Liver X receptors (LXR) are stimulated by cholesterol-derived oxysterols and serve as transcription factors to regulate gene expression in response to alterations in cholesterol. In the present study, we investigated the role of LXRs in vascular endothelial cells (ECs) and discovered that LXRβ has nonnuclear function and stimulates EC migration by activating endothelial NOS (eNOS). This process is mediated by estrogen receptor-α (ERα). LXR activation promoted the direct binding of LXRβ to the ligand-binding domain of ERα and initiated an extranuclear signaling cascade that requires ERα Ser118 phosphorylation by PI3K/AKT. Further studies revealed that LXRβ and ERα are colocalized and functionally coupled in EC plasma membrane caveolae/lipid rafts. In isolated aortic rings, LXR activation of NOS caused relaxation, while in mice, LXR activation stimulated carotid artery reendothelialization via LXRβ- and ERα-dependent processes. These studies demonstrate that LXRβ has nonnuclear function in EC caveolae/lipid rafts that entails crosstalk with ERα, which promotes NO production and maintains endothelial monolayer integrity in vivo.

Introduction
Liver X receptors (LXR) are members of the nuclear receptor superfamily that function as ligand-dependent transcription factors and play important roles in lipid metabolism (1–3). The 2 LXR isoforms, LXRα and LXRβ, share great similarity in protein structure and target genes, but they differ in tissue distribution. LXRα is primarily expressed in liver, kidney, intestine, adipose tissue, and macrophages, whereas LXRβ is ubiquitously expressed (4). Cholesterol-derived oxysterols such as 22(R)-hydroxycholesterol (22RHHC) are endogenous ligands of LXR (5), and there are also synthetic LXR ligands that attenuate atherosclerosis development when administered to hypercholesterolemic mice (2, 6–8). The marked reductions in atherosclerosis in response to LXR agonists occur despite modest changes in plasma lipoprotein levels, suggesting that the underlying mechanism or mechanisms may involve direct effects on hematologic or vascular cell types of importance to atherogenesis. In macrophages, LXR upregulates a number of genes that promote reverse cholesterol transport to the liver (1, 9), and they inhibit macrophage inflammatory responses (3, 10). In vascular smooth muscle cells (VSMC), which also participate in atherogenesis and express LXR, LXR agonists attenuate mitogen-induced cell proliferation by inhibiting the expression of cell-cycle–regulating proteins (11). Whereas there are recognized functions of LXR in macrophages and VSMC, the potential roles of LXR in vascular endothelial cells (ECs), which are another cell type critically involved in atherogenesis (12), are unknown.

Similar to LXR, estrogen receptor-α and estrogen receptor-β (ERα and ERβ) are nuclear receptors that influence cardiovascular health and disease (13, 14). Estrogen treatment blunts atherosclerosis in mice, and the protection afforded by estrogen is not explained by changes in plasma lipoprotein levels (15, 16). Estrogen actions primarily via ERα promote reendothelialization following vascular injury, prevent neointima formation, and activate antiinflammatory responses (13). Along with their classical roles as transcriptional factors, both ERα and ERβ have nonnuclear function. These include the activation of kinases such as Akt in ECs, resulting in the stimulation of endothelial NOS (eNOS), increased production of the atheroprotective-signaling molecule NO, and the promotion of EC growth and migration (17–19). Nonnuclear actions of ERα and ERβ in ECs are mediated by receptor subpopulations that are associated with plasma membrane (PM) caveolae/lipid rafts (20, 21). There is recognized physiologic interplay between the LXR and ER ligand/receptor systems. LXR activation influences the synthesis and metabolism of estrogen (22, 23), estrogen causes attenuated expression of LXRα and its target genes in white adipose tissue (24), and estrogen also antagonizes LXR transcriptional activity in breast cancer cells (25). However, direct functional partnership between LXR and ER has not been previously observed in any biological context. In the current study, designed to elucidate the role of LXR in ECs, we discovered novel nonnuclear function of LXRβ that entails unique direct protein-protein interaction between LXRβ and ERα, and we show that these processes have important consequences on vascular NO production and the maintenance of endothelial monolayer integrity in vivo.

Results
LXRβ activation promotes EC migration via ERα and eNOS. To directly examine the role of LXR in EC, we evaluated cell migration in a scratch assay using the human EC line EA.hy926. A defined region of confluent ECs was removed with a cell scraper, cells were incubated under varying conditions for 20 hours, and the number of cells migrating past the wound edge was quantified. 17β-Estradiol (E2, 10 nM) increased EC migration as previously reported.

