Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

Eric D. Berglund,1 Chen Liu,1 Jong-Woo Sohn,1 Tiemin Liu,1 Mi Hwa Kim,1 Charlotte E. Lee,1 Claudia R. Vianna,1 Kevin W. Williams,1 Yong Xu,2,3 and Joel K. Elmquist1,4

1Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA. 2Children’s Nutrition Research Center, Department of Pediatrics and 3Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA. 4Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA.

Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor–expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor–expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

Introduction

Pharmacological compounds that target central serotonin (5-hydroxytryptamine [5-HT]) signaling potently regulate energy homeostasis and have been used effectively as antiobesity drugs in humans (1). A prime example is d-fenfluramine (d-Fen), which acts to broadly amplify central serotonin bioavailability and was widely used in combination with phenteramine (Fen-Phen) to successfully induce weight loss. Unfortunately, d-Fen and other nonspecific serotonergic agonists were linked to adverse cardiovascular side effects and were withdrawn from clinical use (2, 3). Subsequent work has focused on dissecting how serotonin and d-Fen modulate a complex central serotonergic system, composed of 14 different serotonin receptor isoforms in multiple cell types, to stimulate weight loss (4, 5). These efforts have pinpointed the fact that serotonin and d-Fen act predominantly via central serotonin 2C receptors (6–8) and downstream melanocortin pathways to suppress feeding, thus reducing body weight (9–11). The serotonin 2C receptor agonist Belviq (lorcaserin) is the first FDA-approved drug to treat obesity in 15 years and is a highlight of the serotonin 2C receptor expression in POMC neurons to control energy and glucose homeostasis. The arcuate nucleus of the hypothalamus (ARH) express serotonin 2C receptors and receive input from other serotonin-immunoreactive nerve terminals (9, 20). Serotonin 2C receptor agonists also stimulate POMC expression in the ARH (16, 21). Recent work in vivo also found that serotonin 2C receptor reactivation specifically in POMC neurons of otherwise serotonin 2C receptor–null mice improves energy and glucose homeostasis and is sufficient to mediate the anorexic effects of d-Fen (11, 22, 23). In the current studies, we directly assessed the requirement for intact serotonin 2C receptors to regulate glucose homeostasis and to mediate pharmacologically induced hypophagia. To this end, we engineered new mouse models to selectively delete serotonin 2C receptors in POMC neurons during early development or adulthood.

Results

Generation and validation of the Htr2c<sup>cre^{lox} mouse. To develop a mouse model that allows Cre recombinase–mediated (cre-mediated) specific deletion of serotonin 2C receptors, we inserted two loxP

Authorship note: Eric D. Berglund and Chen Liu are co–first authors and Yong Xu and Joel K. Elmquist are co–senior authors.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2013;123(12):5061–5070. doi:10.1172/JCI70338.
sequences to flank exons 4 and 5 of the Htr2c gene (Figure 1A). Since Htr2c is an X-linked gene, male mice that are hemizygous (2Cflox/Y) for the floxed Htr2c allele are predicted to lack serotonin 2C receptors in all cre-expressing cells (24). To validate this mouse model, we first bred male 2C +/+ mice with female 2C flox/+ animals expressing cre in zona pellucida cells (ZP3-cre; ref. 25) to produce whole-body Htr2c-null progeny (2Cflox/Y × ZP3-cre). Progeny were born at Mendelian ratios, and chow-fed 2C flox/Y × ZP3-cre mice on a mixed C57BL/6J and 129X1/SVJ background exhibited higher mortality rates consistent with seizure-induced death reported in other whole-body serotonin 2C receptor–null mouse models (ref. 6 and Figure 1B). This phenotype was nearly absent in 2Cflox/Y × ZP3-cre mice when backcrossed onto a more enriched C57BL/6J background. Our analyses of 2C flox/Y × ZP3-cre mice fed an obesiogenic high-fat/high-sugar (HFHS) diet also revealed augmented obesity and hyperglycemia versus controls as predicted based on the literature (refs. 7, 23, and Figure 1, C and D).

