iPSC-derived β cells model diabetes due to glucokinase deficiency

Haiqing Hua,1,2 Linshan Shang,1 Hector Martinez,1 Matthew Freeby,2 Mary Pat Gallagher,2 Thomas Ludwig,2 Liyong Deng,2 Ellen Greenberg,2 Charles LeDuc,2 Wendy K. Chung,2 Robin Goland,2 Rudolph L. Leibel,2 and Dieter Egli1

1The New York Stem Cell Foundation Laboratory, New York, New York, USA. 2Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.

Diabetes is a disorder characterized by loss of β cell mass and/or β cell function, leading to deficiency of insulin relative to metabolic need. To determine whether stem cell–derived β cells recapitulate molecular-physiological phenotypes of a diabetic subject, we generated induced pluripotent stem cells (iPSCs) from subjects with maturity-onset diabetes of the young type 2 (MODY2), which is characterized by heterozygous loss of function of the gene encoding glucokinase (GCK). These stem cells differentiated into β cells with efficiency comparable to that of controls and expressed markers of mature β cells, including urocortin-3 and zinc transporter 8, upon transplantation into mice. While insulin secretion in response to arginine or other secretagogues was identical to that in cells from healthy controls, GCK mutant β cells required higher glucose levels to stimulate insulin secretion. Importantly, this glucose-specific phenotype was fully reverted upon gene sequence correction by homologous recombination. Our results demonstrate that iPSC-derived β cells reflect β cell–autonomous phenotypes of MODY2 subjects, providing a platform for mechanistic analysis of specific genotypes on β cell function.

Introduction
Recent progress in somatic cell reprogramming has allowed the generation of induced pluripotent stem cells (iPSCs) from diabetic subjects (1). Human pluripotent stem cells, including iPSCs and human ES cells, have the capacity to differentiate into insulin-producing cells (2), which display key properties of true β cells, including glucose-stimulated insulin secretion upon maturation in vivo (3). iPSCs have been generated from patients with various types of diabetes (2, 4, 5). However, whether iPSC-derived β cells can accurately replicate pathologic phenotypes, and be used to test strategies to restore normal β cell function, is not clear. As proof of principle, we chose to model a monogenic form of diabetes, maturity-onset diabetes of the young type 2 (MODY2) (6).

MODY is caused by single gene mutations, resulting in defects in the development, proliferation/regeneration, and/or function of β cells (7). MODY accounts for 1 to 5 percent of all instances of diabetes in the United States (8), and MODY2, caused by mutations in the glucokinase (GCK) gene, accounts for 8% to 60% of all MODY cases, depending on population sampling (9, 10). GCK links blood glucose levels to insulin secretion by converting glucose to glucose-6-phosphate, the rate-limiting step in glycolysis. The catalytic capacity of GCK in β cells determines the threshold for glucose-stimulated insulin secretion. Due to hypofunction of one allele of GCK, the dose-response curve relating glucose and insulin secretion obtained with graded glucose infusions is shifted to the right in the MODY2 subjects, resulting in mild hyperglycemia (11). Subjects with permanent neonatal diabetes, caused by the absence of both GCK alleles, are insulin dependent at birth and show intrauterine growth retardation (12). In a mouse model, heterozygous loss of GCK causes hyperglycemia, early-onset diabetes (10 weeks old), reduced response to glucose stimulation (13), and an inability to increase β cell mass under conditions of insulin resistance (14). Mouse islets with homozygous loss of GCK fail to increase insulin release in response to glucose in vitro (13).

These well-characterized consequences in mice and humans allow assessment of the accuracy of stem cell models for diabetes. Such models will offer significant advantages over a genetically manipulated mouse or human subjects for preclinical testing of therapeutic strategies and for drug screening as well as for studies designed to gain insight into the molecular mechanisms of how specific genotypes affect β cell function and cause diabetes in human subjects. For example, while it is known that GCK affects glucose-stimulated insulin secretion, whether insulin biosynthesis and/or β cell proliferation is also affected could not be determined in human subjects.