Authorship note: Tomonori Ishikawa and Ivan S. Yuhanna contributed equally to this work. Philip W. Shaul and Michihisa Umetani are co–senior authors.
Conflict of interest: Philip W. Shaul receives additional research support provided by Pfizer.
Citation for this article: J Clin Invest. 2013;123(8):3488–3497. doi:10.1172/JCI66533.
Figure 1

LXR activation promotes EC migration in a NOS-, LXRβ- and ER-dependent manner. EA.hy926 cells (A, C, and D) or isolated primary mouse EC (B) were grown to near-confluence, and a defined region was removed by a cell scraper. The cells were treated with vehicle control (Veh.), 10 nM E2, 1 μM T1317, 1 μM GW, 10 μM 22RHC, or 5% FBS (as a positive control) in the absence or presence of 100 nM L-NAME (LN) (A) or 100 nM ICI (D) for 20 hours and stained with hematoxylin, and cells migrating past the wound edge (from left to right in A) were quantified. Original magnification, ×40. All graphs depict summary data (mean ± SEM, n = 3–4, *P < 0.05 vs. vehicle control; †P < 0.05 vs. –E2). NT, not tested.

(Figure 1A and refs. 19, 26), and the synthetic LXR agonists T0901317 (T1317) and GW3965 (GW) also promoted EC migration to degrees similar to those observed with 5% FBS. Evaluations of transcript abundance revealed that among the 2 known isoforms of LXR, LXRβ is the more abundant isoform in ECs (Supplemental Table 1; supplemental material available online with this article; doi:10.1172/JCI66533DS1), and the abundance of ERα and LXRβ proteins was not changed under the experimental conditions tested (Supplemental Figure 1A). Studies performed in the presence versus absence of hydroxyurea, which blocks cell division (27), demonstrated that the responses to E2 and LXR agonists are indicative of cell migration occurring independently of the stimulation of cell growth (Supplemental Figure 1B). Recognizing the important role of eNOS in EC migration induced by stimuli such as VEGF and E2 (28), the involvement of NOS in the actions of LXR agonists was assessed by NO inhibition. The responses to E2, T1317, and GW were all fully prevented by the nonspecific NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) (Figure 1A). In contrast, neither iNOS- nor nNOS-specific inhibitors, 1400W and ARR17477, respectively, altered T1317-stimulated migration (Supplemental Figure 1C), indicating that the LXR-mediated processes are eNOS dependent. Primary ECs isolated from wild-type and LXR-null mice were then studied to determine whether the effect of the LXR agonist T1317 was LXR specific and to identify the operative receptor subtype(s). E2 activated the migration of both Lxrα+/− and Lxra/b−/− ECs (Figure 1B). In contrast, whereas T1317 promoted the migration of EC from Lxrα+/− mice, there was no migration stimulated by T1317 in ECs from Lxra/b−/− mice. Furthermore, whereas the effect of T1317 on cell migration persisted in ECs from Lxra+/− mice, it was lost in ECs from Lxra/b−/− mice, indicating that LXRβ is responsible for the EC migration stimulated by the LXR agonist. T1317 stimulated EC migration in a dose-dependent manner in the absence of E2, and T1317 in the presence of a submaximal concentration of E2 (10 nM) had neither an additive nor a synergistic effect (Figure 1C). Since the latter finding suggests that common mechanisms may mediate the responses to LXR and ER activation, potential functional linkage between the receptors was evaluated using the ER antagonist ICI 182,780 (ICI). ICI inhibited the EC migration stimulated by either E2 or the LXR agonists T1317 and 22RHC (Figure 1D).

Next, we determined which ER isoform is responsible for the induction of migration by T1317 using the ERα- and ERβ-specific antagonists 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP) and 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP), respectively. T1317-stimulated migration was prevented by the ERα-specific antagonist MPP, but not by the ERβ-specific antagonist PHTPP (Supplemental Figure 2A). Furthermore, whereas E2 and T1317 stimulated migration in control ECs previously transfected with scrambled siRNA sequence (scRNA) (Supplemental Figure 2B), the response was lost in ECs in which ERα protein abundance was reduced by siRNA (Supplemental Figure 2B). These cumulative results indicate that LXRβ activation promotes EC migration via ERα and eNOS.