Next, we bred 2Cflox/+ mice with previously characterized animals in which cre is constitutively (developmentally) expressed in POMC neurons (26) to ablate serotonin 2C receptors in this distinct neuronal subset (2Cflox × POMC-cre). Progeny were born at Mendelian ratios, and there was no evidence of increased mortality in 2Cflox × POMC-cre mice. To validate POMC-specific serotonin 2C receptor deletion, the cre-inducible reporter tdTomato allele was bred into male 2Cflox × POMC-cre mice and POMC-cre mice, respectively. We then used electrophysiological techniques (22) to record identified POMC neurons in the ARH. We observed the expected cellular responses to mCPP in intact mice (POMC-cre × tdTomato), but deletion of serotonin 2C receptors completely blocked these responses in 2Cflox × POMC-cre (2Cflox × POMC-cre) littermate mice in E–I. Results are shown as the mean ± SEM. *P < 0.05 versus other genotypes assessed using a Student’s t test.

Constitutive loss of serotonin 2C receptors in POMC neurons produces hyperphagia and alters energy balance. We first assessed whether deleting serotonin 2C receptors in POMC neurons affects body weight in mice fed a standard chow diet. Body weights in chow-fed 2Cflox × POMC-cre mice were similar to those of the control littermates.
upon weaning (4 week of age; data not shown) and were also comparable in these mice between 8 and 20 weeks of age (Figure 2A). We then placed mice of similar body weight (Supplemental Figure 2A) in metabolic cages while fed a chow diet to assess their energy balance. Surprisingly, food intake as well as VO2, VCO2, and physical activity were all elevated in the chow-fed 2C flox × POMC-cre mice (Figure 2, C, D, and F). We found that the respiratory exchange ratio (RER) was similar between the chow-fed groups (Figure 2E). These simultaneous increases in both energy intake and energy expenditure in chow-fed 2Cflox × POMC-cre mice suggest that offsetting mechanisms underlie comparable body weights in chow-fed mice. We next assessed the responses of the mice following exposure to an HFHS diet. In contrast to the chow-fed mice, the body weight of HFHS-fed 2Cflox × POMC-cre mice increased significantly at approximately 4 weeks after the introduction of the HFHS diet, indicating an increased susceptibility to diet-induced obesity (Figure 2G). HFHS-fed 2Cflox × POMC-cre mice were approximately 25% heavier than controls at 20 weeks of age (12 weeks on an HFHS diet; Figure 2G) due to elevated adiposity (Figure 2H). We next used metabolic cages to determine the mechanisms underlying the increased sensitivity to diet-induced obesity in 2C flox × POMC-cre mice. We performed experiments first in the chow-fed mice acutely transitioned to an HFHS diet. This strategy resulted in similarly increased body weight after 1 week of an HFHS diet (Supplemental Figure 2B). Acute exposure to an HFHS diet exacerbated only hyperphagia in 2Cflox × POMC-cre mice (Figure 2I). VO2, VCO2, and physical activity levels were not elevated compared with the chow condition in the mutant mice (Figure 2, J, K, and M). We found that the
RER was reduced in all groups by an HFHS diet, but was modestly higher over a 24-hour period in 2Cflox × POMC-cre mice (Figure 2L). HFHS-induced changes in food intake and VO₂, VCO₂, or physical activity were predominantly due to changes during the dark phase. Taken together, these data suggest that hyperphagia is the primary defect leading to diet-induced obesity in 2Cflox × POMC-cre mice.

To confirm that these acute responses to an HFHS diet are relevant to long-term changes that underlie exaggerated HFHS-induced obesity in 2Cflox × POMC-cre mice, we also performed metabolic cage studies in 20-week-old mice that had been chronically exposed to an HFHS diet for 12 weeks. As expected, body weight in older HFHS-fed 2Cflox × POMC-cre mice was elevated (Figure 3A). In agreement with data obtained in younger, acutely HFHS-fed mice, we found that food intake was elevated in the chronically HFHS-fed 20-week-old 2Cflox × POMC-cre mice (Figure 3B). These changes were due to differences in the dark phase. Analyses of VO₂ relative to body weight in 2Cflox × POMC-cre mice fed an HFHS diet for 12 weeks also revealed lowered rates versus the control cohorts (Figure 3C). VCO₂ rates were similar to those of other genotypes, and these changes in VO₂ and VCO₂ corresponded to a higher RER during the dark phase (Figure 3E).

