Cells of the immune system have evolved various molecular mechanisms to sense their environment and react to alterations of self. NK cells are lymphocytes with effector and regulatory functions, which are remarkably adaptable to changes in self. In a study published in this issue of the *JCI*, Tarek and colleagues report the clinical benefits of manipulating NK cell adaptation to self in an innovative mAb-based therapy against neuroblastoma (NB). This novel therapeutic strategy should stimulate further research on NK cell therapies.

NK cells are involved in the elimination of tumor cells and infected cells (1); they can kill their cellular targets via cytotoxic granule exocytosis and also secrete cytokines such as IFN-γ that participate in the shaping of the adaptive immune response. NK cells express a wide range of surface molecules that include inhibitory and activating receptors; in humans, this family comprises the natural cytotoxicity receptors (Nkp30, Nkp44, and Nkp46), the Fcγ receptor IIIA (CD16), and the activating killer cell immunoglobulin-like receptors (KIRs). CD16 endows NK cells with antibody-dependent cell-mediated cytotoxicity (ADCC) properties. These activating receptors associate with immunoreceptor tyrosine-based activation motif-bearing adaptors to transduce potent activating signals. The inhibitory KIRs in humans (and their functional homologs in mice, the Ly49 receptors) recognize classical major histocompatibility complex class Ia molecules (MHC-I) and transduce inhibitory signals via their intracytoplasmic tyrosine-based inhibition motifs. Upon NK cell encounter with potential target cells, the integration of activating and inhibitory signals dictates the NK cell response. Normal self cells expressing high levels of MHC-I and low levels of activating ligands are spared, while stressed cells with downregulated MHC-I expression and high levels of activating ligands activate NK cells and are killed.

Conflict of interest: Eric Vivier is a cofounder and shareholder of Innate Pharma.

Citation for this article J Clin Invest. 2012; 122(9):3159-3169.
The Journal of Clinical Investigation

Commentaries

Activation of educated NK cells can be blocked through their inhibitory KIR receptors. NK cell tolerance toward self cells is ensured by two mechanisms: MHC-I recognition by inhibitory KIR receptors that prevents activation of educated NK cells (top) and by the hyporeactivity of uneducated NK cells (bottom). In the context of anti-GD2 (3F8) treatment, NB cells expressing GD2 will be decorated with this mAb. The activating receptor CD16, expressed on NK cells, recognizes 3F8, but only uneducated NK cells will mediate strong ADCC (bottom), as the engagement of inhibitory KIR receptors by their cognate HLA ligands expressed on NB blocks the activation of educated NK cells (top).

Self–MHC-I molecules do not inhibit uneducated NK cells

In this issue of the JCI, Tarek and colleagues have analyzed the contribution of educated and uneducated NK cells (that they refer to as licensed and unlicensed NK cells, respectively) in the killing of neuroblastoma (NB) tumors upon treatment with 3F8, a mAb targeting the disialoganglioside surface antigen GD2 (15). They genotyped patients with NB and divided the cohort into two groups: those lacking any HLA ligand for inhibitory KIRs (referred to as “missing KIR ligand” patients) and those with all HLA ligands for inhibitory KIRs (referred to as “all ligands present” patients). Fourteen KIR genes clustered in chromosome 19q13.4 have been described in humans, four of which encode inhibitory cell surface receptors that interact with a specific group of MHC-I molecules (Figure 2 and ref. 16). This locus is subjected to extensive genetic variation, both in the number of genes present and in the sequence of each KIR allele (16). An additional level of complexity arises from the variegated expression of KIR genes in NK cell clones, leading to a vast diversity of NK cells present within each individual. As a consequence of these mechanisms and the absence of cosegregation of KIR and HLA genes, a fraction of NK cells may lack inhibitory receptors specific for self–MHC-I in each individual. Given that the interaction between inhibitory KIRs and their HLA ligands educates NK cells to acquire their full reactivity, the fraction of NK cells in the missing KIR ligand patients that only expresses inhibitory KIRs that have no cognate HLA ligand is hyporeactive in vitro (Figure 2). In contrast, all NK cells are educated in all ligands present patients. Therefore, the overall NK cell reactivity in these patients should be greater than that in missing KIR ligand patients. However, Tarek et al. found that patients with missing KIR ligands showed improved overall and progression-free survival when treated with 3F8. In vitro, both educated and uneducated NK cells were activated against NB targets by the 3F8 treatment through CD16, but educated...
NK cells were selectively inhibited by HLA ligands expressed on NK targets. Tarek and colleagues thus demonstrate that KIR-mediated inhibition upon interaction with its HLA ligand on target cells overrides the responsive advantage delivered during the education process (15). These observations are consistent with a previous study in the mouse showing that uneducated NK cells are critical for the response against mouse cytomegalovirus (17). Taken together, these studies reveal that during the course of cancer or viral infection, uneducated NK cells can have a dominant and beneficial impact, challenging the association of the absence of education and hyporeactivity. Thus, the calibration of NK cell reactivity resulting from MHC-I-dependent education is sufficient to prevent NK cell autoreactivity at steady state, but it can be overridden in stress conditions (tumors, microbial infections) and upon treatment with therapeutic antibodies.

Could educated NK cells be rendered as efficient as uneducated NK cells?