LXR have nonnuclear action and activate eNOS and Akt via ER. In previous studies, we demonstrated that nonnuclear ERα signaling underlies estrogen-induced EC migration (19). Having found that LXRβ-mediated EC migration occurs via ERα, the possibility was raised that LXR have nonnuclear action in ECs that influences cell motility. We tested this by assessing rapid changes in the actin cytoskeleton in response to LXR agonist in the absence or presence of actinomycin D using phalloidin staining. Under control conditions, ECs exhibited diffuse distribution of actin and few if any stress fibers (Figure 2A). T1317 treatment (10 minutes) caused stress fiber formation, and the response was not altered by actinomycin D. Since the EC migration promoted by LXR activation is eNOS-dependent (Figure 1A), we next determined whether LXR acutely stimulate eNOS activity using bovine aortic EC (BAEC), in which rapid eNOS activation is readily quantified by measuring 14C-l-arginine conversion to 14C-l-citrulline in intact cells during...
15-minute incubations (19). Both E2 and T1317 activated eNOS, and both responses were fully abolished by ICI (Figure 2B). eNOS activation by ERα is mediated by the phosphorylation of the serine residue at amino acid 1177 (Ser1177) of eNOS by Akt (18). E2 and the LXR agonists T1317 and 22RHC caused increases in eNOS Ser1177 phosphorylation, and the promotion of phosphorylation by all agents was inhibited by ER antagonism with ICI (Figure 2C). E2 and the LXR agonists also induced comparable phosphorylation of Akt at Ser473 (Figure 2D), the increase was inhibited by ICI, and in studies of T1317 activation of Akt, it was observed as early as 5 minutes after agonist exposure (Supplemental Figure 3).

To then determine whether LXRβ is required for the effect of LXR agonists on Akt, siRNA against LXRβ was introduced into ECs. The siRNA targeting LXRβ markedly decreased LXRβ protein abundance, but not ERα expression in ECs (Supplemental Figure 4). Whereas E2, T1317, and GW induced equal Akt phosphorylation in control cells (Figure 2E), the knockdown of LXRβ fully prevented Akt phosphorylation in response to T1317 and GW, but not in response to E2 (Figure 2F). Taken together, these results indicate that LXRβ has nonnuclear action in EC, that LXRβ activates eNOS by stimulating its phosphorylation by Akt, and that these processes are entirely ER dependent. It is notable that, in contrast, nonnuclear ER signaling is not dependent on LXRβ.

LXRβ interacts directly with the ligand-binding domain of ERα. To investigate potential functional interaction between LXRβ and ERα of consequence to nonnuclear LXRβ signaling in ECs, we first performed communoprecipitation experiments using EC whole-cell lysates and an anti-ERα antibody. LXRβ was coimmunocytochemically detected in ECs treated with vehicle or 1 μM T1317 for 10 minutes, with or without prior and concurrent treatment with 5 μg/ml actinomycin D, and changes in the actin cytoskeleton were visualized using Alexa Fluor 488 phalloidin. Representative images from 3 separate experiments. Original magnification, ×200. (B) eNOS activation in BAEC was tested during 15-minute incubations of intact cells with either 10 nM E2 or 1 μM T1317, with or without 100 nM ICI added. Values are mean ± SEM, n = 3–4; *P < 0.05 vs. vehicle control. (C and D) ECs were treated with 10 nM E2, 1 μM T1317, or 10 μM 22RHC with or without 100 nM ICI for 20 minutes. Phosphorylated eNOS (Ser1177) and total eNOS (C), or phosphorylated Akt (Ser473) and total Akt (D) were then detected by immunoblot analysis, and the ratios of phospho-eNOS to total eNOS (C) and phospho-Akt to total Akt (D) were calculated (mean ± SEM, n = 3, *P < 0.05 vs. vehicle control). (E and F) scRNA (E) or siRNA against LXRβ (siLXRβ) (F) were introduced into BAEC, and 48 hours later, the cells were treated with 10 nM E2, 1 μM T1317, or 1 μM GW for 20 minutes. The abundance of phospho-Akt relative to total Akt was determined by immunoblotting (mean ± SEM, n = 3, *P < 0.05 vs. vehicle control). In C–F, representative blots from 3 separate experiments are shown.
Figure 3
LXRβ and ERα interact directly via the ligand-binding domain of ERα. (A) EA.hy926 cells were treated with vehicle, 10 nM E2, 1 μM T1317, or T1317 plus 100 nM ICI for 20 minutes, and cell lysates were prepared for immunoprecipitation with control IgG (cont. IgG) or anti-ERα antibody. Immunoprecipitated proteins were detected by immunoblotting with anti-LXRβ or anti-ERα antibodies, and the ratio of immunoprecipitated LXRβ to ERα proteins against vehicle control was calculated (mean ± SEM, n = 3, *P < 0.05 vs. vehicle control, **P < 0.05 vs. T1317 alone). For the ERα immunoblot, the lanes were run on the same gel but were noncontiguous. (B) In vitro communoprecipitation assays were performed using recombinant wild-type Flag-ERα or deletion mutant proteins and LXRβ protein. Linear depiction of the ERα constructs tested (numbered 1–7) is provided in the upper panel. The proteins were incubated with 1 μM T1317 for 2 hours at 4°C, and immunoprecipitation was performed with control IgG or anti-LXRβ antibody. Immunoprecipitated proteins were separated by SDS-PAGE and detected by immunoblot analysis with anti-Flag or anti-LXRβ antibodies. Results shown in A and B were confirmed in at least 3 independent experiments.

