Mitochondrial ROS deficiency and diabetic complications: AMP[K]-lifying the adaptation to hyperglycemia

Dwight A. Towler
Sanford-Burnham Medical Research Institute and Florida Hospital Translational Research Institute, Orlando, Florida, USA. Department of Medicine, Endocrine Division, University of Florida, Gainesville, Florida, USA.

Global, sustained production of ROS has deleterious effects on tissue structure and function and gives rise to biochemical and physiological changes associated with organ senescence. Specific, localized ROS metabolites generated by mitochondria and NADPH oxidases also transduce homeostatic information in response to metabolic, mechanical, and inflammatory cues. In this issue of the JCI, Dugan and colleagues demonstrate that mitochondrial-derived ROS, which is maintained by a feed-forward AMP kinase activation cascade, is reduced in diabetes and plays an adaptive role in preserving renal glomerular function during hyperglycemia. This enlightened view of mitochondrial ROS biology forces us to reconsider therapeutic approaches to metabolic disease complications such as diabetic nephropathy.

Diabetes management: a complicated issue

With an estimated 366 million individuals afflicted worldwide, the importance of diabetes’ effects on human health and healthcare cannot be overstated (1). In the United States alone, the direct and indirect costs are staggering. Every year in the US, 250 billion dollars, approximately 1.5% of the country’s entire gross domestic product, is spent on diabetes and its complications (2). The intrinsic cellular responses and vascular injury that arise from hyperglycemia result in a variety of costly complications such as neuropathies, retinopathies, and cardiovascular disease, which includes heart failure, stroke, myocardial infarction, and arteriosclerosis. Improvements in glycemic control alone are insufficient to fully mitigate diabetes-associated complications; therefore, clinical differences in the pathobiology of diabetic end organ complications should drive the search for adjunctive therapeutic approaches above and beyond glycemic control. For example, intensive control of both glucose and lipid intake has emerged as an effective strategy for reducing retinopathy (3), but other diabetes-associated complications such as nephropathy (4) and macrovascular disease (5) remain refractory to this focused metabolic strategy. Moreover, interactions between the metabolites produced in association with diabetes and chronic kidney disease synergize and have devastating effects on cardiovascular health (6). Innovative therapeutic approaches are necessary for diabetes treatment, and the pathways involved in mitochondrial oxidative stress have become attractive targets (7).

Oxidative stress in diabetes

It is widely appreciated that extracellular oxidative stress globally increases in both type 1 diabetes (T1D) and type 2 diabetes (T2D) (8,9). Current opinion holds that diabetes-associated mitochondriopathy (7) directly contributes to ROS generation, as has been observed in isolated endothelial cells (10). ROS and oxylipid metabolites are critical for the microbiocidal activity of phagocytes, wound healing, and the pathobiology of several inflammatory diseases including atherosclerosis. Since ROS can induce DNA damage and both are increased in diabetest (11,12), the accumulation of both diabetes-associated mitochondrial and genomic DNA alterations are considered to be the consequence of abnormal mitochondrial ROS production. Multiple cellular enzymes generate ROS signatures in distinct subcellular venues (13), primarily superoxide (e.g., NOX1, NOX2, mitochondrial complexes), with rapid dismutation to H2O2 or direct H2O2 elaboration (e.g., NOX4, acyl-CoA oxidase, xanthine oxidase). These local intracellular ROS signatures, which are dynamic and elicited in response to intracellular and extracellular cues, are highly regulated and critical second messengers in metabolism and signal transduction (14). The interrelationships between distinct intracellular ROS metabolism and extracellular oxidative stress are poorly understood but are of emerging importance in the pathogenesis of organ dysfunction associated with aging and chronic diseases including diabetes (14).

