The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor–C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension and identify activation of natriuretic peptide receptor–C (NPR-C) as the principal route via which CNP regulates vascular tone and integrity. The mechanism or mechanisms underpinning EDH remain controversial, but it is believed to be more prominent in females than males and may contribute to the cardioprotective phenotype experienced by premenopausal women when compared with age-matched male counterparts (8–10).

In concert with local endothelial production of NO and PGI2, cardiac-derived atrial and brain natriuretic peptides (ANP and BNP) possess well-defined endocrine functions in maintaining electrolyte balance, blood volume, vascular tone, and cardiac integrity (11, 12). The third member of this peptide family, C-type natriuretic peptide (CNP), has clearly delineated roles in bone growth (13, 14); there is, however, a paucity of evidence supporting a physiological role for this peptide in cardiovascular homeostasis. Yet the intriguing pharmacodynamic profile of exogenous CNP in vascular cells and tissues in vitro (15, 16) coupled with the significant expression of CNP in endothelial cells (17, 18) intimates that it possesses an ideal functional capacity and tissue localization to influence vascular dynamics.

Herein, we have developed and characterized a mouse model with endothelial-specific deletion of CNP to delineate a role for the peptide in vascular homeostasis. Utilizing this unique tool, we reveal that CNP is a major component of the non-NO, nonprostanoid component of endothelium-dependent relaxation in the resistance vasculature (i.e., EDH) and that loss of CNP signaling results in vascular dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identify activation of natriuretic peptide receptor–C (NPR-C) as the principal route via which CNP regulates vascular tone and integrity and describe the development of small-molecule agonists to target this pathway.
anything, CNP mRNA levels were increased in the neutrophil population from ecCNP KO animals, confirming that Tie2-driven Cre expression was not deleting CNP from hematopoietic cells (Table 1). Under both basal conditions, and following administration of the inflammogen LPS (a potent trigger for CNP release from endothelial cells, ref. 17), plasma CNP concentrations were significantly higher in WT compared with KO mice (Figure 1D). In concert, these data confirm efficient, exclusive removal of the \(\textit{Nppc} \) gene from the vascular endothelium.

Table 1. CNP mRNA expression in the leukocyte population of ecCNP KO animals compared with WT littermates

<table>
<thead>
<tr>
<th></th>
<th>Neutrophils</th>
<th>Monocytes</th>
<th>T cells</th>
<th>B cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Relative CNP mRNA expression (WT} \times 1)</td>
<td>7.13 ± 1.19</td>
<td>2.67 ± 1.61</td>
<td>1.31 ± 0.41</td>
<td>1.80 ± 0.54</td>
</tr>
</tbody>
</table>

\(n = 5 \).
Vascular reactivity in endothelial CNP knockout mice. We compared the in vitro vascular reactivity of conduit (aorta) and resistance (mesenteric) arteries from WT and ecCNP KO mice. Responses to the vasoconstrictors phenylephrine (α₁-adrenoceptor agonist) and U46619 (thromboxane A₂ mimetic) were identical in vessels taken from WT and ecCNP KO animals regardless of sex (Supplemental Figure 1, A–H; supplemental material available online with this article; doi:10.1172/JCI74281DS1). In the aorta, the endothelium-dependent dilator acetylcholine (ACh) produced concentration-dependent relaxations of both WT and ecCNP KO tissues with analogous potency and efficacy, albeit with a small reduction in maximal relaxation in the female ecCNP KO mice (Figure 2, A and E); these data are in accord with previous work establishing that such relaxations are primarily dependent on the release of endothelium-derived NO and PGI₂ (20). In marked contrast, in mesenteric small arteries, there was a significant rightward shift (indicative of decreased potency) in the vasorelaxant concentration-response curve to ACh in female (Figure 2F), but not male (Figure 2B), vessels. This sex-dependent endothelial impairment was apparent whether studies were conducted in the presence (Figure 2, B and F) or absence (Supplemental Figure 1, I and J) of endothelial NO synthase (eNOS) and cyclooxygenase (COX) inhibition (to prevent the production of NO and PGI₂, respectively). These observations establish that endothelium-derived CNP is a key component of EDH. Importantly, the aberrant vascular reactivity in female ecCNP KO mice was due to a loss of endothelial function and not a change in smooth muscle responsiveness, since relaxant responses to exogenous CNP (Supplemental Figure 2K) and the endothelium-independent dilator spermine-NONOate (an NO-donor drug; ref. 21 and Supplemental Table 1) were comparable between WT and ecCNP KO mice.