The Journal of Clinical Investigation http://www.jci.org Volume 123 Number 8 August 2013 3491
To identify the signaling mechanisms that underlie ER\(\alpha\) Ser118 phosphorylation by LXR, pharmacologic inhibitors of kinases known to be required for ER\(\alpha\) phosphorylation were used (33). ER\(\alpha\) phosphorylation induced by the LXR agonist GW was attenuated by the PI3K inhibitor LY294002 and by the Akt inhibitor Akti-1/2, but not by the MEK1/2 inhibitor PD0325901 (Figure 5B). Thus, PI3K and Akt are required for ER\(\alpha\) Ser118 phosphorylation in response to LXR activation. LY294002 and Akti-1/2 also inhibited Akt Ser473 phosphorylation activated by LXR agonist (Figure 5C). In parallel studies, PI3K inhibition by LY294002 blunted both E2- and T1317-induced activation of Akt Ser473 phosphorylation and EC migration (Supplemental Figure 7).

To further delineate whether ER\(\alpha\) Ser118 phosphorylation is necessary for LXR nonnuclear signaling, we tested LXR agonist activation of Akt phosphorylation in HEK293 cells that have endogenous LXR\(\beta\) but not ER\(\alpha\) (Supplemental Figure 8A). E2, T1317, and GW failed to induce Akt phosphorylation in the parental ER\(\alpha\)-negative HEK293 cells (Figure 5D). In contrast, in HEK293 cells expressing ER\(\alpha\), Akt phosphorylation was activated by E2 or the LXR agonists, and the activation by all 3 compounds was inhibited by ICI (Figure 5E). However, E2 and the LXR agonists failed to activate Akt phosphorylation in cells expressing a mutant form of ER\(\alpha\) in which Ser118 was mutated to alanine (ER\(\alpha\)Ser118A; Figure 5F). Neither E2 nor T1317 treatment induced Akt phosphorylation in response to Ser118 phosphorylation is necessary for LXR nonnuclear signaling. Further, the overexpression of ER\(\alpha\) Ser118A in ECs had a dominant negative effect, completely preventing the stimulation of EC migration by either E2 or T1317 (Figure 5G). Taken together, these results demonstrate that ER\(\alpha\) Ser118 phosphorylation by PI3K-Akt is required for nonnuclear signaling and resulting cell migration provoked by LXR\(\beta\).

Figure 4

LXR\(\beta\) is colocalized and functionally coupled to ER\(\alpha\) in EC caveolae/lipid rafts. (A) ER\(\alpha\) and LXR\(\beta\) abundance in BAEC nuclear (Nuc), cytoplasmic (Cyto), PM and caveolae/lipid raft (Cav) fractions were evaluated by immunoblot analysis. Lamin B and caveolin-1 (Cav1) proteins served as markers of nuclear and caveolae/lipid raft fractions, respectively. (B) BAEC nuclear and PM proteins isolated in A were subjected to immunoprecipitation using control IgG or anti-ER\(\alpha\) antibody in the presence of 1 \(\mu\)M T1317 for 1 hour, followed by immunoblot analysis with anti-LXR\(\beta\) or anti-ER\(\alpha\) antibodies. In A and B, protein distributions were assessed in 2 parallel samples. (C) eNOS activity in the caveolae/lipid raft fraction of BAEC was quantified during 60-minute incubations with vehicle, 1 \(\mu\)M T1317, or T1317 plus 100 nM ICI. Values are mean \(\pm\) SEM, \(n = 3\), *\(P < 0.05\) vs. vehicle control; †\(P < 0.05\) vs. T1317 alone. Findings were confirmed in 2 independent experiments.