Taken together, these data suggest that chronically fed 2Cflox × POMC-cre mice are hyperphagic, yet maintain a normal body weight due to compensatory adaptations in energy expenditure. We found that hyperphagia was the primary energy balance defect in 2Cflox × POMC-cre mice following HFHS diet exposure, since the HFHS diet augmented hyperphagia, while VO₂, VCO₂, and physical activity were unchanged. These latter results suggest that energetic mechanisms that protect against weight gain in chronically HFHS-fed mice were already elevated in the 2Cflox × POMC-cre mice. We conclude that these two inputs (increased hyperphagia and maximally impaired energy expenditure) combine to produce greater obesity in HFHS-fed 2Cflox × POMC-cre mice.

An additional energy balance–oriented goal of these studies was to better define where d-Fen and more specific serotonin 2C receptor agonists such as mCPP act to suppress food intake. To test the hypothesis that serotonin 2C receptor expression in POMC neurons is required for these effects, we administered d-Fen and mCPP to fasted mice and subsequently examined food intake using a previously described paradigm (23). As expected, d-Fen and mCPP potently suppressed food intake in littermate controls with intact serotonin 2C receptor signaling directly regulates glucose homeostasis (15–18, 22). Preliminary analyses of blood glucose in ad libitum chow-fed cohorts examined at the beginning of the light cycle (0700 h) showed modestly higher glucose levels in 2Cflox × POMC-cre mice versus littermate controls (Figure 5A). We next examined blood glucose and the glucoregulatory hormones insulin and glucagon in chronically fed mice (where differences in body weight do not exist) as well as in HFHS-fed mice. Blood glucose in chronically fed 2Cflox × POMC-cre mice was modestly, but significantly, elevated in postabsorptive (4- to 5-hour morning-fasted) mice, but was not in 12- or 24-hour overnight-fasted mice (Figure 5A). HFHS feeding provoked a similar rise in blood glucose in postabsorptive (4- to 5-hour morning-fasted) conditions, but this increment versus chronically fasted cohorts was comparable, suggesting similar secondary insults (Figure 5A). Similar to blood glucose levels, plasma insulin and glucagon were elevated in postabsorptive mice, but were comparable in

Figure 3
Mice lacking Htr2c in POMC neurons and chronically fed an HFHS diet exhibit obesity and altered energy balance. (A–E) Body weight, food intake, VO₂, VCO₂, and physical activity over a 1-week period in metabolic cages of 20-week-old male mice fed an HFHS diet for 12 weeks (n = 6–9 mice per genotype). Control genotypes (WT, POMC-cre, and 2Cflox/Y littermates) are combined to improve clarity in C (no differences exist between these groups). Results are shown as the mean ± SEM. *P < 0.05 assessed using Student’s t-tests or ANOVA.
overnight fasted chow-fed 2C flox × POMC-cre mice (Figure 5, B and C). An HFHS diet also elicited the predicted rise in plasma insulin in postabsorptive conditions, which was exaggerated in 2C flox × POMC-cre mice (Figure 5B). This latter difference is likely due to greater HFHS-induced obesity in 2C flox × POMC-cre mice (Figure 2, B and C). An HFHS diet did not, however, further worsen circulating glucagon levels (Figure 5C). We found that plasma leptin levels were comparable in all chow-fed groups, and increases in HFHS diet groups were in accord with differences in adiposity.

We next performed hyperinsulinemic-euglycemic clamps to assess whether insulin sensitivity was impaired in 8- to 9-week-old 2C flox × POMC-cre mice compared with their 2C flox littermates. Previous studies have shown that insulin-mediated suppression of endogenous glucose production and stimulation of glucose disposal are identical in POMC-cre mice and their WT littermates (27). These data demonstrate that expression of the POMC-cre transgene does not independently affect clamp data. Experiments were performed first in postabsorptive (4- to 5-hour morning-fasted) animals with matched body weights (2C flox: 25.0 ± 1.2 g vs. 2C flox × POMC-cre: 25.1 ± 1.7 g, P > 0.05). During the clamp, the incremental rise in insulin levels was comparable between genotypes (Figure 5D). This acute rise in insulin did not, however, suppress hyperglucagonemia in 2C flox × POMC-cre mice (Figure 5E). Blood glucose was successfully clamped at target levels (Supplemental Figure 3A), and the exogenous glucose infusion rate (GIR) was lower in 2C flox × POMC-cre mice, indicating a reduced insulin sensitivity (Figure 5F). This difference in GIR was due to impaired insulin-mediated suppression of endogenous glucose appearance (endo Ra) (Figure 5G) and not glucose disappearance (R d) (Figure 5H). Together, these clamp experiments, in which glucagon levels did not always differ, indicate a modest contribution to impaired postprandial insulin suppression of endo Ra.