Impact of endothelial disruption of CNP on blood pressure. Having established a functional endothelial deficit in the resistance vasculature of ecCNP KO mice, we investigated whether this resulted in a hypertensive phenotype in vivo. In female ecCNP KO mice, the mean arterial blood pressure (MABP) was significantly higher than that of WT littermates (Figure 2, C and D), resulting from increases in both systolic (WT: 119.4 ± 0.67 mmHg, ecCNP KO: 128.1 ± 0.91 mmHg) and diastolic (WT: 73.0 ± 0.55 mmHg, ecCNP KO: 77.5 ± 0.75 mmHg) pressures. These data are in accord with previous work establishing that such hypertensive responses are primarily dependent on the release of endothelium-derived NO and PGI₂ (20). In marked contrast, in mesenteric small arteries, there was a significant rightward shift (indicative of decreased potency) in the vasorelaxant concentration-response curve to ACh in female (Figure 2F), but not male (Figure 2B), vessels. This sex-dependent endothelial impairment was apparent whether studies were conducted in the presence (Figure 2, B and F) or absence (Supplemental Figure 1, I and J) of endothelial NO synthase (eNOS) and cyclooxygenase (COX) inhibition (to prevent the production of NO and PGI₂, respectively). These observations establish that endothelium-derived CNP is a key component of EDH. Importantly, the aberrant vascular reactivity in female ecCNP KO mice was due to a loss of endothelial function and not a change in smooth muscle responsiveness, since relaxant responses to exogenous CNP (Supplemental Figure 2K) and the endothelium-independent dilator spermine-NONOate (an NO-donor drug; ref. 21 and Supplemental Table 1) were comparable between WT and ecCNP KO mice.
NPR-C, a GPCR (23). Our previous work has provided evidence that exogenous CNP mediates vasorelaxation in resistance arteries via NPR-C and activation of a G-protein gated inwardly rectifying potassium channel (GIRK) (24, 25). In order to delineate the receptor that CNP triggers to maintain vascular homeostasis, we examined mesenteric vascular function and blood pressure in Npr3 KO (NPR-C KO) mice. Here, the loss of responsiveness to AC h observed in ecCNP KO animals was recapitulated (Figure 2, I and J), with endothelial dysfunction observed in vessels from female, but not male, NPR-C KO mice. In accord with this sex difference in vascular function, female NPR-C animals exhibited a hypertensive phenotype whereas male NPR-C KO mice did not (Figure 2K). Indeed, male NPR-C KO animals had a marginally reduced blood pressure, as described previously (26), which corresponds to the conventional clearance function of NPR-C to remove natriuretic peptides from the circulation (26, 27). Further evidence supporting a role for NPR-C as the principal receptor triggered by endothelial CNP to elicit vasodilation and lower MABP was gleaned from experiments using exogenous CNP. The vasorelaxant activity of CNP was blunted in mesenteric vessels from NPR-C KO animals

129.1 ± 0.82 mmHg, *P < 0.001, n = 8) and diastolic pressure (WT: 90.2 ± 0.48 mmHg, ecCNP KO: 104.4 ± 0.83 mmHg, *P < 0.001, n = 8). There was no significant difference in heart rate, although heart rate variability (HRV), a risk factor for cardiovascular disease (22), was increased in ecCNP KO animals (Supplemental Table 2). The hypertensive phenotype was evident both day and night, but without any overt effect on the circadian rhythm. Heterozygous animals with one Nppc allele deleted (Tie2-Cre Nppc+/fl) exhibited an intermediate blood pressure phenotype (Figure 2H), establishing haploinsufficiency at the Nppc locus. The sex disparity in endothelial dysfunction observed in vitro was translated to the physiological setting, since MABP was not significantly raised in males (Figure 2, C and D). Thus, the analogous sex-dependent in vitro vascular dysfunction and raised blood pressure in vivo provide evidence that it is the loss of endothelial function at a local level that underpins the systemic abnormality; more specifically, endothelial CNP deficiency results in impaired vascular homeostasis.

