Heart failure leads to marked suppression of the Ca\textsuperscript{2+}-independent transient outward current (I_{to1}), but it is not clear whether I_{to1} downregulation suffices to explain the concomitant action potential prolongation. To investigate the role of I_{to1} in cardiac repolarization while circumventing culture-related action potential alterations, we injected adenovirus vectors in vivo to overexpress or to suppress I_{to1} in guinea pigs and rats, respectively. Myocytes were isolated 72 hours after intramyocardial injection and stimulation of the ecdysone-inducible vectors with intraperitoneal injection of an ecdysone analog. Kv4.3-infected guinea pig myocytes exhibited robust transient outward currents. Increasing density of I_{to1} progressively depressed the plateau potential in Kv4.3-infected guinea pig myocytes and abbreviated action potential duration (APD). In vivo infection with a dominant-negative Kv4.3-W362F construct suppressed peak I_{to1} in rat ventricular myocytes, elevated the plateau height, significantly prolonged the APD, and resulted in a prolongation by about 30% of the QT interval in surface electrocardiogram recordings. These results indicate that I_{to1} plays a crucial role in setting the plateau potential and overall APD, supporting a causative role for suppression of this current in the electrophysiological alterations of heart failure. The electrocardiographic findings indicate that somatic gene transfer can be used to create gene-specific animal models of the long QT syndrome.
(kindly supplied by B. Rudy, New York University, New York, New York, USA) was cloned into the multiple cloning site of pAdEGI, to generate pAdEGI-Kv4.3. In accordance with a previously reported dominant-negative Kv4.2 mutation (18), the point mutation W362F was introduced into Kv4.3 by site-directed mutagenesis, creating the vector pAdEGI-Kv4.3W362F. The coding sequence of human CD8 was cut out of pC8I and cloned into pAdEGI-Kv4.3 and pAdEGI-Kv4.3W362F in place of the EGFP sequence, to make pAdE8I-Kv4.3 and pAdE8I-Kv4.3W362F, respectively. The coding sequence of the hybrid ecysdose receptor DBEcR from pAdCGI-DBEcR was cloned into pAdCGI in place of the EGFP sequence, to generate pAdC-DBEcR.

Adenovirus vectors were generated by Cre-lox recombination of purified ψφ viral DNA and shuttle vector DNA as described previously (16, 19). The recombinant products were plaque purified, expanded, and purified on CsCl gradients yielding concentrations on the order of 10^10 plaque-forming units (PFUs) per milliliter.

**Transient transfections.** Twenty-four hours before transfection, CHO-K1 cells (ATCC CCL 61; American Type Culture Collection, Manassas, Virginia, USA) were seeded at a density of 2.0 × 10^5/35 mm. Cells were transfected with plasmid DNA (1 μg/well) total using Lipofectamine Plus (Life Technologies Inc., Gaithersburg, Maryland, USA) as directed by the manufacturer. After 4 hours, transfection media was replaced with normal growth media. Expression was induced by addition of ponasterone A 10 μM (Invitrogen Corp., San Diego, California, USA) for 72 hours.

**Animals.** Adult rats (Sprague-Dawley; 200–250 g) and adult guinea pigs (200–250 g) underwent direct intramyocardial adenosine injection using a 30-gauge needle as reported previously (17, 20). For patch-clamp experiments, the anterior wall of the left ventricle was infiltrated under direct viewing 3–5 times with a total volume of 220 μL, containing approximately 8 × 10^8 PFU AdEGI with saline (controls), approximately 5 × 10^8 PFU AdEGI-Kv4.3 (guinea pigs), or approximately 5 × 10^8 PFU AdE8I-Kv4.3W362F (rats). For electrocardiogram (ECG) recordings, the left ventricle of rats was injected more widespread at multiple sites (~10 times) from the base to the apex of the anterior, lateral, and posterior wall, with a total volume of 220 μL of an adenosine mixture containing approximately 8 × 10^8 PFU AdC-DBEcR with approximately 8 × 10^8 PFU AdE8I-Kv4.3W362F or approximately 8 × 10^8 PFU AdE8I (controls). After the chest was closed, animals were injected intraperitoneally with 45 mg of the nonsteroidal ecysdose receptor agonist, GS-E ([N-(3-methoxy-2-ethylbenzoyl)-N’-(3,5-dimethylbenzoyl)-N’-tert-butylhydrazine]; kindly provided by Rohm and Haas Co., Spring House, Pennsylvania, USA), dissolved in 90 μL DMSO and 360 μL sesame oil. Ecysdose hormones are not known to affect mammalian physiology. GS-E is a member of the bisacetylhydrazine chemical family that have been shown to have no adverse effects over a broad dosage range in mammals (21).