We found that iPSCs from MODY2 subjects heterozygous for hypomorphic GCK mutations differentiated into insulin-producing β cells with an efficiency comparable to that of controls. In contrast, stem cells with 2 inactive GCK alleles showed a reduced capacity to generate insulin-producing cells. Hypomorphic GCK alleles reduced insulin secretion specifically in response to glucose but not in response to other secretagogues, including arginine. The responsiveness to glucose was restored when the GCK mutation was corrected by homologous recombination. These results demonstrate that iPSC-derived patient-specific β cells recapitulate the anticipated functional phenotypes observed in human subjects and enable analysis of aspects of cellular physiology not otherwise possible.

Results
Stem cells with an allelic series at the GCK locus. We obtained skin biopsies from 2 MODY2 subjects: a 38-year-old woman of European descent diagnosed with diabetes at the age of 21 years and a 56-year-old man of European descent who was diagnosed with diabetes at the age of 47 years. Both of them had a family history of diabetes, were negative for antibodies associated with type 1 diabetes, non-obese (BMI = 21–26 kg/m²), and positive for measurable, but low, antibodies against GCK.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2013;123(7):3146–3153. doi:10.1172/JCI67638.
Both mutations have been shown to be functionally hypomorphic, with less than 1% of activity of the wild-type allele (16).

iPSC lines were generated from skin cell lines using nonintegrating Sendai viruses (Supplemental Figure 2, A and B, and ref. 17). The iPSCs with the hypomorphic \(GCK \) mutations had the expression profile of pluripotent cells and the capability to differentiate into endodermal, mesodermal, and ectodermal tissues (Supplemental Figure 2, C–E). Because of genetic diversity in humans, controlling for effects of the genetic background is critical for functional comparisons between mutant and nonmutant cells (18). To generate cell lines with identical genetic background but with dif-

serum C-peptide (0.1–0.4 ng/ml) (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI67638DS1). MODY2 subjects typically display mild fasting hyperglycemia and can generally be managed with dietary therapy alone, while additional pharmacotherapy is sometimes used to optimally control blood glucose excursions (15). In the 2 MODY2 subjects from whom skin biopsies were obtained, diabetes control was excellent (HbA1C ≤ 6.5%) on insulin or sulfonfonyurea-related agents (Supplemental Table 1). Exonic sequencing of \(GCK \) revealed that the female subject carries a missense mutation (G299R) (Figure 1A). Both mutations have been shown to be functionally hypomorphic, with less than 1% of activity of the wild-type allele (16).

iPSC lines were generated from skin cell lines using nonintegrating Sendai viruses (Supplemental Figure 2, A and B, and ref. 17). The iPSCs with the hypomorphic \(GCK \) mutations had the expression profile of pluripotent cells and the capability to differentiate into endodermal, mesodermal, and ectodermal tissues (Supplemental Figure 2, C–E). Because of genetic diversity in humans, controlling for effects of the genetic background is critical for functional comparisons between mutant and nonmutant cells (18). To generate cell lines with identical genetic background but with dif-

Figure 1
An allelic series of \(GCK \) mutations in cells from a MODY2 subject. (A) Structure of the \(GCK \) gene and nucleotide sequences of the mutations. Black boxes represent exons. The asterisks indicate the mutations (E256K and G299R). (B) Schematic view of the first step of the gene correction procedure: exons 7–10 of \(GCK \), either the mutant or the wild-type allele, were replaced with a hygro-TK cassette. Sequences at the mutation site were analyzed by Sanger sequencing. P1 and P2 (blue arrows) were the primers used to detect integration of the hygro-TK (see Supplemental Table 2 for primer sequences). (C) Scheme of the second round of gene targeting replacing the hygro-TK cassette with the wild-type locus marked by an intronic SNP (triangle). Both targeting steps were facilitated by site-specific endonucleases, a ZFN for the first step and I-SceI for the second step. Green bars indicate the restriction sites, and the red bar indicates the probe used for Southern blot analysis. Blue bars represent primers used to screen and identify targeting events (see Supplemental Table 2 for primer sequences). PCR (with P1 and P3) and Sanger sequencing showed the corrected sequence at the mutation site and the intronic SNP that marks the corrected allele. (D) Southern blot analysis showing 2 bands representing the targeted allele (\(GCK^{\text{hygro}} \), 1.5 kb) and the nontargeted allele (\(GCK^{\text{hygro}} \) or \(GCK^{G299R}\text{hygro} \), 2.4 kb). (E) Karyotype analysis of \(GCK^{\text{corrected+}} \) cells.
different genotypes at the GCK locus, we performed targeted genetic modifications (Figure 1B). We designed a 2-step targeting protocol that allowed the precise correction of the mutant base pair, without leaving a footprint of exogenous DNA. We first targeted the GCK locus with a linearized construct containing a PGK-hygro-TK fusion gene flanked by 2 segments of the GCK locus corresponding to intron 6 and exon 10 in GCKG299R/− cells. mRNA encoding a zinc-finger nuclease (ZFN) to induce a double-strand break 1,150 bp upstream of the G299R mutation was introduced into GCKG299R/− cells with the targeting plasmid to facilitate homologous recombination. Hygromycin-resistant colonies of transfected GCKG299R/− cells were expanded and tested for homologous integration using PCR primers annealing to the genomic sequence and to the hygro-TK cassette (Figure 1B). Of 201 hygromycin-resistant colonies, 14 (7%) showed targeting of the construct to either the wild-type or the mutant allele, resulting in GCKG299R/hyg and GCK−/hyg cells, respectively (Figure 1C). Cells carrying the GCK−/hyg allele with exons 7–10 disrupted, in combination with the G299R mutation, are expected to have very little, if any, GCK activity.

