Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis.

A H Baker, … , S J George, A C Newby

Research Article

Tissue inhibitors of metalloproteinases (TIMPs) are a family of closely related secreted proteins that limit matrix metalloproteinase (MMP) activity and also have direct effects on cell growth. We used the highly efficient adenoviral delivery system to overexpress individual TIMPs from the cytomegalovirus immediate early promoter in rat aortic smooth muscle cells. Overexpression of TIMP-1, -2, or -3, or a synthetic MMP inhibitor similarly inhibited SMC chemotaxis and invasion through reconstituted basement membrane. TIMP-1 overexpression did not effect cell proliferation. By contrast, TIMP-2 caused a dose-dependent reduction in proliferation, an effect not mimicked by a synthetic MMP inhibitor. TIMP-3 overexpression induced DNA synthesis, and promoted SMC death by apoptosis, a phenotype reproduced by adding TIMP-3 to uninfected cells, but not by a synthetic MMP inhibitor. Our study is the first to compare systematically the effect of overexpression of three TIMPs in any cell. We found similar effects on invasion mediated by inhibition of MMP activity, but widely divergent effects on proliferation and death through actions of TIMP-2 and -3 independent of MMP inhibition. These findings have important implications for the physiological roles of TIMPs and their use in gene therapy.

Find the latest version:

http://jci.me/1584/pdf
Divergent Effects of Tissue Inhibitor of Metalloproteinase-1, -2, or -3 Overexpression on Rat Vascular Smooth Muscle Cell Invasion, Proliferation, and Death In Vitro

TIMP-3 Promotes Apoptosis

Andrew H. Baker, Alla B. Zaltsman, Sarah J. George, and Andrew C. Newby

Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Marlborough Road, Bristol BS2 8HW, United Kingdom

Abstract

Tissue inhibitors of metalloproteinases (TIMPs) are a family of closely related secreted proteins that limit matrix metalloproteinase (MMP) activity and also have direct effects on cell growth. We used the highly efficient adenoviral delivery system to overexpress individual TIMPs from the cytomegalovirus immediate early promoter in rat aortic smooth muscle cells. Overexpression of TIMP-1, -2, or -3, or a synthetic MMP inhibitor similarly inhibited SMC chemotaxis and invasion through reconstituted basement membrane. TIMP-1 overexpression did not affect cell proliferation. By contrast, TIMP-2 caused a dose-dependent reduction in proliferation, an effect not mimicked by a synthetic MMP inhibitor. TIMP-3 overexpression induced DNA synthesis, and promoted SMC death by apoptosis, a phenotype reproduced by adding TIMP-3 to uninfected cells, but not by a synthetic MMP inhibitor. Our study is the first to compare systematically the effect of overexpression of three TIMPs in any cell. We found similar effects on invasion mediated by inhibition of MMP activity, but widely divergent effects on proliferation and death through actions of TIMP-2 and -3 independent of MMP inhibition. These findings have important implications for the physiological roles of TIMPs and their use in gene therapy. (J. Clin. Invest. 1998. 101:1478–1487.) Key words: adenovirus • tissue inhibitor of metalloproteinase • gene therapy • apoptosis • smooth muscle cell

Introduction

Involvement of smooth muscle cell (SMC) proliferation and migration during neointima formation in atherosclerosis, restenosis after coronary angioplasty, and late vein graft failure is well-established. Intense research has therefore focused on the molecular mechanisms involved with the goal of devising pharmacological or gene-based therapy.

Recent attention has focused on the role played by extracellular matrix components in maintaining SMC quiescence, and its reversal by the matrix-degrading metalloproteinases (MMPs). The MMPs consist of a large family of enzymes that together can digest all components of the extracellular matrix at neutral pH (1). Basement membrane–degrading MMPs promote the ability of SMC both to proliferate and migrate as shown by inhibitor studies in vitro (2, 3, 4) and in vivo (5, 6). Furthermore, upregulation of MMP-2 and -9 has been identified in arteries after balloon injury (7, 8), vein grafts (9), and in atherosclerotic plaques (10, 11). Control of MMP activity is provided by transcription regulation, latent proform activation, and by binding of pro and active forms to tissue inhibitor of metalloproteinases (TIMPs), proteins that are also secreted into the extracellular matrix. The family of TIMPs consists of four members (12–15). TIMPs-1, -2, and -4 are secreted as soluble proteins, whereas TIMP-3 is associated with the matrix components as an insoluble protein (16). Binding of each of the TIMPs to the catalytic site of the activated forms of the secreted MMPs leads to inhibition (17, 18). In addition, binding of specific TIMPs to the COOH-terminal hemopexin-like domain of some MMPs regulates activation of the proforms. TIMP-1 binds and slows activation of the latent proform of MMP-9, while TIMP-2 binds and regulates activation of pro-MMP-2 (18–21). At low concentrations, TIMP-2 promotes ternary complex formation with proMMP-2 and cell surface membrane-type metalloproteinases (MT-MMPs). This formation results in inactivation of MT1-MMP, but the proMMP-2 present in the complex can be proteolytically processed to active MMP-2 by a second molecule of MT1-MMP provided that it is free of TIMP-2. Hence, low concentrations of TIMP-2 promote MMP-2 activation, but higher molar ratios of TIMP-2 actually inhibit MMP-2 activation (22, 23). Oddly, TIMP-1, in contrast to TIMP-2, does not inhibit MT1-MMP (24).