Functional role of NPR-C in maintaining blood pressure. In mammals, the biological activity of CNP is reliant on binding to 1 of 2 cognate receptors: NPR-B, a guanylate cyclase-coupled protein, or NPR-C, a GPCR (23). Our previous work has provided evidence that exogenous CNP mediates vasorelaxation in resistance arteries via NPR-C and activation of a G-protein gated inwardly rectifying potassium channel (GIRK) (24, 25). In order to delineate the receptor that CNP triggers to maintain vascular homeostasis, we examined mesenteric vascular function and blood pressure in Npr3 KO (NPR-C KO) mice. Here, the loss of responsiveness to AC h observed in ecCNP KO animals was recapitulated (Figure 2, I and J), with endothelial dysfunction observed in vessels from female, but not male, NPR-C KO mice. In accord with this sex difference in vascular function, female NPR-C animals exhibited a hypertensive phenotype whereas male NPR-C KO mice did not (Figure 2K). Indeed, male NPR-C KO animals had a marginally reduced blood pressure, as described previously (26), which corresponds to the conventional clearance function of NPR-C to remove natriuretic peptides from the circulation (26, 27). Further evidence supporting a role for NPR-C as the principal receptor triggered by endothelial CNP to elicit vasodilation and lower MABP was gleaned from experiments using exogenous CNP. The vasorelaxant activity of CNP was blunted in mesenteric vessels from NPR-C KO animals.
CNP also produced a concentration-dependent relaxation of human vessels that was abolished in the presence of the selective NPR-C antagonist M372049 (lead compound based on AP-811; gift of C. Veale, AstraZeneca) (25, 40) and following precontraction mediated by high K⁺ (which abrogates smooth muscle hyperpolarization; Figure 2L). These data confirm that an NPR-C–triggered hyperpolarization is responsible for the vasorelaxant activity of CNP in human resistance arteries and provide proof-of-concept that the signaling pathway we have identified is functionally important in the human cardiovascular system.

The role of CNP in leukocytes and platelets. Having established CNP as a pivotal physiological regulator of vascular tone and blood pressure, we probed the functional significance of endothelium-derived CNP on leukocyte and platelet reactivity. Leukocyte recruitment is a sequential, multistep process involving rolling, adhesion, and migration of cells orchestrated by a number of adhesion molecules expressed on both leukocytes and endothelial cells and chemokines that direct cells to the site of infection or injury along a concentration gradient (41). In mesenteric postcapillary venules of ecCNP KO, basal leukocyte rolling (an index of leukocyte recruitment) was almost double that observed in WT littermates (Figure 3, A, B, and F; representative observations from WT and ecCNP KO animals, respectively, are shown in Supplemental Videos 1 and 2). These data imply that endothelium-derived CNP maintains a resting antileukocyte influence on the vascular wall. The hyperreactivity of leukocytes in ecCNP KO mice was further illustrated in animals administered the inflammogen IL-1β (Figure 3B). The heterozygous animals displayed an intermediate phenotype in terms of leukocyte rolling both under normal and inflammatory conditions (Figure 3, A and B; representative observations from WT and ecCNP KO animals, respectively, are shown in Supplemental Videos 1 and 2). These data imply that endothelium-derived CNP maintains a resting antileukocyte influence on the vascular wall. The hyperreactivity of leukocytes in ecCNP KO mice was further illustrated in animals administered the inflammogen IL-1β (Figure 3B). The heterozygous animals displayed an intermediate phenotype in terms of leukocyte rolling under both normal and inflammatory conditions (Figure 3, A and B). There was no significant difference between erythrocyte velocity and wall shear rates in vessels from WT and ecCNP KO animals (Supplemental Table 3), confirming that the changes observed were not the result of alterations in vessel diameter or blood flow. This apparent antiinflammatory role for endothelium-derived CNP was substantiat-
ed using a peritonitis model. Following administration of TNF-α, the accumulation of neutrophils and inflammatory macrophages in the peritoneum was significantly greater in ecCNP KO animals versus WT littermates; a similar increase was observed in myeloperoxidase (MPO) activity (an index of neutrophil activation; Supplemental Figure 2). Importantly, in contrast to the blood pressure phenotype, there was no sex difference observed in leukocyte recruitment (data are a composite of observations from male and female mice). Further studies revealed that similar increases in leukocyte rolling were observed in NPR-C KO mice (Figure 3, C and D), suggesting that an identical signal-transduction system that underpins the hypotensive effect of CNP is also responsible for the peptide’s antileukocyte activity.