**Myocyte isolation and electrophysiology.** Seventy-two hours after intramyocardial injection, guinea pig and rat left ventricular myocytes were isolated as described previously (14, 22). The yield of infected myocytes was 1–3%. Experiments were carried out using the whole-cell patch-clamp technique (23) with an Axopatch 200B amplifier (Axon Instruments, Foster City, California, USA) while sampling at 10 kHz and filtering at 2 kHz. All myocyte recordings were performed at a temperature of 37°C, whereas CHO-K1 cell experiments were performed at 20°C.

Cells were superfused with a physiological saline solution containing 138 mmol/L NaCl, 5 mmol/L KCl, 2 mmol/L CaCl2, 10 mmol/L glucose, 0.5 mmol/L MgCl2, 10 mmol/L HEPES; pH was adjusted to 7.4 with NaOH. For IKr recordings, 500 μmol/L BaCl2 and 200 μmol/L CdCl2 were added to block IK1 and ICaL, respectively. For ICaL recordings, KC1 was substituted with an equal amount of NaCl. The micropipette electrode solution was composed of 130 mmol/L K-glutamate, 9 mmol/L KCl, 8 mmol/L NaCl, 0.5 mmol/L MgCl2, 10 mmol/L HEPES, 2 mmol/L EGTA, and 5 mmol/L Mg-ATP; pH was adjusted to 7.2 with KOH. L-type calcium currents were measured with an internal solution of 40 mmol/L CsCl 140, 10 mmol/L HEPES, 2 mmol/L EGTA, and 5 mmol/L Mg-ATP (pH 7.2). Borosilicate microelectrodes had tip resistances of 1–4 MΩ when filled with the internal recording solution. Data were corrected for the measured liquid junction potential (~18 mV) (24).

Voltage clamp experiments were performed with an interpulse interval of 2 seconds. Action potentials were initiated by short depolarizing current pulses (2–3 ms, 500–800 pA) at 2 Hz. APD was measured as the time from the overshoot to the indicated percentage of repolarization. A xenon arc lamp was used to view GFP and R-phycocerythrin–conjugated CD8 antibody (Sigma Chemical Co., St. Louis, Missouri, USA) at 488/530 nm and 543/605, respectively (excitation/emission).

**ECGs.** Surface ECGs were recorded immediately after operation and 72 hours after intramyocardial injection. Rats were anesthetized with metafane, and needle electrodes were placed under the skin. Similar to ECGs in transgenic mice (18), electrode positions were optimized to obtain maximal amplitude recordings, enabling accurate measurements of QT intervals. ECGs were simultaneously recorded from standard lead II, modified lead I with the arm electrode placed at the base of the sternum, and modified lead III with the arm electrode placed to the back of the left shoulder. Needle electrode positions were marked postoperatively on the rats’ skin to ensure exactly the same electrode position for 72-hour controls. Signals were digitized at 2 kHz.

**Confocal imaging.** Images were taken on a laser confocal microscope (PCM 2000; Nikon Inc., Melville, New York, USA) with a 60× water immersion objective lens. GFP was imaged with an argon laser at 488/520 ± 15
nm, R-phycoerythrin–conjugated CD8 antibody with a neon laser at 543/605 ± 16 nm (excitation/emission).

Statistical analysis. Pooled data are presented as mean ± SEM. Regression analysis was used to test for a relationship between Ito1 density and repolarization velocity, plateau height, and APD. Comparisons between groups were performed using 1-way ANOVA. P values less than 0.05 were deemed significant.