In this issue of the JCI, Dugan and colleagues examine the role of mitochondrial-derived superoxide in diabetic kidney disease (15). Implementing multiple validated and unconventional methods of superoxide assessment, they demon-

Conflict of interest: The author has declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2013;123(11):4573-4576. doi:10.1172/JCI72326.
Diabetes results in decreased mitochondrial superoxide production, which is associated with decreased AMPK and PDH activity. Decreases in AMPK and PDH activity further reduce mitochondrial ROS production directly and through decreased PGC1α, which promotes decreased mitochondrial density, ultimately resulting in impaired renal podocyte function and albuminuria. Decreased AMPK also results in increased NADPH oxidase–dependent ROS production. (B) Restoration of renal mitochondrial ROS production by treatment with the AMPK activator AICAR reduces albuminuria and total renal oxidative stress. Mitochondrially derived ROS, which is stimulated by AICAR and amplified by a feed-forward AMPK cascade, is protective in the setting of hyperglycemia. The failure of mitochondrial ROS generation contributes to diabetic kidney disease. Furthermore, AMPK activation reduces NADPH oxidase–dependent ROS formation.

Figure 1
A feed-forward cycle of AMPK-activated mitochondrial metabolism and ROS generation by the kidney reduces diabetes-induced albuminuria. (A) Diabetes results in decreased mitochondrial superoxide production, which is associated with decreased AMPK and PDH activity. Decreases in AMPK and PDH activity further reduce mitochondrial ROS production directly and through decreased PGC1α, which promotes decreased mitochondrial density, ultimately resulting in impaired renal podocyte function and albuminuria. Decreased AMPK also results in increased NADPH oxidase–dependent ROS production. (B) Restoration of renal mitochondrial ROS production by treatment with the AMPK activator AICAR reduces albuminuria and total renal oxidative stress. Mitochondrially derived ROS, which is stimulated by AICAR and amplified by a feed-forward AMPK cascade, is protective in the setting of hyperglycemia. The failure of mitochondrial ROS generation contributes to diabetic kidney disease. Furthermore, AMPK activation reduces NADPH oxidase–dependent ROS formation.

Diabetes results in decreased renal mitochondrial superoxide production, which is associated with decreased AMPK and PDH activity. Decreases in AMPK and PDH activity further reduce mitochondrial ROS production directly and through decreased PGC1α, which promotes decreased mitochondrial density, ultimately resulting in impaired renal podocyte function and albuminuria. Decreased AMPK also results in increased NADPH oxidase–dependent ROS production. (B) Restoration of renal mitochondrial ROS production by treatment with the AMPK activator AICAR reduces albuminuria and total renal oxidative stress. Mitochondrially derived ROS, which is stimulated by AICAR and amplified by a feed-forward AMPK cascade, is protective in the setting of hyperglycemia. The failure of mitochondrial ROS generation contributes to diabetic kidney disease. Furthermore, AMPK activation reduces NADPH oxidase–dependent ROS formation.

The role of mitochondria as sophisticated signaling organelles must be carefully considered when crafting diabetes-related treatment strategies (14, 22). In addition to ROS, several non-ROS metabolites that are regulated by hyperglycemia, PDH activation, and mitochondrial carbon flux, such as succinate and α-ketoglutarate, are ligands for G protein–coupled receptors found in the kidney (23, 24). Certainly, the indiscriminate “scavenging” of cellular ROS as a therapeutic approach to chronic disease may not be logical given the important role of cellular H2O2 as a second messenger in both adaptive and maladaptive responses (14). The concepts and pathways identified in ischemic preconditioning, which is a process that activates AMPK as a component of myocardial protection to subsequent hypoperfusion (25, 26), may be applicable to early diabetic kidney disease. Since mitochondrial ROS signaling couples NADPH oxidase/NOX activation with prosclerotic responses in renal mesangial cells, vascular smooth muscle cells, arte-

