FURTHER CHARACTERIZATION OF THE HUMAN SERUM
D 1.063-1.21, α–LIPOPROTEIN *

BY ANGELO SCANU † AND WALTER L. HUGHES

(From the Research Division of the Cleveland Clinic Foundation, Cleveland, Ohio, and the Medical Department of Brookhaven National Laboratory, Upton, N. Y.)

(Submitted for publication January 3, 1962; accepted May 3, 1962)

The high density lipoprotein class floating at a solvent density between 1.063 and 1.21 g per ml can be fractionated by flotation in solvents of intermediate density into two major subfractions (1, 2), which according to Shore (3) have a protein moiety with identical amino acid composition and C- and N-terminal amino acids. Homogeneity of the D 1.063-1.21 lipoprotein in terms of protein moiety has also been indicated by immunochemical studies (4). It would appear, therefore, that the human serum high density lipoprotein of D 1.063–1.21 constitutes a group of molecules identical as to protein moiety and possibly differing only in lipid complement. The experiments reported below were designed to test this hypothesis. The serum D 1.063–1.21 lipoprotein was arbitrarily fractionated into three fractions floating respectively at solvent densities of D 1.063–1.125, 1.125–1.168, and 1.168–1.21. The results dealing with some of the physicochemical and biological properties of these lipoprotein subfractions form the object of this report.

MATERIAL AND METHODS

The source of the lipoproteins was pooled sera from healthy human male subjects, fasted for at least 12 hours. All separations of lipoproteins were performed in a Spincor model L ultracentrifuge, 30.2 rotor, at 79,420 G and 16° C for 24 hours. Sera were first adjusted to D 1.063 by addition of solid NaCl. After ultracentrifugation, the top fractions, containing lipoproteins of densities between 1.006 and 1.063, were discarded and the remainder adjusted to D 1.125 by addition of solid KBr. After ultracentrifugation, the top fractions were collected (lipoproteins of D 1.063-1.125), the remainder adjusted to D 1.168 by adding solid KBr and ultracentrifuged.

* This work was partially supported by grants from the United States Atomic Energy Commission, United States Public Health Service (H-96), and the Cleveland Area Heart Society.

† Research Collaborator, Medical Department, Brookhaven National Laboratory, N. Y. Present address: Department of Medicine, University of Chicago School of Medicine, Chicago, Ill.

The top fractions thus obtained (lipoproteins of D 1.125–1.168) were removed and the remainder, brought to D 1.21 with solid KBr, ultracentrifuged to float the lipoproteins of D 1.168–1.21. Aliquots from the same normal human pooled sera were used to prepare the whole high density lipoprotein class of D 1.063–1.21 according to the method of Lewis, Green and Page (5). From each of these lipoprotein classes, possible contaminating serum proteins were removed by ultracentrifugation in a medium of density 1.21, as previously reported (6). Ultracentrifugal analysis of these purified lipoproteins was performed in a model E ultracentrifuge, at 52,620 rpm and 26° C.

All lipoprotein samples were dialyzed against large volumes of 0.15 M NaCl at 4° C for 24 hours before use. Protein (7), cholesterol (8), and phospholipid (9) content of each lipoprotein was also determined. Removal of lipids from the D 1.063–1.21 lipoprotein class was performed according to Scanz, Lewis and Bumpus (10). 125I-labeling of the lipoprotein proteins was performed by a technique essentially identical to that of McFarlane (11). Free iodine was removed by passing the radioiodinated protein three times through an anion exchange resin, Ioresin (Abbott Laboratories, North Chicago, Ill.). The labeled proteins were estimated to have about 1 atom of iodine per molecule.

Moving boundary electrophoresis was determined by the Longworth modification of the Tiselius method employing barbital buffer, pH 8.6, ionic strength 0.1. Paper electrophoretic analyses were carried out in a Durrum cell (12) with barbital buffer of pH 8.6, ionic strength 0.05. Bromphenol blue was used for protein staining and Sudan black for lipid staining. Scanning of the strips was performed in a Spincor Analytrol, model RA. Starch gel electrophoretic analyses were conducted at 26° C according to Smithies (13) with the discontinuous system of buffers (Tris–boric acid, pH 8.2) proposed by Poulak (14). Amidro Schwartz 10 B Bayer was used for protein staining and oil red O Spincor for lipid staining. When labeled samples were used the curve of radioactivity of the starch patterns was obtained as reported previously (6).

Studies of the ultraviolet absorption spectra of the various lipoprotein fractions were carried out in a Beckman DK-2 automatic ratio recorder, with 0.01 per cent solutions of protein in 0.15 M NaCl.