Results

Overexpression of Ito1 in guinea pig myocytes. We used a novel hybrid Drosophila/Bombyx ecdysone receptor (DB-EcR) that effectively mediates inducible transgene expression in vivo (17). Adenoviral DB-EcR vectors demonstrated a greater than 40-fold increase of luciferase activity in myocardial tissue in vivo upon stimulation with the chemical ecdysone analog GS-E. To verify that our hybrid ecdysone system was sufficient not only to express a sensitive reporter gene like luciferase but also functional membrane proteins like ion channels, we first sought to produce effective overexpression of wild-type ion channels. We chose guinea pigs to introduce Ito1 into myocardial tissue, as guinea pig ventriculocytes lack Ito1 under physiological conditions (15). This enabled us to evaluate the efficiency of inducible ion channel expression and to compare resulting effects of Ito1 overexpression on the guinea pig action potential with previously observed changes using cell fusion to introduce Ito1 (14).

Before attempting to modify the electrophysiology of guinea pig myocytes, we needed to prove that adenoviral infection itself did not alter the basic electrophysiology. Guinea pig myocardium was infected with the receptor virus AdCGI-DBEcR alone or a reporter virus AdE8I-Kv4.3, which drives the separate translation of the surface antigen CD8 and the ion channel Kv4.3 under control of a single modified ecdysone promoter (26). Seventy-two hours after injection and stimulation with GS-E, myocytes were isolated 72 hours later. Infected cells were identified by their obvious green fluorescence. To test for nonspecific effects of adenovirus infection, action potentials, L-type calcium currents ICaL, inward rectifier currents IK1, and delayed rectifier currents IKr were recorded in infected cells and compared with uninfected myocytes from the same hearts. Adenovirus infection did not produce any appreciable effects on the waveform and duration of action potentials or on current size of ICaL, IK1, and IKr. Mean resting membrane potential (–88.1 ± 1.2 vs. –87.8 ± 1.3 mV), overshoot (38.6 ± 2.6 vs. 39.2 ± 2.2 mV), and APDs measured at 50% (119.6 ± 14.8 vs. 127.4 ± 23.2 ms) and 90% (142.5 ± 10.2 vs. 138.7 ± 26.7 ms) repolarization did not differ significantly in noninfected (n = 6) and infected (n = 5) myocytes, respectively. As shown in Figure 1, peak ICaL current density at 0 mV after a prepulse to –40 mV, IKr tail current density at –100 mV after a depolarization step to –10 mV for 200 ms, and IKr current density measured at the end of 500-ms hyperpolarization step to –100 mV (–6.8 ± 2.3 [n = 10] vs. 6.2 ± 0.5 pA/pF [n = 18]) were similar in noninfected and infected myocytes, respectively. We have previously shown that adenovirus infection itself does not affect Ito1 in rat cardiomyocytes (25).

To overexpress Ito1, guinea pig myocardium was coinfected with the receptor virus AdCGI-DBEcR and the reporter virus AdE8I-Kv4.3, which drives the separate translation of the surface antigen CD8 and the ion channel Kv4.3 under control of a single modified ecdysone promoter (26). Seventy-two hours after injection and stimulation with GS-E, myocytes were isolated and CD8 was viewed with monoclonal R-phycoerythrin–conjugated CD8 antibodies. Figure 2 shows a confocal image of a typical coinfected myocyte. The cytosolic green fluorescence of the myocyte verifies infection with the receptor virus, and the red staining of the surface membrane indicates expression of CD8 from the second virus, which also carries the ion channel gene. Infected cells were readily distinguishable.

Figure 1

L-type calcium currents ICaL and delayed rectifier currents IKr were not different in noninfected guinea pig myocytes compared with myocytes that were in vivo infected with a reporter (GFP) adenovirus. Peak ICaL current density was measured at 0 mV after a prepulse to –40 mV in noninfected (a) and GFP-infected (b) myocytes. IKr tail currents in noninfected cells (d) measured at –100 mV after a 200-ms depolarization step to –10 mV were compared with GFP-infected myocytes (e). Original current traces and mean current densities indicate that adenovirus infection itself did not affect ICaL (a–c) and IKr (d–f).
from the background autofluorescence of noninfected cells. Most (>95%) of AdCGI-DBEcR infected (green) cells also expressed CD8, indicating that coinfection of the 2 viruses is the rule rather than the exception.