Nonnuclear LXR\(\beta\) signaling requires PI3K-Akt-dependent ER\(\alpha\) Ser118 phosphorylation. In the absence of estrogen, peptide growth factors such as EGF and IGF-1 cause the phosphorylation of ER\(\alpha\) at Ser118. This process is mediated by MAP kinase, and it enhances the binding of the receptor to p160 coactivators (31, 32). Since we have discovered that LXR has nonnuclear function in ECs mediated by ER\(\alpha\) in the absence of estrogen, we determined whether LXR activation causes the phosphorylation of ER\(\alpha\). Either E2 or T1317 treatment for 20 minutes resulted in an increase in ER\(\alpha\) Ser118 phosphorylation, and ICI inhibited T1317-induced phosphorylation (Figure 5A).

To identify the signaling mechanisms that underlie ER\(\alpha\) Ser118 phosphorylation by LXR, pharmacologic inhibitors of kinases known to be required for ER\(\alpha\) phosphorylation were used (33). ER\(\alpha\) phosphorylation induced by the LXR agonist GW was attenuated by the PI3K inhibitor LY294002 and by the Akt inhibitor Akti-1/2, but not by the MEK1/2 inhibitor PD0325901 (Figure 5B). Thus, PI3K and Akt are required for ER\(\alpha\) Ser118 phosphorylation in response to LXR activation. LY294002 and Akti-1/2 also inhibited Akt Ser473 phosphorylation activated by LXR agonist (Figure 5C). In parallel studies, PI3K inhibition by LY294002 blunted both E2- and T1317-induced activation of Akt Ser473 phosphorylation and EC migration (Supplemental Figure 7).

To further delineate whether ER\(\alpha\) Ser118 phosphorylation is necessary for LXR nonnuclear signaling, we tested LXR agonist activation of Akt phosphorylation in HEK293 cells that have endogenous LXR\(\beta\) but not ER\(\alpha\) (Supplemental Figure 8A). E2, T1317, and GW failed to induce Akt phosphorylation in the parental ER\(\alpha\)-negative HEK293 cells (Figure 5D). In contrast, in HEK293 cells expressing ER\(\alpha\), Akt phosphorylation was activated by E2 or the LXR agonists, and the activation by all 3 compounds was inhibited by ICI (Figure 5E). However, E2 and the LXR agonists failed to activate Akt phosphorylation in cells expressing a mutant form of ER\(\alpha\) in which Ser118 was mutated to alanine (ER\(\alpha\)Ser118A; Figure 5F). Neither E2 nor T1317 treatment induced Akt phosphorylation in response to Ser118 phosphorylation is necessary for LXR nonnuclear signaling. Further, the overexpression of ER\(\alpha\) Ser118A in ECs had a dominant negative effect, completely preventing the stimulation of EC migration by either E2 or T1317 (Figure 5G). Taken together, these results demonstrate that ER\(\alpha\) Ser118 phosphorylation by PI3K-Akt is required for nonnuclear signaling and resulting cell migration provoked by LXR\(\beta\).

LXR activation relaxes precontracted aortic rings via NOS stimulation. To translate the observations regarding LXR coupling to eNOS in cultured ECs to the function of the receptor in intact endothelium, tensiometry was performed using isolated rings of rat aorta, in which NOS activation by ER and resulting effects on vascular tension can be quantified (26, 34). Aortas were incubated with E2 or T1317 for 24 hours, and contraction induced by 100 nM phenylephrine (PE) was measured. The stimulation of contraction by PE was blunted by treatment with E2 or T1317 (Figure 6, A and B, and Supplemental Figure 9). We confirmed that the endothelium was intact in all samples by evaluating relaxation in response to acetylcholine at the end of the assay. The inhibition of PE-induced contraction by T1317 was dose dependent (Supplemental Figure 9), and the vasodilating effects of both E2 and T1317 were not observed in the presence of the NOS antagonist NG-methyl-L-arginine (L-NNA), indicating that they are NOS dependent. Importantly, the effects of E2 and T1317 on aortic contraction were not related to changes in eNOS protein abundance (Figure 6C). These findings indicate that LXR activation causes vascular relaxation via the stimulation of NOS activity in intact endothelium.