Collectively, these findings demonstrate that intact serotonin 2C receptor expression in POMC neurons is required to maintain normal glucose regulation. The fact that the mice studied were of comparable body weights demonstrates that the effects of serotonin 2C receptors on glycemic control are independent of their effects on body weight. These data highlight the notion that hyperglycemia is associated with both relative hyperglucagonemia and hyperinsulinemia as well as with a consistent impairment in insulin-stimulated endogenous glucose production. It is noteworthy that an HFHS diet further exacerbates hyperinsulinemia and therefore likely further impairs dysregulated insulin-mediated control of glucose flux, as indicated by hyperinsulinemic-euglycemic clamp studies in chow-fed mice.

Inducible loss of serotonin 2C receptors in POMC neurons in adult mice recapitulates aberrant energy and glucose homeostasis. We next asked whether adult-onset loss of serotonin 2C receptors in POMC neurons results in a phenotype similar to that of ablation during development. This is a key issue, because recent work has found that multiple lineages of hypothalamic neurons express POMC, including cells that may not express POMC in adult mice (28). Additionally, recent studies have shown that pre- and postnatal ablation of AgRP neurons results in disparate feeding behavior phenotypes (29). These latter findings suggest that phenotypes caused by prenatal ablation may be influenced by developmental compensation in central pathways that regulate food intake (29). To circumvent some of these issues, we developed a tamoxifen-inducible POMC-cre mouse model (POMC-cre:ERT2) that allows temporal control of cre recombinase activity and can be combined with 2C flox mice to enable adult-onset deletion. To validate this model, we administered tamoxifen to POMC-cre:ERT2 mice to coexpress the reporter tdTomato to provoke cre expression and assessed them using immunohistochemical techniques. We detected no cre activity in the vehicle-treated controls (data not shown). In contrast, tamoxifen treatment of POMC-cre:ERT2 mice induced expression of the cre-dependent reporter tdTomato (Figure 6A). We detected cre activity in greater than 95% of POMC neurons in the ARH (Figure 6, B and C), indicating successful development of the mouse model.
This novel mouse model was then used to induce adult-onset loss of serotonin 2C receptors in POMC neurons (2Cflox × POMC-cre:ERT2). In agreement with data using constitutive POMC-cre mice, the administration of tamoxifen to 11-week-old mice to induce adult-onset loss serotonin 2C receptors in POMC neurons did not affect body weight in the 12- to 20-week-old chow-fed cohorts (Figure 6D). We then placed these mice in metabolic cages to study energy balance in cohorts with similar body weights (Supplemental Figure 4A). In agreement with the data in chow-fed constitutive POMC-cre cohorts (see Figure 2), we found that the Chow-fed 2Cflox × POMC-cre:ERT2 mice exhibited higher food intake, VO2, and VCO2 (Figure 6, E–G). These elevations were due to differences in the dark phase. Neither the RER nor physical activity was different (Supplemental Figure 4, B and C).

We next assessed another cohort of 2Cflox × POMC-cre:ERT2 mice treated with tamoxifen at 11 weeks of age and switched to an HFHS diet 1 week after the first dose. In agreement with the data in the HFHS-fed constitutive POMC-cre cohorts (see Figure 2), HFHS-fed 2Cflox × POMC-cre:ERT2 mice exhibited increased body weight after 6 weeks of HFHS feeding (Figure 6H). Additionally, our metabolic cage studies in acutely HFHS-fed mice recapitulated our earlier findings in 2Cflox × POMC-cre mice (see Figure 2). Specifically, an HFHS diet stimulated hyperphagia, but did not further increase VO2 and VCO2 in 2Cflox × POMC-cre:ERT2 mice (Figure 6, I–K), whereas HFHS feeding in control mice led to approximately 11% to 13% rises in VO2 and VCO2 (Figure 6, F, G, J, and K). In addition, consistent with observations from mice with constitutive deletion of serotonin 2C receptors in POMC neurons, Chow-fed 2Cflox × POMC-cre:ERT2 mice displayed similar deficits in glycemic control. Thus, both blood glucose and glucagon levels were elevated 2 weeks after tamoxifen injections (mice were 13 weeks of age; Figure 7, A and B), while hyperinsulinemia was evident after 4 weeks (Figure 7C).
Taken together, these findings demonstrate that the metabolic outcomes induced by pre- and postnatal deletion of serotonin 2C receptors in POMC neurons are strikingly comparable. These data strengthen the evidence showing that loss of serotonin 2C receptors in POMC neurons induces modest hyperphagia that is insufficient to surpass the homeostatic control mechanisms regulating body weight. Obesigenic challenges such as an HFHS diet, however, exacerbate hyperphagia and overwhelm the protective processes that maintain normal body weight. These data also suggest that serotonin 2C receptor signaling in POMC neurons controls blood glucose as well as glucagon and insulin levels. Our data show that increased glucagon was the first observable change in the circulation.