Additional investigation provided strong evidence that endothelium-derived CNP also exerts an antiplatelet influence. In whole blood, we show that platelet aggregation in response to collagen and the thrombin mimetic protease activated receptor-4 activating peptide (PAR4-AP) is exacerbated in ecCNP KO mice (Figure 3G). Akin to leukocyte reactivity, there was no sex difference in this antiplatelet effect of CNP (data are a composite of observations from male and female mice). Flow cytometry was employed to garner insight into the mechanism or mechanisms underpinning the antipotensive effect of CNP is also responsible for the peptide’s antileukocyte activity.

CNP influences atherosclerosis and aneurysm formation. In light of the observation above, we hypothesized that ecCNP KO mice would exhibit increased susceptibility to atheroma formation. To address this, we exploited a well-validated experimental model of atherogenesis, the apolipoprotein E (ApoE) KO mouse (45, 46). The development of atherosclerotic plaque in the aorta of ecCNP/ApoE double KO (dKO) mice was significantly accelerated when compared with the corresponding CNP WT/ApoE KO littermates. This manifested as considerably greater plaque area throughout the entire aorta, with the most notable increases in the aortic arch and the suprarenal region of the abdominal aorta (Figure 4, A–E). Furthermore, cross-sectional analysis of the brachiocephalic artery revealed that plaque intrusion into the vessel lumen and the development of a neointimal layer characterized by vascular smooth muscle hyperplasia were significantly greater in the ecCNP/ApoE dKO mice (Figure 4, F–H). This increased plaque burden was also accompanied by an increased infiltration of smooth muscle cells and macrophages into the lesions (Figure 4, I

Figure 5. Aneurysm development in ecCNP KO mice. Images of the aneurysms in male ecCNP KO/ApoE KO mice show dilation of the aortic arch (B) or abdominal aorta (D), loss of vascular smooth muscle and thinning of the vascular wall (B), and degradation of elastin (D) in comparison with WT/ApoE KO animals (A and C). Scale bars: 50 μm. Representative of 4/9 male animals. EVG, elastic van Gieson.
and J). Importantly, the accelerated atherogenesis in the ecCNP/ApoE dKO mice was not a result of altered plasma lipid profile or circulating cell numbers/subpopulations, since these parameters were not significantly different between the 2 genotypes (Supplementary Tables 4 and 5). No sex difference in atheroma progression was apparent (data are a composite of observations from male and female mice), and the enhanced plaque formation was not simply a consequence of hypertension, since both male ecCNP KO and
The current study also reveals a sex difference in the consequences of endothelial deletion of CNP on blood pressure control. This observation parallels data gleaned from our previous work utilizing mice doubly deficient in eNOS and COX-1 (9), and explains the mechanism by which females maintain normal blood pressure (i.e., via CNP release), whereas males are more reliant on endothelium-derived NO; such a sex difference has been suggested to underpin, in part, the lower incidence of cardiovascular disease in premenopausal women compared with age-matched male counterparts (8, 10). Whether a sex difference in CNP/NPR-C signaling is apparent in the human vasculature remains to be determined. This study identified a functional CNP/NPR-C signaling pathway in isolated human resistance arteries (i.e., equivalent vasorelaxant responses to CNP) in males and females, and our GWAS linking NPR-C genotype with blood pressure (i.e., via CNP release), whereas males are more reliant on endothelium-derived NO; such a sex difference has been suggested to underpin, in part, the lower incidence of cardiovascular disease in premenopausal women compared with age-matched male counterparts (8, 10). Whether a sex difference in CNP/NPR-C signaling is apparent in the human vasculature remains to be determined. This study identified a functional CNP/NPR-C signaling pathway in isolated human resistance arteries (i.e., equivalent vasorelaxant responses to CNP) in males and females, and our GWAS linking NPR-C genotype with hypertension (49) did not reveal a sex disparity. Such observations intimate that, in humans, both sexes signal via NPR-C to maintain blood pressure. However, the propensity of female sex
hormones to maintain higher natriuretic peptide levels (55) suggests that women, akin to mice, may place a greater reliance on endothelial CNP to regulate vascular homeostasis.