LXR\(\beta\) activation promotes reendothelialization via ER\(\alpha\). To determine how LXR regulate vascular endothelium in vivo, we studied carotid artery reendothelialization after perivascular electric injury in mice, which is an established model in which nonnuclear ER\(\alpha\) activation promotes endothelial repair (19). Male mice were treated with vehicle or T1317 for 3 days, and carotid artery endothelium was denuded by perivascular electric injury. The mice subsequently received treatment for 4 additional days, and the amount of remaining denudation 4 days after injury was visualized using Evans blue dye. Figure 7A shows representative images of the carotid artery intimal surface, and summary findings are given in Figure 7B. In Lhra\(-/\)- and Lxrb\(-/\)- mice, markedly more reendothelialization occurred with T1317 versus vehicle treatment, as indicated by the smaller area of remaining denudation. In contrast, the promotion of reendothelialization by T1317 did not occur in Lhra\(-/\)- or Lxrb\(-/\)- mice. We next determined whether LXR\(\beta\)-mediated reendothelialization requires ER\(\alpha\). The effect of the LXR agonist T1317 on reendothelial-
ization was compared in \textit{Era}^{+/+} male mice treated with vehicle versus the ER antagonist ICI for 3 days prior to injury and for 4 days after injury. In \textit{Era}^{+/+} mice, T1317 promoted reendothelialization, and this was fully prevented by concomitant treatment with ICI (Figure 7, C and D). Furthermore, T1317-induced reendothelialization was absent in \textit{Era}^{--} mice. These findings mirror the observation regarding ER\textsubscript{α}-dependent, LXR\textsubscript{β}-induced activation of migration by cultured ECs (Figure 1). Thus, LXR\textsubscript{β} activation promotes reendothelialization in vivo, and the process requires ER\textsubscript{α}.

Discussion

In the current study, we investigated the role of LXR in the regulation of EC function and discovered a pathway by which non-nuclear actions of LXR\textsubscript{β} promote EC migration. Using complementary EC and reconstitution cell-culture models as well as in vitro protein-protein interaction assays, we found that LXR\textsubscript{β} interacts directly with ER\textsubscript{α} via the ligand-binding domain of ER\textsubscript{α}, that upon activation by its ligands, LXR\textsubscript{β} has increased interaction with ER\textsubscript{α} and causes ER\textsubscript{α} Ser118 phosphorylation through PI3K-Akt, and that the phosphorylation of ER\textsubscript{α} Ser118 is required for resulting eNOS-dependent stimulation of EC migration.

We and others have previously demonstrated that a PM-associated subpopulation of ER causes potent activation of EC growth and migration and the inhibition of apoptosis in EC (17, 35). These processes are mediated by ER in caveolae/lipid rafts that are coupled to multiple signaling molecules including Src, PI3K, and Akt, and thereby also to eNOS (20, 28). In the present study, we provide what we believe is the first evidence that a subpopu-
ization of LXRβ is associated with caveolae/lipid rafts on the EC PM and that through partnership with ERα in caveolae, LXRβ is operative in nonnuclear signaling of consequence to EC behavior. The biochemical approach used for the caveolae/lipid raft fractionation is a well-established method, and we and others have confirmed that the caveolae membranes obtained are not contaminated by proteins from the nucleus (20, 29), where LXR is abundant. Importantly, we demonstrate functional coupling of LXR with ER that results in eNOS activation in isolated caveolae/lipid rafts. Further evidence of LXR function on the PM was obtained by the observation that LXR agonist activation of Akt in intact ECs was prevented by the disruption of caveolae architecture with cyclodextrin. Interestingly, in VSMCs, LXR activation alters angiostatin II-induced phosphorylation of Erk and also the phosphorylation of the transcription factor SPI (36). Thus, nonnuclear signaling by LXR may serve important functions in additional cell types besides ECs.