Amino acid composition of lipoprotein proteins was determined by the use of a Spincor amino acid analyzer, model 120, at 50° C. For the analysis, lipoproteins were extracted with a 3:1 ethanol: ether mixture for 2 hours.
at 26°C, and the delipidated protein was hydrolyzed in 6 N HCl at 110°C for 18 hours. The hydrolysate was
dried by evaporation, and the HCl removed by the addi-
tion of distilled water and by drying, three times. The
final dry residue was dissolved in a 5-ml solution com-
posed of 1 ml of 1 per cent HCl and 4 ml sodium citrate
buffer, pH 2.2. The acidic amino acids were sepa-
rated with 150-cm columns of a cation exchange resin,
particle size 31-41 μ (Aminex-MS, blend Q-150, Bio-Rad
Laboratories, Richmond, Calif.) with a sodium citrate
buffer, pH 3.25 to 4.25, as eluents. The basic amino acids
were separated on a 15-cm column of an ion-exchange
resin, type 15 A, particle size 19 to 25 μ (Spinco Division,
Palo Alto, Calif.). The amount of material used for
each column was 0.1 μ mole of high density lipoprotein
protein. The reproducibility of the method was within
a limit of 3 to 4 per cent.

In the in vivo experiments lipoproteins labeled in the
protein moiety with 131I were injected into human sub-
jects, dogs, and mice. The radioiodinated material was
sterilized before use through Swinny filter discs contained
in special B-D adapters (Becton, Dickinson and Co.,
Rutherford, N. J.). The sterility of the material was
checked by bacteriological analysis. The human sub-
jects used in these experiments were two apparently
healthy males, 40 to 45 years of age, weighing 60 to 70
kg, who were hospitalized throughout the experiment in
the metabolic unit of the Medical Department of the
Brookhaven National Laboratory, Upton, N. Y. A third
human subject was an apparently healthy 35 year old
employee of the Cleveland Clinic Foundation. All subjects
received daily 20 drops of Lugol's solution in their drink-
ing water to prevent radioiodine uptake by the thyroid.

The dogs used in the experiments were male mongrels,
1 to 2 years of age, weighing 10 to 14 kg. They were kept

![Starch gel electrophoretic pattern of human serum HDL and its subfractions I, II, and III.](image)

Fig. 1. Starch gel electrophoretic pattern of human serum HDL and its subfractions I, II, and III. Staining: amido Schwartz. a = HDL I, b = HDL II, c = HDL III, and d = HDL IV.

on a regular balanced diet, with the addition to their drink-
ing water of 10 drops of Lugol's solution.

In the human subjects and in the dogs, venous blood
was withdrawn at intervals to determine the rate of disap-
pearance from circulation of the radioiodinated lipopro-
tein protein. Radioactivity was also determined in the
urine samples collected daily. Measurement of radio-
activity of serum and urine samples from human subjects
(3 ml) and from dogs (1 ml) was carried out in a sodium
iodide crystal scintillation detector (Tracer-Lab, Inc.)
with a counting efficiency by means of an 131I standard
of about 33 per cent.

In the human subjects, whole-body measurements of
radioactivity were also performed by use of the Brook-
haven iron-room, whole-body counter, with an 8 × 4 inch
KI crystal and 100-channel gamma ray spectrometer.

The male albino mice were of an average weight, 25 g.
They were fed a regular Purina chow diet and were given
distilled water containing 0.1 g per 100 ml of sodium
iodide. Whole-body measurements of radioactivity were
performed according to the technique of Terres, Hughes
and Wolins (15) by placing the mouse in a nylon con-
tainer which was then inserted into the well of the scintil-
lation detector. Prior to each measurement the urinary
bladder of the mouse was emptied by compression.

All counts were corrected for physical decay to the
time of injection and then plotted as a percentage of the
radioactivity injected against time on semilogarithmic
paper. The half-time values of disappearance of the
radioiodinated protein from plasma or from whole body
were determined from the exponential straight portion of
the curve believed to represent degradation of the in-
jected protein. The lines were fitted to the data by the
method of least squares.

In the human subjects and in the dogs, the daily uri-
inary excretion of radioactivity was also determined.
These values, corrected for physical decay, were ex-
pressed as a percentage of the total radioactivity injected per day.
About 95 per cent of the radioactivity lost from the body
was recovered in the urine.

RESULTS

The spectrophotometric analysis of HDL and
its subfractions I, II, and III was run in triplicate.