In addition to the maintenance of vascular dynamics and blood pressure, our data reveal that endothelium-derived CNP plays a role in preserving the integrity of the blood vessel wall; this is manifested in the ecCNP KO mouse as accelerated atherogenesis and aneurysm. This structural role for CNP is likely to stem from both direct and indirect salutary actions. The functional capacity of endothelium-derived CNP, delineated herein, in regulating vessel tone and the reactivity of leukocytes and platelets coupled to the peptide’s ability to augment endothelial cell growth while inhibiting vascular smooth muscle cell proliferation (56) will undoubtedly contribute to offsetting the development of atherosclerotic lesions. However, a further direct effect on the blood vessel wall is likely. One common mechanism underpinning the development of atherosclerosis and aneurysm is the activation of MMPs, particularly MMP-2 and MMP-9 (57–59). This may be a key point of intervention of endothelium-derived CNP, since in chondrocytes, CNP overexpression reverses chondroplasia by reducing the activity and release of several MMPs, including both MMP-2 and MMP-9 (60), and CNP regulates the MMP/tissue inhibitors of metalloproteinases (TIMP) ratio to ameliorate renal fibrosis following ureteral obstruction (61). Our work might therefore explain the beneficial activity of neutral endopeptidase inhibitors, which prevent the endogenous breakdown of CNP (and other natriuretic peptides), in experimental models of atherosclerosis (62). This thesis is supported by observations in diseased human coronary arteries that expression of CNP is inversely correlated with severity of the lesion (63) and that CNP is a particularly potent inhibitor of oxidized LDL-stimulated vascular smooth muscle migration and mitogenesis, an integral component of complex lesion formation (64–66). Moreover, in many experimental models, pressor agents such as Angiotensin II are necessary to trigger the formation of aneurysm (67); ecCNP KO mice may offer a cleaner model with which to study this vascular disorder and shed light on the sex bias apparent in humans (68).

The identification of small-molecule agonists at NPR-C represents an excellent starting point for the development of drugs likely to exert multiple, beneficial effects in the cardiovascular system, although it remains to be established whether such compounds would recapitulate all of the cytoprotective functions of endothelium-derived CNP identified in this study. Regardless, these molecules confirm the “druggable” nature of NPR-C and have wider implications for the rationale design and development of small-molecule agonists targeted to large (in this case dimeric) GPCRs with endogenous peptide ligands, which has proven difficult to date (69–71). With respect to NPR-C, the lead molecules we have identified (particularly those that exhibit high affinity/slow dissociation) not only possess the potential to exert the plethora of vasoprotective effects verified above, but should also slow the removal of endogenous natriuretic peptides from the circulation by effectively competing for the “clearance” function of NPR-C (a mechanism for removal of natriuretic peptides from the circulation) (27); thus, the cardioprotective actions of endogenous natriuretic peptides will also be enhanced. Moreover, the vasorelaxant and hypoten-

Methods

Generation of an ecCNP KO mouse

This was achieved using a targeting vector constructed with 2 Loxp sites flanking the entire peptide coding region for CNP in exons 1 and 2 (Figure 1A). Nppcfl/fl animals, which had been backcrossed at least 10 times to a C57BL/6J background, were crossed with a mouse in which expression of Cre recombinase is driven by an endothelial-specific promoter/enhancer associated with the angiopoietin Tie2 receptor (72). Heterozygous animals at the Nppc locus that expressed the Tie2 transgene (Tie2-Cre Nppcfl/fl) were used as breeding pairs to generate ecCNP KO and corresponding WT (Tie2-Cre Nppc+/+) littermate controls (Figure 1B). Offspring were produced according to Mendelian inheritance laws, and ecCNP KO mice gained weight at an equivalent rate to that of WT littermates, suggesting loss of endothelial CNP does not have any overt effect on development in utero or postpartum (data not shown).

In some studies, Tie2-Cre Nppcfl/fl mice were crossed with Apoe KO mice (both C57BL/K6 background), and the Tie2-Cre Nppcfl/fl Apoe−/− offspring recrossed to obtain Tie2-Cre Nppc−/− Apoe KO animals. These were used as breeding pairs to generate Tie2-Cre Nppc−/− Apoe KO (WT/ Apoe KO) and Tie2-Cre Nppcfl/fl Apoe KO (ecCNP/ApoE dKO) mice. From 5 weeks of age, animals were fed a high-fat (21% fat, 0.15% cholesterol; Lillico Biotechnology) Western style diet for 12 weeks.

