previously described (12).

Telemetry ECG analysis. 10- to 12-week-old mice were anesthetized with isofluorane, and telemetry transmitters (ETA-F10; DSI) were implanted in the back with leads tunneled to the right upper and left lower thorax, as previously described (52). Heart rate and PR and QRS intervals were calculated using Ponemah Physiology Platform (DSI) from 24-hour recordings.

Electrophysiology studies. Detailed protocols for in vivo electrophysiology studies have been previously described (53). Briefly, 10- to 12-week-old mice were anesthetized with pentobarbital (33 mg/kg i.p.), and a 1.1-Fr octapolar electrode catheter (EPR-800; Millar) was advanced via a right jugular venous cut-down to record right atrial, His bundle, and RV potentials and to perform programmed electrical stimulation. See Supplemental Methods for details on atropine administration.

Echocardiography studies. Transthoracic echocardiography in mice was performed under inhaled isoflurane anesthesia, delivered via nose cone. Chest hairs were removed with a topical depilatory agent. Limb leads were attached for electrocardiogram gating, and animals were imaged in the left lateral decubitus position with a VisualSonics Vevo 770 machine using a 30-MHz high-frequency transducer. Body temperature was maintained using a heated imaging platform and warming lamps. 2-dimensional images were recorded in parasternal long- and short-axis projections, with guided M-mode recordings at the midventricular level in both views. LV cavity size and percent fractional shortening were measured in at least 3 beats from each projection and averaged. M-mode measurements were used to determine LV chamber dimensions and percent LV fractional shortening, the latter calculated as ([LVIDd – LVIDs]/LVIDd), where LVIDd and LVIDs are LV internal diameter in diastole and systole, respectively.

Acetylcholinesterase and β-galactosidase activity. Acetylcholinesterase and β-galactosidase activity were assayed on 7- to 10-μM fresh-frozen cryosections, as described previously (12).

Figure 5
Decreased Cx40 and Na\textsubscript{i,1.5} expression in the VCS after removal of TBX5. The proximal (A–J) and distal (K–T) AV bundle was identified by acetylcholinesterase activity (A, B, F, G, K, L, P, and Q) and contactin-2 expression (C, D, H, I, M, N, R, and S) on serial sections from Tbx5fl/fl and Tbx5minKCreERT2 hearts. Whereas the contactin-2–positive AV bundle expressed high levels of Cx40, Na\textsubscript{i,1.5}, and TBX5 in Tbx5fl/fl mice, their expression was drastically reduced in that of Tbx5minKCreERT2 mice. (C, D, H, I, M, N, R, and S) Dual-color immunofluorescence for Cx40 or Na\textsubscript{i,1.5} and contactin-2 antibodies were both raised in goat, preventing dual-color immunofluorescence on the same section. Nuclei were stained with hematoxylin (A, B, F, G, K, L, P, and Q) or DAPI (blue; C–E, H–J, M–O, and R–T). Boxed regions in A, F, K, and P are shown at higher magnification in B, G, L, and Q. Original magnification, ×10 (A, F, K, and P); ×40 (B–E, G–J, L–O, and P–T).
Cell culture studies. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites. The Scn5a 3′ enhancer (chr9:119378051-119379479; NCBI build 37/mm9) was cloned from BAC RP23-103G4 (Invitrogen) into the XhoI and BglII sites of a pGL3 Basic vector (Promega) that was modified to include a minimal TK promoter between the BglII and HindIII sites.
Transient transfections were performed in HEK-293T cells using FuGene HD (Promega) according to the manufacturer’s instructions. The day before transfection, 2 × 10⁶ cells/well were plated in 12-well plates in growth medium (D-MEM plus 10% FBS and t-glutamine). The following day, each well was transfected with 600 ng luciferase reporter, 400 ng TBX5 or empty pcDNA vector, and 1 ng pRL-CMV using a 3:1 FuGene HD/DNA ratio. Growth medium was replaced 24 hours after transfection, cells were harvested 48 hours after transfection, and luciferase activity was assayed using the Promega Dual Luciferase Reporter kit according to the manufacturer’s instructions. All transfections were performed in duplicate and repeated in a minimum of 3 independent replicates.

Transient transgenic experiments. The Scn5a and T-box element (TBE) mutant enhancer were subcloned from the pGL3 reporter vector into the Xhol and PstI sites of the Hsp68-LacZ transgenic reporter vector (55). The enhancer-Hsp68-LacZ fragment was digested with Xhol and NotI, gel purified, and used to create transient transgenic embryos at the University of Chicago Transgenic Core Facility. Embryos were harvested at E13.5, stained with X-Gal overnight at 37°C as C previously described (56), embedded in paraffin, sectioned at 5 μm, and counterstained with Nuclear Fast Red.

Statistics. Kaplan-Meier survival estimates were created using the STATA software package and tested for significance using the log-rank test. Dual luciferase reporter assays were analyzed in SPSS using 1-way ANOVA and Games-Howell post-hoc testing. 24-hour ECG intervals and EP intervals were calculated as described above and analyzed using Student’s t test (2-tailed). A P value less than 0.05 was considered significant.

Study approval. All animal experiments were conducted in accordance with national and institutional guidelines and were approved by the Institutional Animal Care and Use Committees of the University of Chicago and University of Pennsylvania.

Acknowledgments

This study was supported by grants from the NIH (HL092153 and HL114010 to L.P. Moskowitz; HL105734 to V.V. Patel; HL02443 to EMM; HL097587 to J.P. Fahrenbruch; HL098565 to G.H. Kim; K.J. Schillinger supported by HL007843) and the American Heart Association (10PRE2670012 to D.E. Arnolds; 11RGR4930008 to V.V. Patel).

Received for publication December 27, 2011, and accepted in revised form May 17, 2012.

Address correspondence to: Ivan Moskowitz, Departments of Pediatrics and Pathology, The University of Chicago, 900 East 57th Street, KCBD Room 5118, Chicago, Illinois 60637, USA. Phone: 773.834.0462; Fax: 773.834.2132; E-mail: imoskowitz@uchicago.edu.
43. Hoogaars WM, et al. The transcriptional repres
tor Tbx3 delineates the developing central con-
44. Sizarov A, Devalla HD, Anderson RH, Passier R, Christoffels VM, Moorman AF. Molecular analysis of patterning of conduction tissues in the devel-
45. Hoogaars WM, et al. Tbx3 controls the sino-
atrial node gene program and imposes pace-
46. Frank DJ, et al. Lethal arrhythmias in Tbx3-defi-
cient mice reveal extreme dosage sensitivity of car-
52. Wheeler MT, Allikian MJ, Heydemann A, Hadhazy M, Zarnegar S, McNally EM. Smooth muscle cell-
53. Liu F, et al. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in car-
55. Kothary R, Clapoff S, Darling S, Perry MD, Moran LA, Rossant J. Inducible expression of an hsp68-