Our work also indicates that LXRβ interacts directly with ERα and that the interaction is increased by LXR agonist or by E2. It has been reported that LXR directly binds to AP1 (37), which is a well-known molecular and functional partner of ERα. However, we believe the current findings are the first to demonstrate direct interaction between LXR and a steroid hormone receptor. We further delineated that the interaction involves the N terminus of the ERα ligand–binding domain and that the ER antagonist ICI fully inhibits the promotion of LXRβ-ERα interaction by LXR agonist. Since we previously demonstrated that structurally different ER ligands induce distinct conformational changes in ERα (38), the latter finding suggests that the dynamic interaction between LXRβ and ERα is strongly influenced by the tertiary structures of the 2 receptor proteins.

Multiple steroid and nonsteroid nuclear receptors such as ER, progesterone receptor, androgen receptor, retinoic acid receptor, retinoid X receptor, and vitamin D receptor are activated in a ligand-independent manner by phosphorylation (33, 39, 40). ERα has a protein-protein interaction with the IGF-1 receptor and is phosphorylated at Ser118 by IGF-1 through MAPK in the absence of E2 (31), and this process influences the transcriptional activity of ERα and contributes to the development of ER-positive cancer cell resistance to endocrine therapy (33). Our discovery that ERα Ser118 phosphorylation is required for either E2 or LXR agonist to invoke Akt activation is the first demonstration, to our knowledge, that Ser118 phosphorylation promotes the nonnuclear function of ERα. LXR modulation of ERα Ser118 phosphorylation differs from the process by which IGF-1 does so because MAPK is not required. In addition, it is notable that Akt participates both upstream and downstream of ERα in this newly identified LXRβ nonnuclear signaling cascade. Recognizing that multiple isoforms of Akt are expressed in EC and that the Akt isoforms serve distinct functions (41–43), one possibility worthy of future study is that different Akt isoforms participate proximal versus distal to ERα.

Our observations regarding mechanistic linkage between LXRβ and ERα and the resulting promotion of both NO production by the endothelium of intact arteries and endothelial monolayer integrity in vivo have potentially important implications for cardiovascular health and disease. NO is a potent atheroprotective molecule via numerous mechanisms, and NO deficiency contributes to the earliest process in atherogenesis (28, 44). The disruption of the endothelial monolayer plays an integral role in the initiation of both restenosis and atherosclerosis (12). It perturbs the ability of the endothelium to modulate local hemostasis and thrombosis, and in the absence of the tempering influence of the endothelium, VSMC proliferate and produce extracellular matrix proteins, resulting in the formation of neointima or atherosclerotic lesions (12). Consistent with our discovery that LXRβ partnership with ERα avidly promote NO production and endothelial monolayer integrity through processes that are independent of LXRα, previous studies have shown that LXRβ activation attenuates atherosclerosis in the absence of LXRα (45, 46). Interestingly, it has been observed that the atheroprotection afforded by LXR agonists is greater in male versus female mice. Since female mice (6) are less prone to atherosclerosis than males due to estrogen- and ERα-mediated processes (16), the decreased atheroprotection provided by LXR agonists in females versus males may be consistent with our finding that LXR and ER modify EC behavior through common mechanisms. Thus, our
The discovery of the capacity of LXRβ to beneficially affect both NO production and endothelial repair via coupling with ERα may explain certain prior observations regarding the role of LXRβ in the modulation of vascular health and disease. A limitation of the current work is that the discrete role of EC LXRβ in protection from atherosclerosis and other vascular disorders has not been directly interrogated by cell-specific gene silencing in vivo. However, based on the new functional pathway that we report, future studies of this nature are warranted.

Using complementary cell culture and in vivo models and both genetic and pharmacologic manipulation, we have identified an unanticipated nonnuclear function of LXRβ in ECs and show that this entails unique crosstalk between LXRβ and ERα, with important consequences on both NO production and endothelial monolayer integrity. Further work targeting endothelial LXRβ-mediated processes may lead to new prophylactic or therapeutic approaches to restenosis, atherosclerosis, and other vascular diseases.

Methods

Materials. T1317 and 1400W were purchased from Cayman Chemical Co. ICI, MPP, and PHTPP were purchased from Tocris. LY294002, Akti-1/2, and PD0325901 were purchased from EMD Millipore. L-NAME, E2, GW, 22RHC, hydroxyurea, ARR17477, methyl-β-cyclodextrin, and L-NNA were purchased from Sigma-Aldrich. Anti-phosphorylated eNOS (Ser1177), anti-total eNOS, anti-phosphorylated Akt (Ser473), anti-total Akt, anti-caveolin-1, and anti-phosphorylated ERα (Ser118) antibodies were purchased from Cell Signaling. Anti-total ERα, anti-β-actin, anti-ERβ, and anti-lamin B antibodies were purchased from Santa Cruz Biotechnology Inc. Anti-LXRβ and anti-Flag antibodies were purchased from Perseus Proteomics and Roche Diagnostics, respectively.