Myocytes infected with Kv4.3 in vivo exhibited robust transient outward currents. The density of $I_{\text{to}1}$ was 2.0–52.9 pA/pF at +40 mV. Mean peak current density was $22.0 \pm 5.8$ pA/pF at +40 mV ($n = 10$). Figure 3 shows transient outward currents and corresponding action potentials recorded in 4 different Kv4.3-infected myocytes that exhibited different $I_{\text{to}1}$ amplitudes. In vivo adenovirus-mediated introduction of $I_{\text{to}1}$ substantially changed the action potential waveform of freshly isolated guinea pig myocytes. The modification of the action potential became more pronounced as the amount of $I_{\text{to}1}$ increased. Extremely large $I_{\text{to}1}$ densities resulted in a spikelike configuration of the action potential reminiscent of that recorded in normal rat ventricular myocytes (Figure 3d). These changes in the action potential waveform after in vivo $I_{\text{to}1}$ expression were virtually identical to modifications of the action potential induced by fusion of guinea pig myocytes with Kv4.3-expressing CHO cells (14).

$I_{\text{to}1}$ accelerated the initial repolarization velocity of Kv4.3-infected guinea pig myocytes. Initial repolarization velocity measured 3 ms after the overshoot became progressively faster with increasing $I_{\text{to}1}$ density ($r = -0.82; P = 0.003; n = 10$). Among all action potential parameters, the plateau potential (i.e., the voltage at $dV/dt^2 = 0$; ref. 27) correlated best with $I_{\text{to}1}$ density ($r = -0.97; P < 0.0001; n = 10$) (Figure 4). Introduction of $I_{\text{to}1}$ generally depressed the whole plateau phase; only in 1 cell was a notch-and-dome configuration obtained. $I_{\text{to}1}$ also decreased the overall APD both at 50% (APD$_{50}; r = -0.71; P = 0.02$) and 90% (APD$_{90}; r = -0.70; P = 0.02$) repolarization in an $I_{\text{to}1}$ density–dependent manner.

$I_{\text{to}1}$ knockout in rat myocytes. A unique advantage of gene transfer over cell fusion is the ability to use dominant-negative strategies to achieve suppression of selected ion channel families. Because the major part of $I_{\text{to}1}$ is encoded by Kv4.2 and/or Kv4.3 in most species (8, 10, 18), we introduced a point mutation into Kv4.3 (W362F) to design a dominant-negative Kv4.x construct for in vivo $I_{\text{to}1}$ knockout. The corresponding mutation in Kv4.2 has previously been reported to exhibit dominant-negative function in transgenic mice, without evidence of cytotoxicity (18). Before expressing Kv4.3-W362F in vivo, we confirmed its dominant-negative efficacy in cotransfection experiments. CHO-K1 cells cotransfected with Kv4.3 wild-type and Kv4.3-W362F exhibited a $I_{\text{to}1}$ density of $75.6 \pm 4.9$ pA/pF ($n = 17$) at +40 mV compared with $167.0 \pm 7.0$ pA/pF ($n = 13$) in CHO-K1 cells cotransfected with Kv4.3 wild-type and an unrelated Kir2.1 construct carrying a pore mutation (Kir2.1-AAA) (10) ($P = 0.05$). CHO-K1 cells cotransfected with Kv4.3-W362F and Kir2.1-AAA had no detectable transient outward current ($n = 5$).

To probe the effect of $I_{\text{to}1}$ knockout on the action potential of freshly isolated rat myocytes, we coinfected the left ventricular anterior wall of rats with AdCGI-DBEcR and AdE8I-Kv4.3-W362F. As in the guinea pig experiments already described here, myocytes were isolated 72 hours after infection and induction with GS-E, CD8 was viewed by antibodies, and infected myocytes were identified by their green fluorescence and red surface membrane staining.