In a second step, 2 wild-type copies of GCK were restored in GCK+/hyg cells using a plasmid containing the wild-type GCK locus, which was marked with a SNP in intron 7 to distinguish the 2 copies of GCK. A plasmid encoding the endonuclease I-SceI site was cotransfected to induce a double-strand break at an I-SceI recognition site located in the hygro-TK cassette to facilitate homologous recombination and to replace all vector sequences, including the TK gene (Figure 1B). Ganciclovir-resistant colonies were screened for homologous integration using PCR with one primer outside of the targeting construct and one primer within the construct, followed by sequencing of the induced SNP. Two out of 96 colonies (2% efficiency) had correctly targeted to the GCK locus and restored 2 wild-type copies of GCK, and this was also confirmed by Southern blotting (Figure 1D); these cells were karyotypically normal (Figure 1E) and designated GCK corrected/+. These targeted manipulations resulted in an allelic series of cells that were wild-type (GCKcorrected/+), hypomorphic (GCKG299R/−), and/or null (GCKG299R/hyg) for GCK function on the same genetic background, allowing us to exclude potential confounding effects of different genetic backgrounds in subsequent experiments.

Efficient β cell generation from GCK-deficient iPSCs. Human ES cells and iPSCs can be differentiated toward insulin-producing cells after stepwise differentiation into definitive endoderm (SOX17+/−), pan-
creatic progenitors (PDX1+), and endocrine progenitors (NGN3+)
(2, 19). While published protocols yielded SOX17- and PDX1-posi-
tive cells, insulin-producing cells were not obtained (Supplemental
Figure 3A). We noticed that 3 days after induction of differen-
tiation (stage 1), colonies with the morphology of pluripotent stem
cells were still apparent. These cells retained OCT4 expression and
failed to commit to the endoderm lineage, as evidenced by the lack
of SOX17 expression (Supplemental Figure 3B). We reasoned that
interfering with the pluripotent state should increase the ability of
activin to direct differentiation toward the endoderm lineage. Cell-
to-cell interactions mediated by E-cadherin are critical for main-
taining pluripotency of ES cells (20). When the calcium chelator
EGTA, an inhibitor of cadherin-mediated cell-cell attachment, was
added on the first day of differentiation, the tight colony morphol-
oogy of iPSCs was lost (Figure 2A). In parallel, the percentage of
OCT4-SOX17+ cells was reduced from 5% to 2% (Figure 2B), while
the percentage of endodermal (SOX17+OCT4+) cells was increased
by 25.5% (Figure 2C). These responses, in the aggregate, resulted in
a 21.7% (mean of 4 different cell lines) increase in PDX1-positive
cells on day 8 of differentiation (stage 3) (Supplemental Figure
3C). To further improve differentiation conditions from pancreatic
progenitor to β cells, exendin-4, a glucagon-like peptide-1 agonist,
and SB431542, a TGF-β signaling inhibitor, were added to stage 3
progenitor cells. Both of these additions enhanced the differentia-
tion efficiency of β cells to 4.6% and 8.2% (C-peptide+), respectively,
consistent with previous observations (21–23). A combination of
exendin-4 and SB431542 treatment from day 9 to day 12 produced
the highest percentage of β cells (15%) (Figure 2D). We found that
our modified protocol efficiently induced differentiation of both
ES cells and iPSCs (Figure 2D and below and Supplemental Fig-
ure 3D). When differentiated into β cells, control and MODY2
stem cells showed similar efficiency of generating C-peptide+ cells
from PDX1+ progenitors (Supplemental Figure 3D). These cells
expressed β cell transcription factor PDX1 and NKX6.1 (Figure 2E).
To assess the temporal expression pattern of GCK during the in
vitro differentiation process, we measured GCK mRNA levels at
definitive endoderm (day 3 of differentiation), pancreatic endo-