Discussion

The current studies demonstrate that serotonin 2C receptor signaling in POMC neurons is required to maintain normal energy and glucose homeostasis. Selective loss of serotonin 2C receptor signaling in POMC neurons provokes hyperphagia, sensitizes mice to diet-induced obesity, and directly (i.e., independently of changes in body weight) dysregulates glucose homeostasis with elevations in circulating glucagon, insulin, and blood glucose. In addition to these physiological aberrations, loss of serotonin 2C receptor expression in POMC blunts the effects of d-Fen and mCPP to suppress food intake. Notably, these results were obtained using novel mouse models (2C flox/− and POMC-cre:ERT2 mice). Since serotonin 2C receptors are expressed widely in the CNS, 2C flox/− mice should prove to be a useful tool for studying the role of serotonin 2C receptors in other regions of the nervous system. In addition, the POMC-cre:ERT2 mouse model circumvents issues regarding differential phenotypes comparing constitutive versus adult-onset deletion (29).

The use of this mouse facilitates the ability to possibly temporally assess the effects of genetic manipulations of a number of genes in POMC neurons at different developmental and adult ages.

It is interesting that mice with global serotonin 2C receptor deficiency developed late-onset obesity when fed a chow diet (>26 weeks of age) and that this phenotype was accelerated by an obesigenic diet (6, 23). Since the serotonin 2C receptors expressed in POMC neurons are one of many targets of endogenous serotonin, it was not surprising that chow-fed 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice maintained normal body weight. It was surprising, however, that body weights in the 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice fed an obesigenic diet diverged from those of their littermate controls earlier than in the global serotonin 2C receptor-null mice (2C flox × ZP3-cre mice; Figure 1B) and also diverged earlier than previously reported timelines in other global serotonin 2C receptor–null models (6, 23).

It is also noteworthy that our examination of the chow- and HFHS-fed 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice supports and extends prior conclusions that serotonin 2C receptor neural circuits predominantly control feeding. Both 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice exhibited hyperphagia in chow-fed contexts that was exacerbated by an obesigenic challenge. Relative increases in VO2 and VCO2 were also evident in chow-fed 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice, but these processes were unaltered by an HFHS diet. These findings suggest that homeostatic control of feeding is deranged, while hedonic processes sensitive to an HFHS diet remain intact in mice lacking serotonin 2C receptors in POMC neurons. A related conclusion is that energy expenditure in both 2C flox × POMC-cre and 2C flox × POMC-cre:ERT2 mice remains functional to counteract the heightened energy intake seen in chow-fed contexts, but cannot further