While most of the cellular effects of TIMPs are believed to be mediated indirectly by inhibition of MMPs, direct growth–promoting (25) and inhibitory (26) effects of TIMP-2 have been described. Given the established role for MMPs in neointima formation, one approach to therapy may be to overexpress TIMPs. As an initial step in this development, we have used recombinant adenoviruses selectively and specifically to overexpress individual TIMPs in isolated cultures of rat SMC. We observed similar effects of the three TIMPs on invasion through artifi-

Abbreviations used in this paper: BrdU, bromodeoxyuridine; ISEL, in situ end labeling; MMP, matrix metalloproteinase; MT, membrane-type; pfu, plaque-forming units; SMC, smooth muscle cell; TIMP, tissue inhibitor of metalloproteinase; TUNEL, terminal dUTP nick end labeling.
sial basement membrane, but widely divergent effects on pro-
feration and death.

Methods

Materials

Human kidney embryonic 293 cells were purchased from Microbi
tic (Toronto, Canada) and HeLa cells from the European Collection of
Animal Cell Cultures (Salisbury, United Kingdom). All chemicals,
unless otherwise stated, were obtained from Sigma Chemical Co.
(Poole, United Kingdom), and were of the highest grade available.
Culture media and additives were obtained from Gibco BRL (Pais-
ley, Scotland). The mouse monoclonal anti-TIMP-3 antibody was
generously provided by Dr. Iwata (Fuji Chemicals, Toyama, Japan)
and the human TIMP-3 standard was a gift from Dr. G. Murphy
(Strongways Research Labs, Cambridge, United Kingdom). The ad-
enovirus E1a antibody was purchased from Calbiochem-Novobio-
chem (UK) Ltd. (Nottingham, United Kingdom).

Methods

Cell culture. 293 cells (27) were maintained in MEM supplemen-
ted with 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% (vol/vol)
FCS. Rat SMC were prepared from thoracic aoratas as described pre-
viously (28), and were cultured in DMEM supplemented with 100
(mvol) FCS, 100 μg/ml penicillin, 100 μg/ml streptomycin, and
between passages 3 and 10. SMC were identified by immunostaining
with hematoxylin. Four random 400

Adenoviral constructs. The adenovirus RAd35 expresses the bac-
teriai lacZ gene from the cytomegalovirus major immediate early pro-
mitter (CMV IEP; 29). RAd66 (gift from G.W.G. Wilkinson, Cardiff,
United Kingdom) contains the CMV IEP and polyadenylation signal,
but does not express a transgene after infection. The generation and
characterization of RAdTIMP-1 and RAdTIMP-2 have been de-
scribed in detail elsewhere (30).

For generation of RAdTIMP-3, PCR was used to facilitate clon-
ing. Oligonucleotide primers were designed spanning the transla-
tional initiation and termination codons based on the published se-
quences (TIMP-3 sense 5’ CAGCGACCGGGAATGACCCCTTGG 3’,
antisense 5’ TCTGGGCGTACCGGTTGTGG 3’; 14). A Nhe I site and clamp was synthesized at the 5’ end of each primer to create
unique NheI cloning sites (5’ CCTAGCTAGC 3’). 0.1 ng of plasmid
dNA (generously provided by C. Lopez-Otin, University of Oviedo,
Spain) was amplified in a reaction containing 500 ng of sense and an-
tisense primer, 400 μM of each dNTP, 2 U of Vent DNA polymerase
(New England Biolabs Inc., Beverly, MA) in 10 mM KCl 10 mM
(NH4)2SO4, 20 mM Tris HCl (pH 8.8), 2 mM MgSO4, and 0.1% Tri-
X-T100. Amplification reactions were performed using a DNA
thermocycler (Perkin-Elmer Cetus Instruments, Emeryville, CA).