derm (day 8), and endocrine (day 12) stages. Expression of GCK was
detected only at the endocrine stage, coinciding with the expres-
sion of insulin (Figure 2F). We observed that in our differentiation
culture 38% of the insulin-producing cells also immunostained for
gluagon and 14% of the insulin-producing cells also expressed
somatostatin, similar to previous observations (ref. 19 and Supple-
mental Figure 3E). Cells coproducing insulin and glucagon also
appear during development of human fetal pancreas (24), suggest-
ing that these cells were not fully differentiated. Further differentia-
tion into monohormonal cells occurred in vivo, after transplanta-
tion of cells at day 12 of differentiation under the kidney capsule
of immune-compromised mice. Three months after transplanta-
tion, 24 out of 50 mice had detectable human C-peptide in their
sera (Figure 3A). To determine whether the C-peptide originated
from the transplants, we removed the transplants from 7 mice and
found that none retained detectable human C-peptide in the sera
(Figure 3B). Immunohistochemistry of the isolated graft showed that
hormone-expressing cells in the transplants expressed solely
insulin, glucagon, or somatostatin (Figure 3C). We also observed
the presence of urocortin-3 and zinc transporter 8 in the insulin-
positive cells in the transplants (Figure 3D), while these markers of
mature β cells were absent in β cells derived in vitro (Supplemental
Figure 4A and refs. 25, 26).

GCK mutations specifically affect glucose-mediated insulin secretion.
β Cells in MODY2 patients with GCK mutations are able to
respond to glucose but with reduced sensitivity (11). To deter-
mine whether this phenotype can be recapitulated by iPSC-
derived β cells, we performed intraperitoneal glucose tolerance
tests on transplanted mice. We measured both human C-pei-
tide and glucose concentrations in the blood and found a dose
responsiveness of C-peptide to circulating blood glucose concen-
tration. We evaluated the sensitivity of human insulin-producing
transplanted cells by assessing the slopes of these relationships.
GCKG299R+/− cells showed a reduced sensitivity to glucose compared
with control cells (Figure 3E). Gene correction in GCKcorrected+/− cells
restored glucose sensitivity to that of control cells. If GCK
effects are mediated solely by impact on glucose sensing, insulin
secretion in response to secretagogues acting independently of
glycose should be unaffected. To test this possibility, we first
performed glucose-stimulated insulin secretion assays on in vitro
differentiated β cells. In order to bracket physiologically relevant
concentrations of glucose, we treated iPSC-derived β cells and
human islets with 5.6 mM and 16.9 mM. 2.5 mM and 20 mM
insulin were also used to treat control and MODY2 iPSC-derived
β cells. β Cells derived from human ES cells and control iPSCs
showed increased C-peptide secretion (mean: 2.1 fold; range
0.8–3.5; 21 out of 28 biological replicates showed >1.2-fold
increase). In contrast, GCKG299R/−, GCKG299R+/−, and GCKG299R/hygro
cells showed no increase (mean: 0.9 fold; range 0.7–1.1; none of
the 25 biological replicates showed >1.2-fold increase) (Figure
4A and Supplemental Figure 4B). Importantly, correction of the
G299R mutation to the wild-type nucleotide sequence restored
glucose responsiveness: GCKcorrected+/− cells showed a 1.6-fold
increase in glucose-stimulated C-peptide secretion (range: 1.1–2.3;
4 out of 5 biological replicates showed >1.2-fold increase; P = 0.003)
(Figure 4A). When exposed to other secretagogues, GCKG299R+/−
and GCKG299R/hygro cells increased C-peptide release in response to argi-
nine (3 to 4 fold), potassium (3 to 4 fold), and Bay K8644, a cal-
mium channel agonist (3 to 5 fold), identical to control cells (Fig-
ure 4B and Supplemental Figure 4B). Therefore, GCK mutations
specifically affect glucose-mediated insulin secretion.