Reexamining the role of ROS and other diabetes-associated metabolites

Why is this study important? It forces us to reexamine our understanding of diabetic nephropathy and pathobiology as well as several other diabetes- and aging-related complications. A more detailed understanding of the mechanisms underlying diabetes-induced mtDNA damage is needed, since this antecedent genomic alteration likely contributes to impaired mitochondrial function (Figure 1). The role of mitochondria as sophisticated signaling organelles must be carefully considered when crafting diabetes-related treatment strategies (14, 22). In addition to ROS, several non-ROS metabolites that are regulated by hyperglycemia, PDH activation, and mitochondrial carbon flux, such as succinate and α-ketoglutarate, are ligands for G protein–coupled receptors found in the kidney (23, 24). Certainly, the indiscriminate “scavenging” of cellular ROS as a therapeutic approach to chronic disease may not be logical given the important role of cellular H2O2 as a second messenger in both adaptive and maladaptive responses (14). The concepts and pathways identified in ischemic preconditioning, which is a process that activates AMPK as a component of myocardial protection to subsequent hypoperfusion (25, 26), may be applicable to early diabetic kidney disease. Since mitochondrial ROS signaling couples NADPH oxidase/NOX activation with prosclerotic responses in renal mesangial cells, vascular smooth muscle cells, arte-

Figure 1
A feed-forward cycle of AMPK-activated mitochondrial metabolism and ROS generation by the kidney reduces diabetes-induced albuminuria. (A) Diabetes results in decreased mitochondrial superoxide production, which is associated with decreased AMPK and PDH activity. Decreases in AMPK and PDH activity further reduce mitochondrial ROS production directly and through decreased PGC1α, which promotes decreased mitochondrial density, ultimately resulting in impaired renal podocyte function and albuminuria. Decreased AMPK also results in increased NADPH oxidase–dependent ROS production. (B) Restoration of renal mitochondrial ROS production by treatment with the AMPK activator AICAR reduces albuminuria and total renal oxidative stress. Mitochondrially derived ROS, which is stimulated by AICAR and amplified by a feed-forward AMPK cascade, is protective in the setting of hyperglycemia. The failure of mitochondrial ROS generation contributes to diabetic kidney disease. Furthermore, AMPK activation reduces NADPH oxidase–dependent ROS formation.
Some challenges exist as we seek to optimally integrate these important insights into the development of therapeutic approaches to patient care. For example, mitochondrial-derived ROS participate in the vascular calcification characteristic of diabetes, uremia, and hyperphosphatemia (35). The onset of vascular calcification is related in part to the recruitment of pro-inflammatory signaling cascades downstream of NADPH oxidase, NOX, and NF-κB activation (36). Thus, indiscriminate activation of mitochondrial ROS signals is likely an important pitfall to avoid. Importantly, AMPK activity suppresses NOX activation (37) while sustaining mitochondrial ROS tone (15), thereby, uncoupling these two cellular ROS pathways (Figure 1). A strategy that mimics this bipartite action of AMPK activation is most likely to convey renal benefit and concomitantly mitigate arteriosclerotic vascular stiffening. An inconvenient truth that was elucidated by Zou and colleagues is that AMPK α2 activation downstream of nicotine exposure engenders aneurysm formation (38). Thus, the Aristotelian call for moderation in all things will likely apply to therapeutic strategies to mitigate or prevent the end-organ complications arising in our patients with diabetes (1, 2).

Acknowledgments

D.A. Towler is supported by grants HL069229, HL081138, and HL114806 from the NIH, and the Sanford-Burnham Medical Research Institute.

Address correspondence to: Dwight A. Towler, Sanford-Burnham Medical Research Institute, Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, 6400 Sanger Road, Orlando, Florida 32827, USA. Phone: 407.745.2147; Fax: 407.745.2001; E-mail: dtowler@sanfordburnham.org.

34. Steinke JM, Klausm M. Lessons learned from studies of the natural history of diabetic nephropathy in

Regulatory T cells use “Itch” to control asthma
WanJun Chen
Mucosal Immunology Section, OPCB, NIDCR, NIH, Bethesda, Maryland, USA.

Regulatory T cells (Tregs) control type 2 T helper cell–mediated (Th2-mediated) lung inflammation, but the molecular mechanisms by which Tregs execute this activity remain elusive. In this issue of the JCI, Jin et al. reveal that Itch, a HECT-type E3 ubiquitin ligase in Tregs, plays a specific role in restraining Th2 cell responses. This finding has important implications for understanding the pathogenesis of allergy and asthma.