Figure 6

Inducible deletion of serotonin 2C receptors (Htr2c) in POMC neurons of adult mice dysregulates energy homeostasis. Tamoxifen-inducible POMC-cre (POMC-cre:ERT2) mice that coexpress the cre-stimulated fluorescent reporter tdTomato were treated with 0.15 mg/kg tamoxifen (T) i.p. daily for 5 days, and immunohistochemistry was used to assess the expression of Tomato (A and C) and β-endorphin (B and C). Male POMC-cre:ERT2 (C) and 2C flox/− × POMC-cre:ERT2 (KO) littermate mice were then treated with tamoxifen or vehicle (V) at 11 weeks of age to assess their chow-fed body weight (D). This was repeated to assess metabolic cages studies in chow-fed mice (E–G; n = 7–9 mice per genotype). Male POMC-cre:ERT2 (WT) and 2C flox/− × POMC-cre:ERT2 (2C flox/KO) littermate mice were also fed an HFHS diet to assess body weight (H). (I–K) Metabolic cage data following 1-week exposure to an HFHS diet (n = 7–9 per genotype). Results are shown as the means ± SEM. *P < 0.05 versus other genotypes using Student’s t-tests.
increase to account for the additional energy intake in HFHS circumstances. These data, in concert with other studies focusing on POMC neuron–mediated regulation of feeding, suggest a complex neuronal circuitry in the ARH. The current data support models in which POMC neurons in the ARH control feeding. This is in contrast to recent data demonstrating that leptin receptor signaling via POMC neurons does not control food intake, but only energy expenditure (27, 30). Of note is the finding that serotonin 2C receptors and leptin receptors are expressed by anatomically and functionally distinct POMC neurons in the ARH (31, 32), but they converge on similar second-order neurons, including those expressing melanocortin 4 receptors (MC4Rs). It is currently unclear how serotonin 2C receptor– and leptin receptor–positive POMC neurons differentially control overlapping downstream pathways and/or interlinked physiological processes. Loss of leptin receptor signaling in POMC neurons modestly affects body weight (26, 30). Genetic loss of leptin receptors alone in POMC neurons does not produce a major glucoregulatory phenotype (26, 30). However, loss of both insulin and leptin receptors in POMC neurons does induce hepatic insulin resistance (30). In contrast, serotonin 2C receptor signaling in POMC neurons requires an obesogenic challenge for a body-weight phenotype, but these mice do exhibit glucoregulatory defects in chow-fed conditions.

We also found that both d-Fen and mCPP, drugs with serotonin 2C receptor agonist properties, were ineffective at suppressing feeding in 2C flox × POMC-cre mice. This was somewhat surprising because d-Fen and mCPP treatments were anticipated to provoke an intermediate hypophagic response in 2C flox × POMC-cre mice, given the multiple other serotonin 2C receptor–expressing sites of action. These results suggest that d-Fen and mCPP critically require serotonin 2C receptor expression in POMC neurons to suppress feeding. These data are topical because the highly specific serotonin 2C receptor agonist lorcaserin was approved recently as an antiobesity therapeutic agent by the FDA and is now available for prescription use in humans. Other pending antiobesity drugs that include combination therapies of buproprion and naltrexone or zonisamide also function to stimulate POMC neurons via different mechanisms and thus provoke weight loss (33). We anticipate that these current results as well as our new experimental tools described here will be relevant to future efforts at discerning the specifics about site(s) and mechanism(s) of action of these and potentially other drugs that target central serotonin 2C receptors.

Another salient finding in both the 2C flox × POMC-cre and 2C flox × POMC-cre:ER T2 models is the evidence supporting primary defects in glucose regulation. It is of note that differences in blood glucose were restricted to postabsorptive conditions in 2C flox × POMC-cre mice (not in overnight-fasted conditions), a pattern consistent with feeding-induced increases in central serotonin release and bioavailability (34). Analyses of factors that contribute to glycemic control revealed that mice lacking serotonin 2C receptors in POMC neurons were hyperinsulinemic, hyperglucagonemic, and insulin resistant. Glucagon was measured because of its effects on glucose metabolism (35), recent evidence that leptin (27) and glucagon-like peptide 2 (GLP-2) (36) act via POMC neurons to alter plasma glucagon, and because of renewed interest in the pathogenic contributions of the hormone to diabetes (37). Our temporal analyses of these parameters following tamoxifen treatment in 2C flox × POMC-cre:ER T2 mice suggest that an early rise in blood glucagon levels may at least partly contribute to hyperglycemia. These data are noteworthy because prior work has established that central MC4R signaling, the putative downstream pathway engaged by serotonin 2C receptor–positive POMC neurons, directly regulates the endocrine pancreas (38, 39). The clamp results are noteworthy, however, because they indicate that hepatic insulin resistance is the primary glucoregulatory defect in 2C flox × POMC-cre mice and suggest that glucagon contributes to, but does fully account for, this phenotype. Interestingly, the current estimation that the maximum glucagon-stimulated contribution to elevated clamp endo R s in postabsorptive 2C flox × POMC-cre mice is approximately 20% is on par with recent work assessing the role(s) of relative hyperglucagonemia in clamp data (27, 36). The relevance of these data in mice is bolstered by work showing that failed suppression of glucagon contributes to postprandial hyperglycemia in humans with T2D (40, 41).