<table>
<thead>
<tr>
<th>Lipoprotein class</th>
<th>Flotation coefficient</th>
<th>Protein</th>
<th>Cholesterol</th>
<th>Phospholipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1.063-1.21</td>
<td>5.0</td>
<td>50.0</td>
<td>18.5</td>
<td>33.2</td>
</tr>
<tr>
<td>D 1.063-1.125</td>
<td>5.0</td>
<td>46.0</td>
<td>20.0</td>
<td>33.0</td>
</tr>
<tr>
<td>D 1.125-1.168</td>
<td>4.7</td>
<td>53.0</td>
<td>18.5</td>
<td>29.4</td>
</tr>
<tr>
<td>D 1.168-1.21</td>
<td>3.9</td>
<td>58.0</td>
<td>14.5</td>
<td>27.5</td>
</tr>
</tbody>
</table>

The abbreviations used in the text are: HDL = high
density lipoprotein of D 1.063-1.21; I = HDL 1.063-1.125;
II = HDL 1.125-1.168, and III = HDL 1.168-1.21. aP is
the protein from HDL after removal of the lipid.
CHARACTERIZATION OF HUMAN \(\alpha_{1} \)-LIPOPROTEIN

FIG. 2. ANALYTICAL ULTRACENTRIFUGAL ANALYSIS IN A MEDIUM OF DENSITY 1.21 OF HDL\(_{1} \) AND ITS SUBFRACTIONS I, II, AND III. Each sample contained 1 mg of lipoprotein protein. \(a = \) HDL\(_{1} \), \(b = \) HDL I, \(c = \) HDL II, and \(d = \) HDL III; 52,640 rpm, 36 minutes, 26° C.

Each lipoprotein fraction had an identical ultraviolet spectrum with a peak of maximal deflection at 280 m\(\mu \). By free boundary electrophoresis, HDL\(_{1} \) showed a single peak with a mobility of \(-5.00 \times 10^{-5} \) cm\(^2\) per v per second. The three HDL subfractions exhibited a similar electrophoretic mobility.

Paper electrophoretic analysis did not show sig-

TABLE II

| Amino acid composition of the protein moiety of human serum HDL 1.068-1.21 and subfractions* |
|----------------------------------|----------------|----------------|----------------|----------------|
| D 1.063-1.125 | D 1.125-1.168 | D 1.168-1.21 | D 1.063-1.21 | \(\alpha \)Pt |
| Aspartic | 40.7 | 42.8 | 46.2 | 42.0 | 42.6 |
| Threonine | 29.8 | 27.3 | 26.4 | 26.1 | 23.7 |
| Serine | 38.6 | 37.9 | 39.2 | 41.7 | 39.2 |
| Glutamic† | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| Proline | 34.7 | 38.2 | 36.2 | 38.4 | 37.5 |
| Glycine | 23.1 | 23.8 | 28.1 | 28.1 | 26.1 |
| Alanine | 41.0 | 38.2 | 37.6 | 38.7 | 39.2 |
| Valine | 29.0 | 27.9 | 28.8 | 25.9 | 24.8 |
| Methionine§ | 3.59 | 2.53 | 2.62 | 3.10 | 2.62 |
| Isoleucine| 5.08 | 4.42 | 4.96 | 3.83 | 3.26 |
| Leucine | 72.0 | 74.0 | 74.8 | 69.7 | 73.1 |
| Tyrosine | 18.3 | 18.4 | 20.7 | 18.6 | 12.7 |
| Phenylalanine | 19.2 | 20.3 | 21.6 | 23.1 | 23.1 |
| Cysteine | 47.7 | 48.6 | 49.8 | 49.2 | 51.2 |
| Lysine | 5.70 | 8.20 | 6.4 | 6.70 | 7.90 |
| Histidine | 32.4 | 30.5 | 33.6 | 34.1 | 36.2 |

* Per cent glutamic acid = 100. Traces of methionine sulfoxides were found, and no cysteic acid.
† \(\alpha \)P is the protein from HDL\(_{1} \) after removal of the lipids.
‡ 96 moles per mole of HDL\(_{1} \) protein, assuming mol wt of 75,000 (10).
§ Values corrected to 100 per cent recovery, assuming a 5 per cent loss of methionine in the procedure employed (15).
ificant difference in the position of the boundaries of HDL₄ and its subfractions. The boundary was in the area occupied in a reference electrophoretic pattern of normal human serum, by α₁-globulin. By starch gel electrophoresis, the HDL subfractions exhibited a slightly different velocity of migration, the electrophoretic mobility being as follows: III > II > I. A representative pattern is shown in Figure 1. HDL₄ and its subfractions all exhibited a major broad dark-stained boundary in an area almost half-way between the origin and the albumin zone. In front of each boundary there was a little hazy area indicating the possible existence of a minor, poorly defined boundary. This was shown by both protein and lipid staining.