Genotyping and qPCR analysis

Genomic DNA was prepared from ear biopsies for analysis by PCR using standard cycling parameters. The floxed allele was detected using the following primers: 5′-CCGCAAGAGAAGTCGTCG-3′; 5′-CTGGTGGCAATCAGAAAAAG-3′. These flank the second loxp site (Figure 1A), amplifying 842-bp (WT) and 956-bp (floxed) products. The primers used for the detection of the Tie2-Cre transgene were 5′-CTGGTGCTCAGACAGAATAAG-3′ and 5′-GGCATAACCAGTGAACAGCATTGC-3′ (550 bp).

Total RNA was extracted (Qiagen RNeasy Mini Kit) from endothelial cells, lung, liver, and kidney of ecCNP WT and KO animals to confirm selective deletion of CNP from the endothelium. Pulmonary microvascular endothelial cells were isolated as described previously (56). 1 μg RNA was converted to cDNA using the Qiagen QuantiTect Reverse Transcription Kit (Qiagen). Quantitative real-time PCR was performed using the Quantitect SYBR green kit (Qiagen) with primers designed to detect CNP exon 2 (10 μM; 5′-CTGGCATATTACATCCCGAGCC-3′ and 5′-CTGTTGGCAATCGAAAAAG-3′). Results were analyzed using the ABI PRISM 7900HT software package SDS 2.1 (Advanced Biotechnologies Ltd). Relative Csp mRNA expression was determined using the 2−ΔΔCt method. mRNA levels were normalized to 18S (internal control) for each sample, and gene expression was quantified as a fold change relative to ecCNP WT levels.

To determine CNP expression in specific circulating cell populations, 50 μl of whole blood diluted 1:1 with HEPES buffer was incubated with antibodies selective for mouse neutrophils (GR-1 FITC;
arteries (above). A (2 mm long) was studied as described for the murine mesenteric arteries (200–500 μm) was isolated from omental fat obtained from patients (14 subjects, 6 female, mean age 4.4 ± 0.7 years) undergoing nonurgent, non-septic abdominal surgery. The reactivity of arterial ring segments (2 mm long) was studied as described for the murine mesenteric arteries (above).

In vitro functional assessment of vessel reactivity

Murine arteries. The vascular reactivity of mouse thoracic aortic and mesenteric arterial vascular ring preparations was determined using classical tissue bath pharmacology, as we have described previously (9).

Human resistance arteries. Resistance arteries (200–500 μm) were isolated from omental fat obtained from patients (14 subjects, 6 female, mean age 4.4 ± 0.7 years) undergoing nonurgent, non-septic abdominal surgery. The reactivity of arterial ring segments (2 mm long) was studied as described for the murine mesenteric arteries (above).

Radiotelemetric recording of hemodynamics and HRV in vivo

Blood pressure was recorded in conscious, freely moving mice using radiotelemetric transmitters (TA11PA-C10; Data Sciences International) implanted into the aortic arch. After 10 days recovery, the blood pressure was recorded for 24 hours in mice left undisturbed and maintained on a 12-hour light/12-hour dark cycle. Data were acquired for 2 minutes every 15 minutes, and the average values for MABP were calculated for every time point (Dataquest Art Acquisition System).

HRV was analyzed in both frequency and time domains using standard HRV parameters (73) using the HRV extension module of Chart 4.0 (ADInstruments).

Leukocyte and platelet reactivity

Leukocyte recruitment was assessed in mesenteric postcapillary venules, as we have described previously (74). Impedance aggregometry (Multiplate Dynabyte) was used to measure platelet reactivity in whole blood immediately after collection. 175 μl citrated blood diluted 1:1 vol/vol with 0.9% NaCl + 0.025 mmol/l CaCl₂ was equilibrated in the test cuvette for 3 minutes prior to the addition of collagen (3 and 10 μg/ml; Lab-Medics) or the thrombin receptor agonist PAR4-AP (300 nM; Sigma-Aldrich). Aggregation was monitored for 6 minutes and expressed as area under the curve.