RT-qPCR. Evaluations of transcript abundance were performed using RT-qPCR as described in the Supplemental Methods and Supplemental Table 2.

EC migration. Migration studies were performed as described (26). Briefly, EA.hy926 cells were plated in 1% dextran-charcoal–stripped FBS on 6-well plates and grown to near confluence, cells in half the well were removed with a cell scraper, the remaining cells were washed with PBS and treatments were added, and 20 hours later, they were stained with hematoxylin. To quantify cell migration, we counted cells that had migrated past the wound edge per mm wound length. In additional experiments, ECs were obtained from Lxra/b+/+ or Lxra/b–/– mice as previously described (47). The cells were used within 3 passages. When multiple reagents were used, cells were treated with them concurrently. EC experiments employing siRNA for gene silencing or involving gene introduction were performed using BAEC in which these manipulations are readily accomplished by transfection using Lipofectamine 2000 (26).

Actin immunofluorescence. EA.hy926 cells were plated on 8-well chamber slides (Lab-Tek) in 5% dextran-charcoal–stripped FBS. The following day the cells were treated with vehicle or T1317 for 10 minutes, fixed in 3% paraformaldehyde in PBS for 10 minutes, washed 3 times with PBS, stained with Alexa Fluor 488 phalloidin (Molecular Probes), and viewed by fluorescent microscopy. The requirement for gene transcription in LXR-induced changes in the actin cytoskeleton was tested by adding actinomycin D (5 μg/ml).

Immunoblot analyses. eNOS and Akt phosphorylation were detected by immunoblot analysis with anti-phospho-eNOS (Ser1177) and anti-phospho-Akt (Ser473) antibodies, respectively, and results were normalized to β-actin. Anti-ERα and anti-Flag antibodies were used as loading controls.
research article

Central arterial remodeling. Mouse carotid artery reendothelialization after perivascular electric injury was performed as described (26). Briefly, the superior portion of the left carotid artery was subjected to current along 4 mm of artery length using bipolar forceps. This results in endothelial denudation with minimal effect on the medial layer (49). The area of remaining denudation 4 days after injury was determined by injection of Evans blue dye into the left ventricle, which is incorporated in the denuded region, and quantification of the dye-stained area by blinded image analysis. Endothelial denudation and recovery after injury in this model has been confirmed by immunohistochemistry for von Willebrand factor (50). Studies were performed in Loxa/β−/−, Loxa−/−, Lxrβ−/−, and Loxa/β−/− mice, or in Era−/− and Era−/− mice (51–53), which were housed in a temperature-controlled environment with 12-hour light/12-hour dark cycles. Age-matched (16 to 20 weeks old) male mice were fed ad libitum standard chow powdered diet supplemented with T1317 (50 mg/kg body weight) or vehicle (0.9% carboxy methyl cellulose, 9% PEG-400, and 0.05% Tween 80) from 3 days before vascular injury through the duration of the experiments. For ICI treatment, animals were injected subcutaneously with 100 μg/mouse of ICI or vehicle daily from 3 days before the injury through the duration of the experiments. Statistics. Results are presented as mean ± SEM, and differences between groups were assessed by 1-way ANOVA followed by the Neuman-Keuls procedure. P < 0.05 was considered statistically significant.

Study approval. All animal experiments were approved by the UT Southwestern Medical Center Institutional Animal Care and Research Advisory Committee.

Acknowledgments

The authors thank K. Chambliss, C. Mineo, K. Kamm, K. Luby-Phelps, and K. Rothberg for help on experiments; C.-J. Edgell for providing EA.hy926 cells; D. Mangelsdorf and S. Kliewer for critical review of the manuscript; and members of the Shaul and Mango/Kliewer labs for helpful suggestions. This work was supported by grants from the American Heart Association (0865158F to M. Umetani), the NIH (HL087564 to P.W. Shaul), and the Lowe Foundation (to P.W. Shaul).

Received for publication August 24, 2012, and accepted in revised form May 9, 2013.

Address correspondence to: Michihisa Umetani, Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9063, USA. Phone: 214.648.9180; Fax: 214.648.2096; E-mail: Michihisa.Umetani@utsouthwestern.edu.