GCK mutations may also affect other aspects of β cell function,
such as production/processing of insulin precursors or interfer-
ence with insulin secretion or β cell proliferation. These differ-
ent possibilities have not been addressed in human cells thus
far. We found that insulin content was comparable in control
β cells and cells with GCKG299R+/−, GCKG299R/hygro, and GCKcorrected+/−
genotypes (Figure 4C). By electron microscopy, cellular granule
morphology and numbers were comparable in wild-type cells
(average 173 granules per cross-section) and GCKG299R+/− cells
(average 220 granules per cross-section) (Supplemental Figure
4, C and D). We also found that heterozygous loss of GCK didn’t
alter the yield of β cells from PDX1+ progenitors, but a reduc-
tion in β cell generation was observed in GCKG299R/hygro cells (5%
C-peptide positive in GCKG299R/hygro cells versus 10% C-peptide
positive in GCKG299R+/− or GCKcorrected+/− cells) (Figure 4D). This
difference could be caused by reduced replication of β cells,
because we observed a reduction of Ki67-positive β cells (31%
C-peptide–positive cells) in the GCKG299R/hygro genotype, com-
pared with the GCKG299R+/− (41%), GCKcorrected+/− (45%), and control
GCK+/− (HUES42, 49%) genotypes (Figure 4E). Therefore, hap-
loinsufficiency of GCK does not affect insulin biosynthesis and
proliferation of iPSC-derived β cells in vitro.
The Journal of Clinical Investigation
http://www.jci.org Volume 123 Number 7 July 2013

responded to elevated glucose with lower sensitivity compared with gene-corrected control cells but were otherwise comparable to control cells in insulin production and processing and insulin secretion in response to other secretagogues, such as arginine.

Discussion
In this study, we tested the fidelity with which β cell–autonomous defects in a monogenic form of diabetes are reflected by iPSC-derived insulin-producing cells. We found that MODY2 β cells responded to elevated glucose with lower sensitivity compared with gene-corrected control cells but were otherwise comparable to control cells in insulin production and processing and insulin secretion in response to other secretagogues, such as arginine.

Figure 3
β Cells derived in vivo display characteristics of mature β cells. (A) Human C-peptide concentrations in mouse sera collected in the fasting state. Error bars represent standard deviation. (B) Measurement of human C-peptide levels in mouse sera prior to and after excision of the transplants. Mice transplanted with GCK mutant cells (GCKG299R+/+) are shown. Error bars represent standard deviation. (C and D) Immunohistochemistry of explants isolated 4 months after transplantation of GCK mutant cells (GCKG299R+). GCG, glucagon; SST, somatostatin; INS, insulin; UCN-3, urocortin-3; ZNT8, zinc transporter 8. Scale bar: 10 μm (C); 100 μm (D). (E) Scatter plots showing fold change in C-peptide concentration (30 minutes after glucose injection versus 16 hours of fasting) versus the change in capillary blood glucose concentration (30 minutes after glucose injection minus 16 hours of fasting) during intraperitoneal glucose tolerance tests.
findings demonstrate that cells heterozygous for hypomorphic GCK mutations recapitulate key aspects of the MODY2 phenotype.