After digestion of PCR products with Nhe I and purification using
Wizard PCR prep (Promega, Southampton, United Kingdom), frag-
ments were cloned into the Nhe I site of pAL119 to create
pAL119TIMP-3. Orientation of the insert within the vector was as-
sessed by diagnostic restriction enzyme analysis. The entire insert
was sequenced using the Sanger dyeoxy chain termination method (31)
to ensure that no PCR-induced mutations were present. Sequencing
primers were located in the cytomegalovirus immediate early pro-
moter (5’ CGCGCATCCACGCTTGTGA 3’) and the polyadenyla-
tion region (5’ TTAGTGGATTACAGATG 3’). Recombinant adenovirus
was generated by cotransfection of pAL119TIMP-3 and
pJM17 (32) into low-passage 293 cells. Adenovirus recombinants
were plaque-purified, propagated on 293 cells, caesium chloride-
banded, and titred using standard assays.

Adenoviral infection protocol. Rat SMC were plated into six-well
plates at ~1 × 105 cells/well and left in complete media for 24 h. Im-
mediately before infection, triplicate wells were trypsinized and
counted for an accurate cell count. Cells in the remaining wells were
infected at the required moi in 2 ml fresh complete media and left for
18 h. Media were removed, and the cells were washed and left in 2 ml
fresh complete medium until the required time point. For some as-
says, cells were grown on glass coverslips placed in six-well plates un-
der identical conditions.

Western blot analysis for TIMP-3. To allow analysis of TIMP-3
levels in cell-associated and conditioned media fractions, cells were
washed after infection and maintained for 24 h in reduced serum me-
dia (optiMEM; Gibco BRL, Paisley, Scotland). Conditioned media
were collected and concentrated using centricon-10 filter units (Ami-
con, Inc., Stonehouse, United Kingdom). Total cell/extracellular ma-
trix lysates were prepared by solubilization in 250 μl of 1× reducing
Laemmli buffer (33). Immunoreactive proteins were visualized after
western blotting using the ECL system (Amersham International,
Little Chalfont, United Kingdom). Bands were quantified using a GS
690 Image Analysis software system (Biorad Laboratories, Hertfor-
dshire, United Kingdom), and band intensities were compared with
standard purified recombinant human TIMP-3 protein (75 ng/lane).

Western blot analysis for WAF1 was performed using the mouse
monoclonal antibody, clone 22 (Oncogene Research Products, Cam-
bridge, United Kingdom).

**Detection of functional TIMP production by reverse zymogra-
phy.** Detection of functional TIMP-1 and -2 production from the
conditioned media of RAdTIMP-1 and RAdTIMP-2 infected cells,
and from the cell/matrix lysate from RAdTIMP-3 infected cells was
determined using reverse zymography as described (19, 34) using
4-aminophenylmercuric acetate–treated conditioned media from phor-
bol ester–stimulated rabbit dermal fibroblasts as a source of activated
MMPs. After electrophoresis, gels were stained with 0.1% Coomassie
brilliant blue, and TIMP activity was visualized as zones of gelatinase
inhibition against a partially digested background of gelatin.

Quantification of TIMP-1 and -2 secretion by ELISA. Secretion
of TIMP-1 and -2 into the conditioned media from uninfected and in-
fected cells was quantified using ELISA assays according to the man-
ufacturer’s recommendations (Amersham International). Condi-
tioned media samples were diluted appropriately to fall within the
standard range of the assay. For TIMP-1, the assay does not recog-
nize the endogenous rat TIMP-1 protein (28), thus allowing determi-
nation of transgene production alone. The TIMP-2 ELISA does rec-
ognize the endogenous rat TIMP-2 protein, and values reported for
infected samples include the endogenous rat TIMP-2 protein level.

Matrigel invasion assay. Rat SMC were infected with 100 or 300
plaque-forming units/cell (pfu/cell) of adenovirus for 18 h, washed,
and left in complete media for 24 h. Cells were trypsinized and
washed extensively with DMEM/1% BSA. A × 105 cells were placed
in the upper chamber of a 9-μm pore size 24-well plate invasion cham-
bers precorroded with 50 μg of reconstituted basement membrane
(Stratech, Luton, United Kingdom). DMEM containing 10% FCS
(chemoattractant) was placed in the lower chamber, and cells were
left for 24 h. After 24 h, the conditioned media in the upper chamber
was collected and stored at –20°C, the cells on the upper surface
were removed by gentle abrasion with a cotton bud, and the cells on
the underside (invaded) were fixed in methanol and counterstained
with hematoxylin. Four random 400× fields were counted per sec-
tion. Each sample was performed in triplicate. Data are presented as
number of invaded cells/400× field.

Analysis of cell number. At the required time point, cells were
trypsinized and mixed 1:1 with 0.2% trypan blue in PBS, and viable
cells were counted using a hemacytometer.