Figure 7
Inducible deletion of serotonin 2C receptors (Htr2c) in POMC neurons of adult mice dysregulates glucose homeostasis. Tamoxifen-inducible POMC-cre (POMC-cre:ER T2) mice and their respective controls (n = 8 mice per genotype) were treated with tamoxifen (0.15 mg/kg i.p. daily for 5 days) or vehicle. Blood samples from the cut tail were taken immediately before the first dose (week 0) as well as 2 and 4 weeks after treatment to measure plasma glucagon and insulin levels. Results are shown as the means ± SEM. *P < 0.05 versus other genotypes and P < 0.05 versus other genotypes; #P < 0.05 versus pre-tamoxifen treatment values within the genotype; †P < 0.05 versus tamoxifen-treated control mice.
Overall, these data demonstrate that aberrant glucose homeostasis exists independently of altered body weight in mice lacking serotonin 2C receptors in POMC neurons and suggest that aberrant postprandial blood glucose is multifactorial and includes hyperglucagonemia — albeit in a modest manner — and impaired insulin-mediated hepatic glucose suppression. These findings support and extend a growing body of literature showing that direct glucose regulatory effects are linked to central serotonin 2C receptors and POMC neurons. Future work is needed to dissect which neural/hormonal mechanism(s) underlie these changes and which tissue(s)/cell type(s) are primary site(s) of dysregulation. Numerous possible mechanisms include sympathetic and parasympathetic inputs to the liver, pancreas, and/or other organs. One admittedly simplified model to explain these findings is that loss of serotonin 2C receptors in POMC neurons prevents feeding-induced activation of MC4Rs in the sympathetic and parasympathetic preganglionic neurons, resulting in unsuppressed liver glucose production as well as insulin and glucagon secretion.

In summary, our conclusions that serotonin 2C receptors are required in POMC neurons to maintain normal energy and glucose homeostasis complement and extend prior work showing that the reactivation of serotonin 2C receptors in POMC neurons in mice that otherwise lack serotonin 2C receptors is sufficient to correct energy and glucose homeostatic defects. Collectively, our results provide definitive in vivo evidence and an expanded framework for understanding how physiologically or pharmacologically induced changes in the regulation of serotonin 2C receptors in POMC neurons impact energy balance and glycemic control. These data are important in understanding the biological basis for the increasing prevalence of obesity and T2D and the current therapeutic strategies used to target these diseases.

Methods

Animal care. The IACUC committee of the UT Southwestern Medical Center (UTSW) approved all animal procedures. The mice were bred and housed in a barrier facility on a 12-hour light/12-hour dark cycle and were provided standard chow (2016; Harlan Teklad) or an HFHS (D12331; Research Diets) as well as water ad libitum unless otherwise noted.

Generation of a cre-conditional Htr2c-null allele. The lox-modified Htr2c targeting plasmid was constructed using a BAC clone containing genomic Htr2c sequences derived from the 129X1/SvJ mouse strain. All cloning steps were performed using homologous recombination in SW106 bacteria. The start codon of the Htr2c is in exon 4, thus two loxP sites were inserted into introns 3 and 5, respectively. Lox-modified Htr2c DNA was cloned using pGEM-T easy vector (Promega) and transfected into ES cells at the UTSW Transgenic Core Facility.

Generation of an inducible POMC-cre model. Tamoxifen-inducible cre:ER²² (42) mice controlled by Pomc regulatory elements (26) were developed to temporally control cre excision specifically in POMC-expressing neurons. Founder lines with inducible cre activity were screened by activating reporter expression was present in the pituitary gland where the POMC gene was endogenously expressed. Tamoxifen treatment to induce adult-onset ablation of Htr2c in POMC neurons. Tamoxifen (0.15 mg/kg; Sigma-Aldrich) suspended in corn oil (Sigma-Aldrich) was administered i.p. for 5 consecutive days to 11-week-old male 2^{Cfl} (mice) and 2^{Cfl} x POMC-cre:ER²² littermate mice. Corn oil was used as a vehicle control.

Body composition. Body composition was measured using NMR (minispec; Bruker).

Survival analysis. Survival was assessed from the age of weaning until the final week of observation (4–26 weeks).