The observation of anticipated phenotypes using iPSC-derived β cells suggests that differences between GCK mutant and control cells that cannot be readily investigated in human cells may also reflect aspects of the human disease. We found that in vitro differentiated β cells carrying 2 inactive GCK alleles, but not cells with 1 or 2 functional GCK alleles, yielded a lower number of β cells, at least partially as a result of effects on proliferation. Though the β cells generated in vitro show high rates of proliferation that are more similar to those of the embryonic than the adult pancreas (27), GCK is expressed in β cells of fetal islets (28, 29), and Porat et al. recently demonstrated a role for GCK in regulating β cell proliferation in adult mice (30). We also found that in vitro, but not upon further differentiation in vivo, GCK mutant β cells failed to increase insulin secretion at high ambient glucose concentrations. Whether this difference reflects an involvement of GCK in establishing responsiveness to glucose during functional maturation of β cells remains to be investigated.

iPSC-derived cells should enable novel insights into the molecular cell biology of β cell failure in virtually all forms of diabetes. Stem cell models of diabetes should not only allow deeper insight into the consequences of specific mutations on β cell function but, in doing so, also shed light on the molecular physiology of the β cell in prevalent clinical circumstances. Common variants of WFS1 (31), KCNJ11 (32), and GCK (33, 34) increase the risk of type 2 diabetes. Stem cell–based approaches may also allow the investigation of genes modifying penetrance of specific mutations that affect β cell function. Importantly, we were also able to demonstrate that the specific correction of the mutant base pair in the GCK locus by homologous recombination restores glucose-stimulated insulin secretion. Our system of homologous recombination offers a significant advantage over previously reported techniques, as it is both efficient and does not result in the introduction of exogenous DNA sequences, such as loxP sites (35). The generation of autologous β cells in combination with gene correction may ultimately be useful for cell replacement to restore normal glucose homeostasis.

Methods
Research subjects and cell lines. Biopsies of upper arm skin were obtained from 2 MODY2 subjects and a healthy subject using local anesthesia (lidocaine) and an Actu-Punch Biopsy Kit (Acuderm Inc.). Samples were coded and transported to the laboratory. Biopsies were cut in 10 to 12 small pieces, and 2–3 pieces of minced skin were placed around a silicon droplet in 6-well dishes. A glass cover slip was placed over the biopsy pieces, and 5 ml biopsy plating media was added. After 5 days, biopsy pieces were grown in culture medium for 3 to 4 weeks. Biopsy plating medium was composed of DMEM, FBS, GlutaMAX, Anti-Anti, NEAA, 2-Mercaptoethanol, and nucleosides (all from Invitrogen), and culture medium contained DMEM, FBS, GlutaMAX, and Penicillin/Streptomycin (all from Invitrogen).
HUES42 was chosen from a collection of Harvard University ES cell lines based on its robust and consistent ability to produce β cells in vitro (36).

Generation of iPSCs. Primary fibroblasts were converted into pluripotent stem cells using the CytoTune-iPS Sendai Reprogramming Kit (Invitrogen). 50,000 fibroblast cells were seeded per well in a 6-well dish at passage 3 and allowed to recover overnight. The next day, Sendai viruses expressing human transcription factors OCT4, SOX2, KLF4, and C-Myc were mixed in fibroblast medium to infect fibroblast cells according to the manufacturer’s instructions. Two days later, the medium was exchanged with human ES medium supplemented with the ALK5 inhibitor SB431542 (2 μM; Stemgent), the MEK inhibitor PD0325901 (0.5 μM; Stemgent), and rhazovirin (0.5 μM; Stemgent). Human ES medium contained KO-DMEM, GlutMAX, NEAA, 2-Mercaptoethanol, Penicillin/Streptomycin, and β-gal (all from Invitrogen). On day 7–10 after infection, cells were detached using TrypLE and passaged onto feeder cells. Individual colonies of iPSCs were picked between days 21 and 28 after infection, and each iPSC line was expanded from a single colony. All iPSCs lines were cultured on mouse embryonic fibroblast cells with human ES medium. Karyotyping was performed by Cell Line Genetics Inc. For teratoma analysis, 1–2 million cells from each iPSC line were detached and collected after TrypLE (Invitrogen) treatment. Cells were suspended in 0.5 ml human ES media. The cell suspension was mixed with 0.5 ml Matrigel (BD Biosciences) and injected subcutaneously into dorsal flanks of an immunodeficient mouse (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, stock no. 005557, The Jackson Laboratory) (37). Eight to twelve weeks after injection, teratomas were harvested, fixed overnight with 4% paraformaldehyde, and processed according to standard procedures for paraffin embedding. The samples were then sectioned and H&E stained.