Figure 5 shows the fully primed and prepulse-inactivated (−100 mV and 0 mV holding potentials, respectively) transient outward currents elicited by test pulses to +40 mV in a noninfected myocyte (Figure 5a) and in another myocyte infected with AdE8I-Kv4.3-W362F (Figure 5b). The pooled data for the peak outward currents ($P = 0.002$; Figure 5c) and the difference between the fully primed and prepulse-inactivated currents ($P = 0.0004$; Figure 5d) confirmed the significant suppression of native rat cardiac $I_{\text{to}1}$ by in vivo infection with Kv4.3-W362F ($n = 10$ noninfected and 7 infected myocytes). Similar to the previously reported in vitro knockout of $I_{\text{to}1}$ using a truncated Kv4.2 construct (10), the suppression of outward current was substantial but not complete, presumably as a result of remaining competitive expression of wild-type channels.

In addition to $I_{\text{to}1}$ reduction, we observed a lesser reduction of the maintained outward current measured at the end of a 500-ms depolarization pulse to +40 mV in myocytes infected with Kv4.3-W362F (14.7 ± 2.2 pA/pF; $n = 7$) compared with noninfected cells (22.2 ± 1.8 pA/pF; $n = 10$) ($P = 0.01$). This suppression of the maintained component may be due to a knockout of native Kv4.1 that is expressed at low levels in rat ventricular myocardium (8) and/or to incomplete inacti-
vation of Kv4.2 at the end of the depolarization pulse (28). We did not find any differences in cell size (78.5 ± 7.6 vs. 85.5 ± 8.9 pF), resting membrane potential (−86.4 ± 0.6 vs. −86.6 ± 1.5 mV), inward current density at −100 mV (−4.4 ± 0.8 vs. −3.7 ± 0.3 pA/pF), or action potential overshoot (25.4 ± 2.4 vs. 28.7 ± 4.2 mV) between noninfected (n = 10) and Kv4.3W362F-infected (n = 7) myocytes, respectively.

Action potential recordings from Kv4.3W362F-infected myocytes demonstrated the physiological consequences of Ito1 suppression on the repolarization of freshly isolated rat cardiomyocytes (Figure 6). Knockout of Ito1 substantially changed the action potential waveform of acutely dissected guinea pig myocytes in an Ito1 density-dependent manner, resulting in a depression of the plateau voltage and abbreviation of the overall APD. (d) Introduction of very large Ito1 densities caused a spikelike action potential.

Figure 3
Transient outward currents and action potentials of 4 different guinea pig myocytes (a–d) that were infected in vivo with AdCGI-DBEcR and AdE8I-Kv4.3. Seventy-two hours after injection and stimulation with GS-E, myocytes were isolated. Transient outward currents were elicited by depolarization pulses to +40 mV from a holding potential of −100 mV. In vivo adenovirus-mediated introduction of Ito1 substantially changed the action potential waveform of acutely dissected guinea pig myocytes in an Ito1 density-dependent manner, resulting in a depression of the plateau voltage and abbreviation of the overall APD. (d) Introduction of very large Ito1 densities caused a spikelike action potential.

Figure 4
Effect of Ito1 current size on the height of the action potential plateau in guinea pig myocytes infected in vivo with AdCGI-DBEcR and AdE8I-Kv4.3. (a) Introduction of Ito1 (50.1 pA/pF) into a guinea pig myocyte depressed the voltage of the early plateau phase measured at d²V/dt²=0 (arrow) (at the transition from early repolarization to final repolarization; ref. 27). (b) The suppression of the action potential plateau correlated well with the introduced Ito1 density (n = 10).