Electrophysiology. Electrophysiological recordings were made as previously described (31).

Metabolic cage experiments. Energy expenditure and food intake were measured using a 36-chamber metabolic chamber system (TSE Systems) at the UTSW Mouse Phenotyping Core facility. Mice were individually housed for 1 week prior to a 3-day acclimation period in TSE cages. Mice were then assessed for 5 days while fed a chow diet. Body weight was measured on day 5 in chow-fed conditions and an HFHS diet was introduced and monitoring continued for an additional 7 days.

Blood glucose and hormone analyses. Blood glucose and plasma hormones were analyzed from blood either collected from the cut tail or via cardiac puncture when the experiment was terminal. Blood glucose was analyzed using an AlphaTRAK meter (Abbott Laboratories) designed for use with rodents. Plasma insulin and leptin levels were measured using an ELISA kit designed for use in mice (Crystal Chem, Inc.) at the UTSW Mouse Phenotyping Core facility. Plasma glucagon was measured using a double-antibody RIA at the Vanderbilt University Mouse Metabolic Phenotyping Center Hormone Assay and Analytical Core facility.

Hyperinsulinemic-euglycemic clamps. Hyperinsulinemic-euglycemic clamps were performed at the UTSW Mouse Phenotyping Core in conscious, chronically catheterized mice using previously described techniques (30). Postabsorptive experiments were conducted in mice in which food was removed between 0800 h and 0900 h to begin a 4- to 5-hour fast. Overnight-fasted experiments were conducted in mice in which food was removed at 2100 h (2.5 hours after lights off) to begin a 12-hour fast. [3-^H]-glucose (PerkinElmer) was infused beginning at t = −120 minutes to calculate basal and insulin-stimulated glucose turnover. Humulin R (4 mU/kg/minute; Eli Lilly) was used to induce hyperinsulinemia. Dextrose (50%) was infused to maintain target blood glucose levels. Blood samples were taken from the cut tail.

Analyses of d-Fen- and mCPP-induced hypophagia. d-Fen (5 mg/kg; Sigma-Aldrich), mCPP (3 mg/kg; Sigma-Aldrich), and vehicle (sterile saline) were administered i.p. in a counterbalanced manner to chow-fed 18-hour overnight-fasted mice as previously described (11). Food was introduced 30 minutes after treatment to individually housed mice, and food intake was measured hourly for 6 hours.

Statistics. Survival data are depicted in a Kaplan-Meier curve and were assessed using a log-rank test. Days 2–4 of chow-fed conditions and days 3–5 of HFHS-fed conditions were used to assess differences, if any, between genotypes and/or dietary conditions in metabolic cage experiments. Basal and insulin-stimulated endo Ra and Rd during hyperinsulinemic-euglycemic clamps were calculated using Steele’s steady-state equation (43). All results were analyzed using Student’s t tests or ANOVA where appropriate. All data are presented as the mean ± SEM, where P < 0.05 was considered statistically significant.

Acknowledgments

The authors would like to thank the staff of the UTSW Mouse Phenotyping Core. We also thank the NIH for its support (DK 059637) of the Vanderbilt University Mouse Metabolic Pheno-
tying Core and Hormone Assay and Analytical Services Core facilities. This work was also supported by NIH grant NIDDK F32 DK092083 (to E.D. Berglund); a postdoctoral fellowship from the Hilda and Preston Davis Foundation (to C. Liu); a mentor-based postdoctoral fellowship grant from the American Diabetes Association (7-11-MN-16, to T. Liu); NIH grants NIDDK R01 DK093587 and R00 DK085330; and an American Diabetes Association grant (11-1S-180); and a Klarran Family Foundation grant (to Y. Xu); as well as by NIH grants NIDDK R01 DK088423 and R37 DK053301 (to J.K. Elmquist). Received for publication July 25, 2013, and accepted August 22, 2013. Address correspondence to: Joel K. Elmquist, UT Southwestern/McGovern Medical Center, Dallas, TX 75390-9077, USA. Phone: 214.648.2911; Fax: 214.648.5612; E-mail: joel.elmquist@utsouthwestern.edu. Or to: Yong Xu, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Rm 8070, Houston, Texas 77030, USA. Phone: 713.798.7199; Fax: 713.798.7187; E-mail: jongx@bcm.edu.