Introduction
Tregs, which are characterized by the expression of the transcription factor Foxp3, are instrumental in the induction and maintenance of immune tolerance and homeostasis (1, 2); however, the molecular mechanisms underlying Treg-mediated immunoregulatory functions remain elusive. This issue is complex, considering that Tregs are capable of executing their immunosuppressive activity against a broad and diverse array of antigens and within different microenvironments. For example, Tregs can suppress IFN-γ-producing Th1, IL-17–producing Th17, and IL-4–producing Th2 responses. This leads to the question: Do Tregs use universal suppressive mechanisms or do these cells employ environment-oriented programs of suppression enacted in response to distinct inflammatory cues?

It is generally accepted that Tregs use an arsenal of mechanisms to suppress the immune response through various surface molecules (e.g., CTLA4, CD25, CD73, CD39) and secretion of immunoregulatory cytokines (e.g., TGF-β, IL-10) (3, 4). These mechanisms explain many, but not all, of the immunosuppressive activities of Tregs. Recent evidence suggests that Tregs suppress different types of T cell–mediated immune responses through the acquisition of specific T effector cell transcriptional programs, depending on the context and the location of inflammation (5). For example, Treg-mediated specific suppression of Th1 cells requires the expression of the transcription factor T-box 21 (TBET). Treg-specific deletion of Tbet results in uncontrolled type 1 inflammation (6). In a similar vein, Treg-specific deletion of the gene encoding STAT3 leads to dysregulated Th17 responses (7), implying a key role for STAT3 in Treg control of Th17-mediated inflammation. Intriguingly, Treg-specific knockout of Irf4, a transcription factor involved in both Th2 and Th17 cell differentiation, causes the selective dysregulation of autoreactive Th2 responses, suggesting that IRF4 is required for Treg suppression of Th2 cells (8). In this issue of the JCI, Jin et al. (9) reveal an indispensable function of Itch, a HECT (homologous to E6-associated protein C terminus) E3 ubiquitin ligase, in Treg-regulated Th2 responses in mice. Targeted deletion of Itch in Foxp3+ cells resulted in the uncontrolled production of IL-4, IL-5, and IL-13 by Tregs and, surprisingly, by Itch-sufficient CD4+ effector T cells (9).

Without Itch in Tregs, Th2-type inflammation is uncontrolled
Itch was originally identified in a mutant mouse that displayed skin scratching and abnormal immune disorders (10). Itch–/– mice exhibit swollen lymph nodes, enlarged spleens, and increased Th2-type inflammation in the lungs and digestive tract (11). The excess Th2 inflammation in these mice was attributed to the inability of Itch–/– CD4+ T cells to differentiate into inducible Tregs (Itch–/–) (12, 13) in response to TGF-β (14); however, an intrinsic role for Itch in thymic-derived Treg cells (rTregs or nTregs) remains unknown.

Jin et al. developed a Treg-specific Itch knockout mouse by crossing Itchf/f mice with Foxp3Cre mice (Itchf/fFoxp3Cre) to investigate the role of Itch in Tregs. Surprisingly, the Itchf/fFoxp3Cre mice appeared normal at birth, but later exhibited lymphoproliferative disorder, pulmonary inflammation, skin lesions, decreased weight, and a higher mortality rate. Since Itch regulates Th2 cytokine production (11), the authors challenged Itchf/fFoxp3Cre mice with OVA in an experimental model of asthma. They found that compared with control mice, Itchf/fFoxp3Cre mice had more severe lung inflammation with dramatic increases in OVA-specific IgE and Th2 cytokines including IL-4, IL-5, and IL-13 in the BAL. These results raised the possibility that aberrant Th2 inflammation was a systemic event in Itchf/fFoxp3Cre mice.

To address the possibility that Th2 inflammation is systemically altered in Itchf/fFoxp3Cre mice, Jin et al. examined animals between 6 and 8 weeks of age, when signs of inflammation first appeared. There were no changes in the thymus, but the number of splenic CD4+ and CD8+ T cells was increased along with activated T cells in Itchf/fFoxp3Cre mice compared with age-matched WT mice. Importantly, ex vivo analysis revealed that CD4+ T cells...