_in situ end labeling (ISEL) of DNA.** Rat SMC were grown on glass
coverslips and fixed in methanol 42 h after infection initiation. After
air drying, cells were washed twice in 1× TE (10 mM Tris HCl, pH
8.0, 1 mM EDTA) and incubated in labeling mix (50 mM Tris HCl,
PH 7.2, 10 mM MgSO4, 0.1 mM diithiothreitol, 0.01 mM dATP, dCTP,
dGTP, 0.01 mM biotin-dUTP, and 8 U/ml of DNA polymerase I; Kle-
now) for 15 min at room temperature. Cells were rinsed in 1× TE,
and endogenous peroxidase was inhibited by incubation in 2% H2O2
for 5 min. After further washing, biotin was labeled with Extravidin
TM.
peroxidase (1:200 dilution) in 10% FCS/PBS. Incubation in diaminobenzidine and subsequent counterstaining with hematoxylin was used to distinguish positive nicked DNA from negative DNA.

Flow cytometric analysis of DNA content. Adherent rat SMC were trypsinized and pooled with any nonadherent cells in the culture, centrifuged, and resuspended in 200 μl of PBS. Cells were fixed by adding 2 ml of ice-cold 70% ethanol while vortexing, and left at 4°C before analysis. For staining, cells were centrifuged and resuspended in 800 μl of PBS, and 100 μl of 1 mg/ml RNase A and 100 μl of 0.4 mg/ml propidium iodide was added and left at room temperature for 30 min. Cells were analyzed on a FACSScan (fitted with CellQuest software (Becton Dickinson, San Jose, CA), and data was analyzed using winMDI and Multicycle software packages (Phoenix Flow Systems, San Diego, CA).

Analysis of bromodeoxyuridine (BrdU) incorporation. At the required time point, 10 μM BrdU was added to the media for 4 h, and the cells were fixed in 4% paraformaldehyde. Cells were blocked in 1% BSA and 10% normal goat serum in PBS for 1 h at 37°C, and were incubated in primary antibody (mouse monoclonal anti-BrdU 1:600 dilution) overnight at 4°C. After incubation with an antimouse biotin conjugate (1:200 dilution in 1% BSA), cells were incubated in streptavidin-HRP (Extravidin™; Sigma Chemical Co., Poole, United Kingdom). Cells were counterstained in hematoxylin. For counting, 4 × 200 fields were counted per slide, and each incubation was performed in triplicate. Results are expressed as percentage BrdU positivity.

Statistical analysis. All data were analyzed using an unpaired Student’s t test, and are shown as the mean value ± SEM.

Results

Infection by recombinant adenoviruses. Plaque pure recombinant adenoviruses were replication-deficient when tested by plaque titration on nonpermissive Hela cells. Additionally, Hela cells infected with 80 pfu/cell of each adenovirus lacked E1A when tested by indirect immunofluorescence using an anti-E1A antibody and 293 cells as a positive control (all data not shown).

Rat SMC were dose-dependently and efficiently infected with RAd35 at 30, 100, and 300 pfu/cell (8±1%, 24±2% and 67±2%, respectively). Infection with control adenoviruses or TIMP-expressing adenoviruses had no effect on synthesis of MMP-2 or -9 by SMC in vitro (30).

Measurement of recombinant TIMP protein production. Functional recombinant protein production from RAdTIMP-1 and -2-infected cells has been described in detail elsewhere (30). Using a similar approach, TIMP-3 production from RAdTIMP-3–infected cells was visualized by immunofluorescence (not shown) and quantified by reverse zymography (Fig. 1, Table I). Functional integrity was confirmed by reverse zymography (not shown) confirmed that the recombinant TIMP-3 was mainly unglycosylated and functionally active.

Table I. Quantification of Recombinant TIMP Secretion from Infected Cells

<table>
<thead>
<tr>
<th>Sample</th>
<th>moi</th>
<th>TIMP-1</th>
<th>TIMP-2</th>
<th>TIMP-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>0</td>
<td>154±8</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>RAd66</td>
<td>300 pfu/cell</td>
<td>0</td>
<td>164±4</td>
<td>233</td>
</tr>
<tr>
<td>RAdTIMP-1</td>
<td>30 pfu/cell</td>
<td>63±8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>100 pfu/cell</td>
<td>590±70</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>300 pfu/cell</td>
<td>2800±290</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RAdTIMP-2</td>
<td>30 pfu/cell</td>
<td>ND</td>
<td>293±9</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>100 pfu/cell</td>
<td>ND</td>
<td>560±25</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>300 pfu/cell</td>
<td>ND</td>
<td>3460±90</td>
<td>ND</td>
</tr>
<tr>
<td>RAdTIMP-3</td>
<td>100 pfu/cell</td>
<td>ND</td>
<td>ND</td>
<td>1780</td>
</tr>
<tr>
<td></td>
<td>300 pfu/cell</td>
<td>ND</td>
<td>ND</td>
<td>2120</td>
</tr>
</tbody>
</table>