Gene expression analysis. Total RNA was isolated from cells with the RNAeasy Kit (Qiagen). For quantitative PCR analysis, CDNA was synthesized using the Promega RT system (Promega). Primers for qRT-PCR are listed in Supplemental Table 2. For microarray analysis, RNA was prepared using the Illumina Total Prep RNA Amplification Kit (Ambion) and hybridized to HumanRef-8 v3 BeadChip Kit (Illumina). The global expression profiles of the samples were analyzed, with normalization to average and subtraction of background using GenomeStudio Software (Illumina), and a hierarchical cluster tree was generated based on the correlation coefficients among samples. All array data are available at the Gene Expression Omnibus (accession no. GSE45777).

Directed differentiation into β cells. ES cells or iPSCs were dissociated using Dispase (3–5 minutes) and, subsequently, Accutase (both from Invitrogen) (5 minutes). Cells were suspended in human ES medium containing 10 μM ROCK inhibitor (Y27632) and filtered through a 70-μm cell strainer. Cells were then plated at a density of 400,000 cell per well in 12-well plates. After 1 or 2 days, when cells reached 80%–90% confluency, differentiation was started. Detailed formulations of differentiation media are listed in Supplemental Table 3. Typically, cells were assayed between day 12 and day 16. For measuring proliferation rate, cells were assayed at day 12. Insulin contents were measured using the Insulin ELISA Kit (Mercodia).

Gene targeting. A targeting vector (pBS-PGK-hytk-Iselc-LoxP) was constructed by cloning a PGK-hygro-TK cassette into a pBlueScript SK+ vector. A LoxP site was added upstream of the cassette. A LoxP and an I-SceI site were constructed by cloning a PGK fragment of GCK (see Supplemental Table 2 for primer sequences) into pCR2.1-TOPO vector using the TOPO TA Cloning Kit (Invitrogen).

A pair of ZFNs was designed by Sigma-Aldrich to recognize the following sequence in intron 7 of GCK: CGTCAATACCGAGTGgggcgcCTTCCGGGACTCCGGGC (with uppercase letters representing the ZFN-binding site and lowercase letters representing the cut site). 5 μg of each ZFN-encoding plasmid (RNA) and 5 μg of the targeting plasmid (DNA digested with Clal and NotI, gel purified) were used to transfect 1 million GCK+/hygro cells. Transfection was performed using Amaxa Nucleofector (program A-13) and Human Stem Cell Solution I (Lonza). After transfection, cells were seeded on a 10-cm culture dish and allowed to recover for 2 days. Cells were then selected by 2 days of exposure to hygromycin (50 μg/ml). Resistant colonies were screened by PCR. The GCK+/hygro cells were transfected by 5 μg of the correction plasmid and 5 μg of a plasmid carrying the l-Scel enzyme using the method described above. After transfection, cells were treated with 2 μg/ml ganciclovir for 2 days. PCR and sequencing were used to screen the resistant colonies, and Southern blotting was used to confirm targeted integration. Southern blotting was performed using the DIG System following the manufacturer’s instruction (Roche). Primers for probe synthesis are listed in Supplemental Table 2. DNA from stem cells was prepared using the High Pure PCR Template Preparation Kit (Roche). 10 μg of DNA from each cell line was digested with BglII and XbaI.

Immunostaining. Cultured cells were briefly washed with PBS and fixed with 4% paraformaldehyde for 30 minutes at room temperature. Embryoid bodies and mouse kidneys were fixed with 4% paraformaldehyde overnight at 4°C, dehydrated using 15% (w/v) sucrose and 30% (w/v) sucrose solution, embedded in OCT compound (Tissue-Tek), and frozen at ~80°C. Fixed cells or frozen sections were blocked in 5% normal donkey serum for 30 minutes. Primary antibodies used in the study were as follows: mouse anti–C-peptide (05-1109; Millipore), goat anti-glucagon (A065601; DAKO), goat anti-PDX1 (AF2419; R&D Systems), goat anti-SOX17 (AF1924; R&D Systems), mouse anti-OCT4 (sc-5279; Santa Cruz Biotechnology Inc.), rabbit anti-SOX2 (09-0024; Stemgent), mouse anti-SSEA4 (MAB143; R&D Systems), goat anti-NANOG (AF1997; R&D Systems), mouse anti-TRA1-60 (MAB4360; Millipore), rabbit anti-AFP (A008029; DAKO), mouse anti-NKKX2.2 and mouse anti-MF20 (DSHB), rabbit anti-TUJ1 (T3952; Sigma-Aldrich), sheep anti-NGN3 (SAB300089; Sigma-Aldrich), rabbit anti-Ki67 (ab15580, Abcam), rabbit anti-UCN3 (HPA038281, Sigma-Aldrich), and rabbit anti-ZNT8 (PA5-21010; Thermo Scientific). Appropriate secondary antibodies were obtained from Invitrogen. Quantification of positively stained cells was performed using the Celigo Cytometer system (Cyntellect).