Experimental peritonitis

Peritonitis was induced by subcutaneous injection of 300 ng TNF-α (Peprotech). After 4 hours, a peritoneal lavage was performed with 4 ml PBS, and the total leukocyte count in the lavage fluid was determined using a hemocytometer. In order to determine the cell types in the lavage fluid, 5 × 10⁶ cells were incubated with antibodies selective for mouse neutrophils (GR-1 FITC; 20 ng; eBioscience) and inflammatory macrophages (double positive for GR-1 FITC and F4/80;125 ng; eBioscience) for 30 minutes prior to analysis (FACScalibur; BD). The results were expressed as the percentage of double-positive cells within the leukocyte population.

Characterization of atherosclerotic lesions

Animals were perfused with saline via the left ventricle, followed by 4% formaldehyde in aqueous buffered solution at physiological pressure to fix the vascular tree. The entire aorta was removed and opened longitudinally from the aortic root to the iliac bifurcation. Atherosclerotic lesions were stained with oil red O, as previously described (75). Images of en face staining were captured using a digital camera (Nikon D70), and the total area covered by plaque was quantified using Image Pro software. Brachiocephalic arteries from the same mice were embedded in paraffin wax, sectioned, and stained with H&E, anti-smooth muscle actin (1:400; clone 1A4; Sigma-Aldrich), and anti-Mac2 (1:6000; clone M3/38; Cedarlane). The intimamedia thickness ratio and plaque size were analyzed using Axiovision 4.8.2 software. Cross sections of the aneurysms were stained with Elastic Van Gieson and anti–smooth muscle actin. Fasting plasma lipid levels were measured using a commercially available kit (Abcam).

Plasma CNP measurement

Plasma CNP was extracted (C18 columns) and measured using a commercially available ELISA kit (Phoenix Pharmaceuticals).

NPR-C agonist screening assays

Ca²⁺ flux in rat mesenteric vascular smooth muscle cells in response to angiotensin II. Measurements of Ca²⁺ flux in response to angiotensin II were conducted using a fluorescent imaging plate reader (FLIPR; Molecular Devices). Mesenteric artery smooth muscle cells isolated by collagenase digestion were plated at a density of 10,000 cells/well into black, clear-bottomed 96-well plates in DMEM supplemented with 10% FBS, penicillin (100 U/ml), streptomycin (100 μg/ml), and 5 μM HEPES buffer. Cells were allowed to attach for 24 hours before the experiment. The cells were loaded for 45 minutes with 100 μM Fluo-3 AM (Molecular Probes) in a 5% CO₂ incubator. The extracellular calcium concentration was controlled with 50 μM Bay K 8644 (a Ca²⁺ channel agonist) or nifedipine (a Ca²⁺ channel blocking agent). The untreated control and the representative data from the 100 μM Bay K 8644 and 5 μM nifedipine treated groups were used to determine the cell baseline of Fluo-3 fluorescence. The Ca²⁺ influx was determined by measuring the increase in Fluo-3 fluorescence using a multiwell plate reader (FLIPR; Molecular Devices). The Ca²⁺ flux was measured in the presence of 10 μM isoproterenol (a β-adrenergic receptor agonist), 0.1 μM forskolin (a cAMP activator), 100 ng/ml ANP (a cGMP activator), and 100 μM sodium nitroprusside (a nitric oxide donor). The results were expressed as the percentage of the baseline Ca²⁺ influx.
with penicillin (100 U/ml), streptomycin (100 μg/ml), L-glutamine (2 mM), and 10% heat inactivated New Zealand fetal calf serum. 24 hours later the cells were incubated with Fluo-3-AM (4 μM) for 60 minutes at 37°C. Once dye loaded, the cells were washed thoroughly with the proprietary assay buffer to remove any unincorporated dye. The cells were then incubated with NPR-C agonists, CNP, or vehicle (DMSO) and placed into the FLIPR. After 15 minutes, angiotensin II (100 nM) was automatically dispensed into each well and the fluorescence signal followed for 5 minutes. Potency was determined by comparison of the peak fluorescence in each test well (run in triplicate) with that of the control (angiotensin II alone). Background fluorescence (assay buffer only) was subtracted from all values.