TIMP-1 and -2 levels in conditioned media collected 90 h after infection were detected using ELISA assays. TIMP-3 levels in cell/matrix lysates and conditioned media were detected 66 h after infection using Western blot analysis (total amount shown) using a human recombinant TIMP-3 standard. The TIMP-1 ELISA does not cross-react with the endogenous rat TIMP-1 protein, whereas the TIMP-2 ELISA does. The TIMP-3 antibody detects the rat TIMP-3 protein. ND, not determined.

The levels of secretion of TIMPs into the conditioned and extracellular matrix were quantified by ELISA or Western blotting, and are summarized in Table I. No significant effect of RAd66 infection on TIMP production was observed (Table I). A dose-dependent increase in TIMP-1, -2, and -3 levels was detected in cultures infected with 30, 100, and 300 pfu/cell of RAdTIMPs (Table I).

Figure 1. Western blot analysis for recombinant TIMP-3 production. Western blot analysis of cell/matrix lysates and conditioned media isolated from SMC 66 h after infection. (1) Uninfected control, (2) RAd66 100 pfu/cell, (3) RAd66 300 pfu/cell, (4) RAdTIMP-3 100 pfu/cell, (5) RAdTIMP-3 300 pfu/cell. ST, purified recombinant TIMP-3 (75 ng).

Statistical analysis. All data were analyzed using an unpaired Student’s t test, and are shown as the mean value ± SEM.
matrigel (not shown). Although infection with RAd66 partially inhibited invasion per se, overexpression of TIMP-1, -2, or -3 resulted in an additional profound dose-dependent inhibition (Fig. 2 A) similar to the level of inhibition observed using 10 μM of synthetic MMP inhibitor Ro-31-9370 (98±1%, n = 3; 8). High-level functional TIMP-1 and -2 production was detected in the conditioned media collected from the upper chamber of uninfected, RAd66-infected (300 pfu/cell), and RAdTIMP-1– and -2–infected samples, respectively, using reverse zymography (Fig. 2 B). TIMP-3 production could not be determined in the same manner because it remains mainly associated with the extracellular matrix. No increase in TIMP-1 or TIMP-2 levels were observed in RAd66-infected cells (Fig. 2 B). To investigate the contribution of effects on chemotaxis to the effects on invasion, migration across uncoated filters was also studied. Infection with RAdTIMP-1, -2, and -3 partially inhibited chemotaxis by 61±4, 54±3, and 49±3%, respectively, which was again similar to the inhibition achieved by 10 μM of Ro-31-9370 (55±5%, all n = 12). RAd66 infection did not inhibit chemotaxis (102±7%). These results indicate that inhibition of chemotaxis contributed in part to the effects of TIMP overexpression on invasion.

Effect of RAdTIMPs on rat SMC proliferation. The effect of TIMP overexpression on cell number was determined in exponentially growing cultures. Rat SMC were infected with 30, 100, and 300 pfu/cell, and viable adherent cells were counted 42, 66, and 90 h after infection initiation. No significant effect of RAd66 infection or addition of 10 μM Ro-31-9370 (results not shown) on cell number was observed at any time point compared with uninfected cultures (Fig. 3). However, overexpression of individual TIMPs produced divergent effects. TIMP-1 had no significant effect on total cell number at any infection concentration tested when compared with RAd66-infected cells (Fig. 3). TIMP-2 and TIMP-3 induced a dose-dependent inhibition in the increase in cell number compared with control uninfected or RAd66-infected samples, which was significant (Fig. 3; P < 0.01 for 100 and 300 pfu/cell compared with RAd66 infected controls). Morphological analysis of infected cultures revealed that while there was no visible loss of cell viability in RAd66, RAdTIMP-1– and RAdTIMP-2–treated cultures, cell death was apparent in RAdTIMP-3–treated cultures (Fig. 4). Adding the same levels of exogenous TIMP-2 as those achieved by viral infection to SMC cultures did not reduce cell number compared with control cultures (not shown). However, addition of exogenous TIMP-3 to uninfected cells did induce a similar phenotype as that found in RAdTIMP-3–infected cells (see below).