Transplantation. On day 12 of differentiation, cells were dissociated using TrypLE (5 minutes at room temperature). Aliquots of 2 to 3 million cells were collected into an eppendorf tube. Cells were spun down, and the supernatant was discarded. 10–15 μl Matrigel (BD Biosciences) was added into each tube. Each tube of cell mixture was transplanted under the kidney capsule of an immunodeficient mouse, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (005577; The Jackson Laboratory) (37), following a previously described protocol (38). For human islet transplantation, approximately 300 human islets obtained from National Disease Research Interchange were transplanted. Three months after transplantation, human C-peptide was determined in the sera of recipient mice. An intraperitoneal glucose tolerance test was performed between 100 and 120 days after transplantation.

Insulin secretion assay. Typically, cells were cultured in 12-well dishes. After 12 days of differentiation, cells were washed for 1 hour in CMRL medium. Cells were then incubated in 300 μl CMRL medium containing 5.6 mM glucose for 1 hour, and the medium was collected. Subsequently, 300 μl CMRL medium containing 16.9 mM glucose or other secretagogues was used to treat cells for 1 hour, after which the medium was collected. For in vivo tests, mice were deprived of food overnight with ad libitum access to water. After 12 to 14 hours of fasting, capillary blood glucose concentrations were determined by tail bleed using an Alpha-
Track glucometer (Abbott). Venous blood samples were collected via the submandibular vein. Intraperitoneal glucose was then administered (1 mg/g body weight), and a half hour later blood samples were obtained via the submandibular vein. Blood samples were kept at room temperature for 2 hours, and serum was obtained by centrifuging blood samples at 1,800 g for 15 minutes.

C-peptide concentrations in media or mouse sera were measured using an ultrasensitive human C-peptide ELISA Kit according to the manufacturer’s instructions (Mercodia). All mouse studies were reviewed and approved by the IACUC of Columbia University.

Transmission electron microscopy. Cells were fixed with 2.5% glutaraldehyde in 0.1 M Sorenson’s buffer (pH 7.2) for 1 hour. Further processing and imaging of the samples was performed by Diagnostic Service, Department of Pathology and Cell Biology, Columbia University. Insulin granules were defined as electron-dense granular structures using a magnification of x7,500. The number of insulin granules was determined for 3 cells of each cell line by manual counting.

Statistics. Two-tailed Student’s t test was used to determine statistical significance of differences between 2 groups. P values of less than 0.05 were considered significant.

Study approval. Human subject research was reviewed and approved by the Columbia University Stem Cell Committee and the Columbia University IRB. Animal experimentation was approved by the Columbia University IACUC.

We thank Andrew Sproul and Samson Jacob (The New York Stem Cell Foundation) for assistance in Southern blotting. This work was supported by The New York Stem Cell Foundation, The Russell Berrie Foundation, a grant from the Leona M. and Harry B. Helmsley Charitable Trust, The Hunter Eastman Scholar Award in Translational Diabetes Research, The James and Irene Hunter Charitable Fund, an ADA-Mentored Fellowship to H. Hua, and NIH grants RO1 DK52431 and P30DK063608.

Received for publication November 1, 2012, and accepted in revised form April 16, 2013.

Address correspondence to: Rudolph Leibel, 1150 St. Nicholas Avenue, Room 620A, New York, New York 10032, USA. Phone: 212.851.5315; Fax: 212.851.5306; E-mail: rhl232@columbia.edu. Or to: Dieter Egli, The New York Stem Cell Foundation, 3960 Broadway, New York, New York 10032, USA. Phone: 212.851.5422; Fax: 212.851.5423; E-mail: d.egli@nyscf.org.

Thomas Ludwig’s present address is: Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.