SPR spectroscopy. All SPR analysis was performed on a BIAcore T200 system using series S CM5 sensor chips. Data processing and analysis were performed using BIAevaluation software and Scrubber2. All sensorgrams were double referenced by subtracting the response on a reference flow cell and a blank sample. Human NPR-C (OriGene) was covalently attached to a CM5 chip via amine coupling. A surface density of 2700 RU (~3.24 ng NPR-C protein) was used for measurements with natriuretic peptides and the NPR-C antagonist M372049, and a density of 5200 RU (~6.24 ng NPR-C protein) for measurements with compound 118. Sequential injections of CNP (0.25–4 nM) were performed at a flow rate of 30 μl/min (240 s for M372049, 30 s for compound 118) followed by undisturbed dissociation (600 s for M372049, 30 s for compound 118), during which curves returned to baseline. Kinetic parameters were calculated assuming a simple 1:1 (Langmuir) binding.

Statistics. For vascular reactivity studies, curves were fitted to the data using nonlinear regression (GraphPad software) and the -log (M) of each drug giving a half-maximal response (pEC50 used to compare potency. Curves were analyzed using 2-way ANOVA with repeated measures. For in vivo studies, changes in MABP, leukocyte flux, and platelet reactivity were analyzed by 1-way ANOVA, with Bonferroni post-test where appropriate. Differences in atherosclerotic lesion size were analyzed by 2-tailed Student’s t test. Normal distribution of data was confirmed by Shapiro-Wilk test. P < 0.05 was considered statistically significant. Results are expressed as mean ± SEM of n animals.

Study approval. All animal studies conformed to the UK Animals (Scientific Procedures) Act 1986 and were approved by the local ethics committee at the William Harvey Research Institute, Barts, and the London School of Medicine. Human vessels were collected from patients undergoing abdominal surgery after procuring written informed consent. Human studies were approved by the Ethics Committee of the Hospital University Ramón y Cajal.

Acknowledgments.

This work was supported by the Wellcome Trust (084449/Z/07/Z and 078496/Z/05/Z) and UCL Business PLC (PoC-12-007). This study forms part of the translational program of the National Institute for Health Research Biomedical Research Unit at Barts and The London School of Medicine and Dentistry.

Address correspondence to: Adrian J. Hobbs, William Harvey Research Institute, Barts, and The London School of Medicine and Dentistry, William Harvey Heart Centre, Queen Mary University of London, Charterhouse Square, London, UNK WC1E 6BQ. Phone: 44.0.207.882.5778; E-mail: a.j.hobbs@qmul.ac.uk.

Michela Simone’s present address is: Department of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
bination in mammalian cells by the Cre recombi-
ination of bacteriophage P1. Proc Natl Acad Sci U S A.

Mitchell JA, De NG, Warner JD, Vane JR. Differ-

Lahiri MK, Kannankeril PJ, Goldberger JJ. Assess-
ment of autonomic function in cardiovascular disease: physiological basis and prognostic impli-

Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, recep-
tors, physiologic functions and therapeutic applica-

Villar IC, et al. Definitive role for natriuretic peptide receptor-C in mediating the vasorelax-

Matsukawa N, et al. The natriuretic peptide clear-

Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL. Critical roles of the guanylyl cyclase B receptor in endotho-

Nakamura M, Arakawa N, Yoshida H, Makita S, Hiramori K. Vasodilatory effects of C-type natriuretic peptide on forearm resistance ves-

Seymour AA, Mathers PD, Abbo-Offie BE, Asaad MM, Weber H. Renal and depressor activ-
ity of C-natriuretic peptide in conscious mon-

Rose RA, Giles WR. Natriuretic peptide C recep-

Li Y, Sarkar O, Brochu M, Anand-Srivastava MB. Natriuretic peptide receptor-C attenuates hyper-

Veale CA, et al. The discovery of non-basic atrial natriuretic peptide clearance recep-

Michelson AD, et al. In vivo tracking of plate-
lets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circu-

Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leucocyte rolling and extra-
vasion are severely compromised in P selectin-

Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Atrial natriuretic peptide clearance recep-

Li Y, Sarkar O, Brochu M, Anand-Srivastava MB. Natriuretic peptide receptor-C attenuates hyper-

Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leucocyte rolling and extra-
vation are severely compromised in P selectin-

Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Atrial natriuretic peptide clearance recep-

Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leucocyte rolling and extra-
vation are severely compromised in P selectin-

Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Atrial natriuretic peptide clearance recep-

Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leucocyte rolling and extra-
vation are severely compromised in P selectin-

Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Atrial natriuretic peptide clearance recep-

Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leucocyte rolling and extra-
vation are severely compromised in P selectin-

Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Atrial natriuretic peptide clearance recep-