To evaluate the effect of TIMP overexpression on S-phase populations, cells were pulsed for 4 h with BrdU at either 42 or 66 h after initiation of adenoviral infection. Adding 10 μM Ro-31-9370 to uninfected cultures had no effect on BrdU profiles of SMCs (not shown). No effect of RAd66 or RAdTIMP-1 on the percentage of cells labeled with BrdU was observed at either 100 or 300 pfu/cell compared with uninfected controls (Fig. 5). TIMP-2 overexpression, however, resulted in a significant dose-dependent decrease in the percentage of cells labeled with BrdU at 100 and 300 pfu/cell compared with RAd66-infected cultures (Fig. 5; P < 0.05). In contrast, TIMP-3 overexpression resulted in a significant dose-dependent increase in the BrdU index (Fig. 5; P < 0.05).

Evaluation of apoptotic cell death induced by TIMP-3. When studied by time lapse microscopy (not shown), morphological features of apoptosis in RAdTIMP-3–infected cells (including cell shrinkage, nuclear chromatin condensation, and membrane blebbing) were apparent (Fig. 4, arrow). As a further indicator of cells undergoing apoptotic cell death, uninfected, RAd66–, RAdTIMP-2–, and RAdTIMP-3–infected cultures were labeled by ISEL 42 h after initiation of infection. Uninfected cultures, RAd66–, and RAdTIMP-2–infected cultures (300 pfu/cell) showed very few (0% uninfected; 0.2% RAd66) isolated brown nuclei (Fig. 6, A and B; TIMP-2 not shown). By comparison, RAdTIMP-3–infected cultures (300 pfu/cell) showed 27±2% of cells with dark brown nuclei and condensed chromatin (n = 3; Fig. 6, C and D). Similar results were obtained with the terminal dUTP nick end labeling (TUNEL) technique (not shown). No effect on the percentage of ISEL-positive cells was observed by adding 10 μM of Ro-31-9370 to either uninfected, RAd66-infected, or RAdTIMP-3–infected cells (not shown).
We determined whether the effect of RAdTIMP-3 infection could be reproduced by adding recombinant TIMP-3 to uninfected cultures. Recombinant human TIMP-3 added to SMC cultures became associated with the extracellular matrix (Fig 7B), and produced a dose-dependent reduction in cell number compared with controls (Fig. 7A). TIMP-3–treated cells showed morphological features of apoptosis (Fig 7C), and became ISEL-positive (Fig. 7D).

Flow cytometry was also used to quantify cell death and cell cycle parameters. Infection of cells with RAd66 had no ef-
Adenoviral Gene Transfer of TIMPs

1483

fect on the percentage of cells in G0/G1, S, or G2/M phases of the cell cycle compared with uninfected controls (Table II). However, infection of cells with RAdTIMP-3 induced dramatic changes in the DNA content profiles (Table II). For cells in cycle, there was a significant reduction in the proportion of cells in G0/G1 (between control or RAd66-infected cells and RAdTIMP-3–infected cells at 42 and 66 h; Table II). There was a corresponding fourfold elevation in the S phase for RAdTIMP-3–infected cells, and a twofold increase in the G2/M phases (Table II). The percentage of cells in pre-G0 (dying) was elevated fourfold for RAdTIMP-3–infected cells compared with control or RAd66-infected cells at both 42 and 66 h.

To evaluate whether overexpression of TIMP-3 induced deregulation of intracellular cell cycle regulatory mechanisms, we examined whether RAdTIMP-3 infection resulted in induction of WAF1, a protein associated with the cell cycle and apoptosis of SMC. Low-level expression of WAF1 was observed in uninfected and RAd66-infected cells. However, in

RAdTIMP-3 infected cells, a dose-dependent induction of WAF1 was detected (Fig. 8).

Discussion

We found that similar levels of TIMP-1, -2, or -3 overexpression could be achieved using adenoviral gene delivery at similar doses. Overexpression of each TIMP inhibited SMC chemotaxis and invasion through reconstituted basement membrane to a similar extent, and similarly to a synthetic MMP inhibitor. However, while TIMP-1 and synthetic MMP inhibitors had no effect on cell proliferation, TIMP-2 caused a dose-dependent inhibition of cell number increase and BrdU incorporation without affecting cell death. TIMP-3 overexpression also caused a dose-dependent inhibition of the increase in cell number, but paradoxically induced S-phase entry. This paradox was explained by accumulation of cells in the G2/M phase of the cell cycle and death of cells by apoptosis.