Figure 7, e and f. QT interval measurements were performed at similar heart rates postoperatively and 72 hours after infection in individual animals. ECGs revealed a 29.8 ± 6.0% prolongation of the QT interval in Kv4.3-W362F–infected rats 72 hours after intramyocardial injection (117.7 ± 6.8 ms, RR interval 389.8 ± 10.1 ms) compared with immediate postoperative recordings (90.5 ± 1.3 ms, RR interval 387.7 ± 11.4 ms) (P = 0.02; n = 3) (Figure 7, c and d). This is consistent with the marked prolongation of ventricular action potentials that was seen in isolated cells. No change in the QT interval was observed in GFP-infected control animals (93.8 ± 2.5 ms, RR interval 390.0 ± 2.7 ms vs. 92.9 ± 2.9 ms, RR interval 398.5 ± 10.3 ms postoperatively and 72 hours after infection, respectively; n = 3) (Figure 7, a and b). During the 72-hour postoperative period, survival of the Kv4.3-W362F–injected animals was not different from controls.
Discussion
The present study demonstrates that I_{to1} plays an important role in setting the plateau potential and APD. In vivo adenovirus-mediated overexpression of I_{to1} in guinea pig myocytes abbreviates action potentials; conversely, dominant-negative suppression of I_{to1} in rat cardiocytes delays repolarization. Previously, we used cell fusion to introduce Kv4.3 into freshly isolated guinea pig cells to probe the contribution of I_{to1} to cardiac action potentials (14). Cell fusion enabled us to circumvent the changes of excitability that complicate in vitro adenovirus-mediated ion channel expression in primary culture (10). Besides overexpressing I_{to1} in myocytes that physiologically lack I_{to1} (15), we sought to probe the role of I_{to1} in the action potential of cells that express endogenous transient outward currents, especially because I_{to1} reduction is the salient electrical feature of heart failure myocytes (5–7). However, cell fusion is not suited for dominant-negative channel suppression, as functional current knockout requires formation of new channel complexes that is not believed to occur in the surface membrane itself but rather in subcellular compartments (31). Besides dominant-negative suppression of I_{to1} in primary cultured myocytes (10) and pharmacological block (6, 32), reduction of I_{to1} has been previously achieved by the generation of transgenic mice (18). However, transgene expression that is not under control of a regulated expression system may lead to adaptive changes of other genes in transgenic animals during development, which resulted in upregulation of another noninactivating outward current in Kv4.2 knockout mice (18). Additionally, creation of transgenic animals is time consuming and limited in its species versatility. The use of recombinant adenovirus vectors for in vivo transgene expression in adult animals enabled us to elucidate the effect of I_{to1} overexpression and of dominant-negative I_{to1} suppression while obviating nonspecific drug effects, culture-related alterations of the action potential, and long-term compensatory channel upregulation.

Action potential recordings both in rat myocytes after I_{to1} knockout and in guinea pig cells after I_{to1} overexpression by in vivo gene transfer support the conclusion that I_{to1} plays a crucial role in setting the voltage of the plateau phase. In guinea pig myocytes, I_{to1} suppressed the plateau height in an I_{to1} density–dependent manner, confirming our recent results in myocytes fused with CHO cells expressing Kv4.3 (14). I_{to1} reduction in Kv4.3-W362F–infected rat myocytes exhibited the opposite effect, leading to an elevation of the plateau phase compared with wild-type cells. An increase of the plateau voltage has been previously related to low I_{to1} density in failing compared with nonfailing canine myocytes (6) and in human subendocardial compared with subepicardial ventriculocytes (27). In addition to a reduction of the peak transient outward current, suppression of the maintained outward current component may have contributed to the changes in the plateau level in Kv4.3-W362F–infected rat myocytes in the present study.

Except for 1 myocyte each, we did not observe a typical notch-and-dome shape of the action potential in Kv4.3–infected guinea pig cells or Kv4.3-W362F–infected rat ventriculocytes. These results support the notion (14) that in addition to I_{to1} density, the balance of other re–depolarizing currents is crucial for the morphology of phase 1 repolarization and the presence or absence of a notch and dome.