Several strategies can be envisioned to boost NK cell reactivity against tumors in patients. The use of therapeutic therapies combining a tumor-targeting antibody with a second antibody specifically activating NK cells should be of particular interest. One way to stimulate effector NK cells is the use of anti-CD137 (4-1BB) mAb, which has shown promising ADCC boost when used in combination with rituximab (anti-CD20) or trastuzumab (anti-HER2) (18, 19). In NB, the persistent expression of the self–MHC-I on tumor cells is a key factor impairing the full activation of NK cells expressing self–MHC-I–specific inhibitory receptors. Thus, another promising approach to prevent the MHC-I–mediated inhibition of educated NK cells is to block inhibitory KIRs with a mAb (20). Coupling the anti-GD2 and anti-KIR mAb treatment is an attractive possibility to activate the entire NK cell population and to improve the overall survival of patients with NB and notably of those in which all KIR ligands are present.

Perspectives

Observations by Tarek and colleagues can be seen from two different perspectives. From the classical target cell recognition point of view, their findings are consistent with the inhibitory role played by KIRs, i.e., NK cells are more potent when relieved of MHC-I–dependent inhibition. However, from the education point of view, NK cells expressing KIRs which recognize MHC-I ligand are educated and are expected to display greater reactivity than uneducated NK cells. Tarek and colleagues demonstrated that in given stimulatory conditions the KIR-mediated inhibition is a strong enough signal to prevail over the responsive advantage delivered during the education process. That uneducated NK cells are not permanently hyporesponsive and can dominate antitumor responses supports the development of strategies targeting educated NK cells, such as the anti-KIR mAb, and suggests that impacting on the education process of NK cells might not be necessarily prohibitive.

Acknowledgments

We thank the European Research Council, the Agence Nationale de la Recherche, the Ligue Nationale contre le Cancer (Equipe labellisée La Ligue), the Axam Research Fund, INSERM, CNRS, and Aix-Marseille Université for financial support to the Centre d’Immunologie de Marseille-Luminy.

Address correspondence to: Eric Vivier, Centre d’Immunologie de Marseille-Luminy, Campus de Luminy, Case 906, 13288 Marseille cedex 09, France. Phone: 33.4.91.26.94.12; Fax: 33.4.91.26.94.30; E-mail: vivier@ciml.univ-mrs.fr.
Although the neural crest and its derivatives have been studied for a very long time, disorders of derivatives of the crest, the neurocristopathies, are not well understood. In this issue of the JCI, Nagashimada et al. provide an elegant analysis of one neurocristopathy, the association of neuroblastoma (NB) with Hirschsprung disease (HSCR) (aganglionic of the terminal bowel) and congenital central hypoventilation syndrome (CCHS) (also known as NB-HSCR-CCHS), linked to mutations in PHOX2B. In a mouse model, Nagashimada et al. demonstrate that a disease-linked mutation promotes tumorigenesis and disrupts neurogenesis, sympathetic gangiogenesis, and crest cell colonization of the terminal bowel. They also show that mutant PHOX2B results in decreased proliferation of crest-derived cells and the development of glia at the expense of neurons. The work raises intriguing issues about the possible common origin of sympathetic and enteric nervous systems and provides new hope that we may someday understand the vexing abnormalities in gastrointestinal function that persist after the surgical treatment of HSCR.

The neural crest has long been recognized to be a gift that evolution has given to developmental biologists. It is a transient structure comprising cells that are probably heterogeneous (1), but that, as a unit, is multipotent, giving rise to melanocytes, Schwann cells, sympathetic neurons, parasympathetic neurons, enteric glia, endocrine cells, fibroblasts, muscle, bone, cartilage, and meninges (2). The neural crest thus provides opportunities to study the cellular and molecular mechanisms of epithelial-mesenchymal transformation (and the reverse), migration, aggregation, and differentiation. It has been a gift that just keeps on giving. Despite the developmental biological treasure that the neural crest has provided, however, the disorders that stem from neural crest dysfunction, the neurocristopathies (3), remain vexatious.

In this issue, Nagashimada et al. (4), in a truly remarkable study, have now provided a real insight into how a mutation in PHOX2B, a gene that encodes a paired homeodomain transcription factor that plays a critical role in the development of crest-derived autonomic neurons (5), can act in different cells in a gain-of-function or in a loss-of-function manner. The gain-of-function activity is tumorigenic, causing neuroblastomas (NBs) to arise in the sympathetic nervous system, while perversely synergizing with the loss-of-function effect to disrupt neurogenesis, sympathetic gangiogenesis, and crest cell colonization of the terminal bowel, which becomes aganglionic (Hirschspring disease [HSCR]). The faults in formation of neurons and ganglia appear to be the result of a failure of the reciprocal inactivation of PHOX2B and SOX10.

During normal development, crest-derived precursors of sympathetic and enteric neurons initially express SOX10, but acquire PHOX2B when they enter the preaortic (6) or enteric mesenchyme (7–9). Bipotent progenitors express both PHOX2B and SOX10, but SOX10 is inactivated in cells that are destined to form neurons, and PHOX2B is inactivated in

Michael D. Gershon
Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.

Conflict of interest: The author has declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2012;122(9):3056-3058. doi:10.1172/JCI63884.