Inhibition of rat SMC chemotaxis across uncoated membranes and invasion through reconstituted basement membrane was expected, and confirms and extends previous data for TIMP-1 (35). From our results, TIMP-2 and -3 are approximately equipotent with TIMP-1. Similar inhibition of cell migration and invasion by synthetic MMP inhibitors, as reported previously (2, 5, 6) and confirmed here, implies that these effects of TIMPs are mediated indirectly by inhibition of MMPs. Experiments in other systems have shown that TIMP-1 can suppress migration, invasion, and metastasis of cancer cells (36, 37, 38). Together, these data indicate that TIMPs probably act generally to reduce local matrix destruction and invasion by inhibition of MMPs.

Overexpression of TIMP-1 had no effect on SMC number or BrdU incorporation compared with controls over the time course of the experiment, even with recombinant TIMP-1 levels at 2800±300 ng total TIMP-1. This result contrasts with one aspect of the work of Forough et al. (35), who reported that a clone of rat SMC retrovirally engineered to express an apparently much lower level of baboon TIMP-1 had a slower growth

Table II. Quantification of Cell Cycle Characteristics of Uninfected and Infected Rat SMC

<table>
<thead>
<tr>
<th>Sample</th>
<th>G0/G1</th>
<th>S</th>
<th>G2/M</th>
<th>*PreG0</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninfected</td>
<td>84±1</td>
<td>6±0.5</td>
<td>10±0.2</td>
<td>2±0.3</td>
</tr>
<tr>
<td>RAd66 300 pfu/cell</td>
<td>84±0.5</td>
<td>6±0.1</td>
<td>10±0.3</td>
<td>4±1</td>
</tr>
<tr>
<td>RAdTIMP-3 300 pfu/cell</td>
<td>58±1‡</td>
<td>23±1‡</td>
<td>19±1‡</td>
<td>10±1‡</td>
</tr>
<tr>
<td>66 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninfected</td>
<td>79±0.3</td>
<td>6±1</td>
<td>15±1</td>
<td>3±0.3</td>
</tr>
<tr>
<td>RAd66 300 pfu/cell</td>
<td>77±1</td>
<td>7±0.1</td>
<td>16±1</td>
<td>4±1</td>
</tr>
<tr>
<td>RAdTIMP-3 300 pfu/cell</td>
<td>63±1‡</td>
<td>17±1‡</td>
<td>20±0.1‡</td>
<td>15±1‡</td>
</tr>
</tbody>
</table>

Cells were analyzed by propidium iodide staining and flow cytometric analysis for cell cycle populations after RAd66 and RAdTIMP-3 infection of SMC. *For pre-G0 analysis, data are presented as the percentage of the total gated cell population. For G0/G1, S, and G2M, data are calculated from the percentage of cells in cycle (excluding cells in the pre-G0 region). ‡P < 0.01 for RAdTIMP-3 vs. uninfected cells and RAd66 infection.
rate than control clones. However, in apparent contradiction, they (35) found no effect on proliferative indices in transduced and untransduced cells when the TIMP-1–overexpressing cells were used to seed injured rat vascular tissues in vivo. The reduced proliferation may therefore reflect clonal variation rather than increased TIMP-1 expression.

Overexpression of TIMP-2 inhibited both the increase in SMC numbers and BrdU-labeling, effects that have not been reported previously. No visible cell death accompanied the reduction in SMC numbers, indicating a specific effect of TIMP-2 on cell proliferation. Exogenous TIMP-2 did not reproduce the effect of RAdTIMP-2 infection, suggesting that the antiproliferative effect may be restricted to those cells that secrete high levels of TIMP-2. Although TIMP-2 has several functions including preferential binding to pro–MMP-2 and inhibition of MT-MMPs that distinguish it from TIMP-1, the results with synthetic inhibitors indicate that its effects on proliferation are likely to be independent of inhibition of MMPs. Indeed, TIMP-2 inhibits proliferation of microvascular endothelial cells induced by basic fibroblast growth factor through a mechanism independent of protease inhibitory activity (37). Transduction of TIMP-2 inhibits invasion and tumor volume of tumorigenic rat embryo fibroblasts in vivo (39), reduces melanoma growth in vivo (40), and affects the adhesive and spreading properties of melanoma cells (41), indicating that TIMP-2 can effect invasive and proliferative phenotypes of tumor cells. In some other cell systems, TIMP-2 can promote cell proliferation (26), but our data in SMC does not show this effect.