Adenovirus-mediated introduction of I_{to1} into guinea pig myocytes progressively abbreviated APD, whereas I_{to1} suppression in rat myocytes prolonged the action potential. Because I_{to1} rapidly inactivates, transient outward current size must affect APD by influencing the early trajectory of repolarization rather than by a direct contribution to late repolarizing currents (14, 27, 33). In other tissues or species, it might be possible that I_{to1} suppression results in action potential shortening if the balance of other inward and outward currents were altered in a different fashion. Given that late repolarization was also delayed in Kv4.2 dominant-negative mice despite an upregulation of a nonactivating outward current (18), it is unlikely that prolongation of the APD in Kv4.3-W362F–infected rat ventriculocytes in the present study can simply be attributed to a reduction of the maintained outward current component.

Tachyarrhythmias are a major cause for sudden cardiac death in patients with congestive heart failure (34, 35). Previously, it has been shown that myocytes from dogs with pacing-induced heart failure are more susceptible to EADs compared with nonfailing cells, which led to the hypothesis that malignant arrhythmias in heart failure may arise from abnormalities in repolarization (36, 37). Block of I_{to1} by 4-aminopyridine

In vivo expression of AdE8I–Kv4.3–W362F suppressed I_{to1} in adult rat myocytes. Transient outward currents elicited by test pulses to +40 mV in noninfected myocytes (a) are compared with currents in AdE8I–Kv4.3–W362F–infected myocytes (b). Mean values of peak I_{to1} (c) and of the difference between the fully primed and prepulse-inactivated (0 mV) (d) currents indicate a significant suppression of native rat cardiac I_{to1} in Kv4.3-W362F–infected myocytes (n = 7; filled bars) compared with wild-type (n = 10; shaded bars).
induced frequent EADs in canine M-cells, although nonspecific drug effects on other repolarizing potassium currents may also have contributed to these effects (33). In the present study, we recorded frequent EADs in 1 Kv4.3W362F-infected rat myocyte; although this was just a single observation, it demonstrates a possible arrhythmogenic mechanism of Ito1 reduction.

ECG recordings from rats injected with the Kv4.3 dominant-negative construct at a single site in the anterior wall of the left ventricle revealed no QT prolongation, presumably because the area of infected myocardium was too small to influence the surface ECG. However, by purposely increasing the number of injection sites, a more widespread adenovirus infection was obtained and the surface ECG was prolonged. Kv4.x suppression in rats resulted in a significant prolongation of the QT interval 72 hours after intramyocardial injection compared with immediate postoperative recordings reflecting the marked prolongation of ventricular action potentials in vivo. These ECG findings demonstrate for the first time, to our knowledge, that somatic gene transfer can be used to create gene-specific animal models of the LQT syndrome. This technology can be applied to larger animals with more humanlike action potentials and also eliminates adaptive changes that can occur during development with transgenic models (18). This targeted reduction in the current of choice obviates the confounding nonspecific effects that can occur in drug-induced models of the LQT syndrome.

Although we used an inducible vector system, the present study was not designed to take full advantage of its potential utility. Two features of the system promise to...
be advantageous in future applications. First, constitutive expression of some ion channel genes results in cytotoxic effects, which prevent the generation of high titer viral stocks (38). Second, inducible vector systems enable the titration of transgene expression levels that may enable precise control of the level of ion channel expression and, therefore, of the magnitude of the effect. To accomplish this, we created a hybrid ecysdone receptor that allowed in vivo induction in the presence of physiological levels of retinoid X receptor (17), thus also reducing the potential for nonspecific effects of RxR overexpression (39). Effective I0,1 expression demonstrated that this modified ecysdone system is sufficient not only for inducible in vivo expression of sensitive reporter genes like luciferase, but also for expression of phenotype-altering proteins such as ion channels. Therefore, this hybrid ecysdone system represents a valuable and generalizable tool to probe the function of other proteins in vivo.

Acknowledgments

We thank A. Ohler for help in confocal imaging. This study was supported by a grant from the National Institutes of Health (P50 HL52370 to E. Marbán), a Research Career Development Award from the CARE Foundation (to D.C. Johns), and a fellowship from the Deutsche Forschungs gemeinschaft (to U.C. Hoppe). E. Marbán is the recipient of the Michel Mirowski, M.D. Professorship in Cardiology of The Johns Hopkins University.