The most novel and important findings of our study are that TIMP-3 overexpression in SMC reduced cell number, induced DNA synthesis, elevated the number of cells in S/G2M phases of the cell cycle, and induced apoptotic cell death. Induction of cell death by adding exogenous TIMP-3 to uninfected cultures, and the finding that RAdTIMP-3–infected SMC caused apoptosis of neighboring uninfected cells (A.H. Baker and A.C. Newby, unpublished observations) indicates that a bystander effect occurs. Moreover, these effects are not confined to SMC, because adenoviral-mediated overexpression of TIMP-3 also promotes apoptosis of Hela cells in vitro (A.H. Baker and A.C. Newby, unpublished observations). The finding that TIMP-3 induces apoptosis obtains some support from previous experiments. Yang and Hawkes (42) showed that precoating plates with chicken TIMP-3 induces DNA synthesis in growth-retarded, nontransformed chicken embryonic fibroblasts. They also reported that it mediates detachment of transformed cells from their extracellular matrix, although by what mechanism was not elucidated. Furthermore, TIMP-3 overexpression in stable transfectants of colon carcinoma cells results in suspension cell death, although in this case it is mimicked by synthetic MMP inhibitors (43).

The effects of TIMP-3 on S-phase entry and apoptosis ob-

Figure 6. ISEL of DNA. SMC were infected and assessed for the presence of nicked DNA 42 h after infection. (A) Uninfected control; (B) RAd66 300 pfu/cell; (C and D) RAdTIMP-3 infected. Dark nuclei represent ISEL-positive nuclei; light-colored nuclei are negative. (A–C) Bar, 100 μm. (D) Bar, 10 μm. These data are representative of three experiments.
Figure 7. Induction of cell death induced by exogenous TIMP-3. Recombinant human TIMP-3 was added to cultures of rat SMC and analyzed for cell death. (A) Cell number 90 h after addition. (B) Western blot analysis of total cell lysates for TIMP-3. (1) Vehicle control; (2–4) 1, 2.5, and 5 μg of histone, respectively; (5–7) 1, 2.5, and 5 μg of TIMP-3, respectively (applicable to both A and B). *P < 0.05 for TIMP-3 vs. histone controls. (B) Standard (ST) and RAdTIMP-3–treated cell lysate (V) are indicated. The large arrow represents the unglycosylated form of TIMP-3, and the small arrow represents the glycosylated form. (C) Phase contrast photographs of control– (vehicle), histone– (5 μg) and TIMP-3– (5 μg) treated cultures 90 h after addition. (D) ISEL for control (1.3±0.5% positive), histone (1.1±0.8% positive), and TIMP-3 (38±3.5% positive, P < 0.05 vs. control and histone, n = 3). These data are representative of two experiments.
served in our study confirm a close association between TIMP-3 and the cell cycle status of SMC. Wick et al. (44) reported that mRNA expression of the endogenous TIMP-3 gene is regulated by the cell cycle in fibroblasts and HL60 cells. TIMP-3 transcription is also induced in quiescent rabbit SMC stimulated into the cell cycle, in contrast to TIMP-1 and -2 (34). Furthermore, we showed that TIMP-3 overexpression induces expression of the cyclin-dependent kinase inhibitor WAF1. This 21-kD protein has previously been shown to be induced in response to P.33 overexpression and subsequent apoptotic death of cancer cell lines and SMC in vitro (45, 46, 47). Induction of WAF1 provides additional evidence for activation of intracellular cell cycle regulatory mechanisms by overexpression of TIMP-3.

In considering possible pathogenic roles for TIMP-3–induced apoptosis, high levels of TIMP-3 mRNA have been detected in human breast cancer and in metastatic melanoma (14, 48), and may contribute to the high rate of apoptosis in these tumors. Increased expression of mRNA for TIMP-3 has been associated with retinas affected by simplex retinitis pigmentosa (49). Furthermore, mutations in the TIMP-3 gene leading to increased immunoreactive protein levels occur in the inherited disorder Sorsby’s fundus dystrophy (50, 51). TIMP-3–mediated apoptosis may be central to these pathologies, although this possibility remains to be demonstrated.

Adenovirus-mediated overexpression of TIMPs may be useful as gene therapy for vascular disease for a number of reasons. First, the TIMPs are low molecular weight secreted proteins, and a bystander effect can occur. Second, inhibition of SMC invasion achieved by overexpressing TIMPs is highly efficient. Third, additional inhibition of SMC proliferation is achieved with TIMP-2. Gene transfer of TIMP-3 may also be beneficial, but in different circumstances. Induction of cell death for treatment of cancer by TIMP-3 overexpression may be a suitable strategy.

In summary, our studies clearly demonstrate similar and diverse effects evoked by overexpression of individual TIMPs. These results have important implications for their role in vascular biology and their potential application in gene therapy.

Acknowledgments

The authors wish to thank J.L. Johnson and C. Keen for technical assistance, G. Murphy (Strangeways Research Labs) for advice and recombiant TIMP-3, and Roche Products Limited (Welwyn Garden City, Herts, United Kingdom) for the synthetic MMP inhibitor.

This work was funded by the Medical Research Council for Great Britain and the British Heart Foundation.

References