By the analytical ultracentrifuge in a medium of D 1.21, HDL₄ showed a peak of maximum deflection with a coefficient of −S 5. The three HDL subfractions, also analyzed in a solvent of D 1.21 (Figure 2), floated at different rates with −S values of I = 5, II = 4.7, and III = 3.9. These analyses were run in triplicate and showed
a variation of less than 0.2 per cent. Within these three subfractions, the protein distribution was as follows (HDL₄ protein = 100 per cent): 47 per cent in I, 37 per cent in II, and 16 per cent in III. We have reported in Table I the chemical composition of HDL₄ and subfractions in terms of their relative percentage of protein, cholesterol, and phospholipids. These data show that the HDL subfractions that floated at higher density had a higher content of protein and consequently less cholesterol and phospholipids.

The amino acid composition of the protein of HDL₄ and subfractions is reported in Table II. The data include those obtained on human serum αP. All these proteins appeared to have a similar amino acid composition. In Figure 3 we have reported as an example a typical chromatogram obtained from an hydrolysate of HDL₄ protein. Of significance is the absence of the peaks corresponding to tryptophan, cystine, and cysteic acid, and the low content of methionine. Small peaks emerging just ahead of aspartic acid suggest the presence of trace amounts of methionine sulfoxides. Two other minor peaks were not identified.

αP is the protein from HDL₄ after removal of the lipids.

Fig. 4. Curves of disappearance of human serum HDL₄, labeled in the protein moiety with ¹⁴C from the whole body and from the plasma of two normal human subjects.
In vivo studies

Human subjects. Two subjects were injected intravenously with approximately 1 mg of HDL₄ protein of a specific radioactivity of 14 μc per mg. The curves of disappearance of radioactivity from circulation are reported in Figure 4. In both cases the phase of the curve indicating metabolic degradation of the injected radioiodinated lipoprotein protein was monominal with a half-time in days of 4.24 and 4.50. Values of half-time were very similar whether obtained from measurement of radioactivity in plasma or in whole body. The injected labeled lipoprotein protein traveled in the plasma with the D 1.063–1.21 lipoprotein class. No radioactivity was encountered in the other plasma lipoprotein. A third human subject was given intravenously 1 mg of labeled human serum αLP of a specific radioactivity of 25 μc per mg. This protein was removed from circulation with a half-time of 3.9 days and traveled only with the D 1.063–1.21 lipoprotein class. The distribution of radioactivity in the three HDL subfractions was also studied. Each protein had identical specific radioactivity.

Dogs. Two normal dogs were injected each with 1 mg of human serum HDL₄ protein and two other dogs with 1 mg of canine serum HDL₄. In both preparations the radioiodinated protein had a specific activity of approximately 25 μc per mg. The results, shown in Figure 5, indicate that both human and canine HDL₄ proteins, after the first period of equilibration, were removed.
from circulating plasma according to a monomial exponential line. However, the human HDL₄ protein was removed from circulation more rapidly (half-time, 2.6 days) than canine HDL₄ protein (half-times, 3.8 and 4.0 days). In both experiments the injected labeled protein traveled in the plasma D 1.063–1.21 lipoprotein class.

In another series of experiments two dogs were injected intravenously with I¹³¹-labeled human serum αP. Each dog was given a 1-μg sample of specific radioactivity of 25 μc per mg. The half-time values of plasma disappearance were similar to those obtained with the labeled native human HDL₄ protein and likewise traveled in the D 1.063–1.21 lipoprotein class. Forty-eight hours after the injection of the labeled material, the recipients' HDL fractions I, II, and III contained protein of the same specific radioactivity.

Mice. They were divided into four groups, each including 12 animals. Human serum HDL₄ and its subfractions I, II, and III were labeled in the protein moiety with I¹³¹ and each fraction employed for one group of mice. Each mouse was injected intravenously with 0.1 μg of labeled protein of a radioactivity of approximately 10 μc. Whole-body counting was used to follow the rate of degradation (16) of the injected labeled protein. The results summarized in Figure 6 show that the protein moiety, whether of HDL₄ or its three subfractions, was degraded by the mice at identical rate. To study the distribution of radioactivity among the plasma lipoproteins, groups of 6 mice were bled by heart puncture after opening of the chest under ether anesthesia. The ultracentrifugal analysis of the pooled plasma showed that the radioactivity was contained only in the D 1.063–1.21 lipoprotein class. No attempts were made to study further the distribution of radioactivity in the three HDL subfractions.

Another group of 12 mice was injected with I¹³¹-labeled human serum αP and the blood withdrawn 12 hours later. The ultracentrifugal analysis showed that all radioactivity was contained in the plasma D 1.063–1.21 lipoprotein class.

DISCUSSION

Our data have shown that the whole class of human serum high density lipoproteins floating between D 1.063 and 1.21 (HDL₄) can be further fractionated by ultracentrifugation in solvents of intermediate densities to yield subclasses which differ in flotation coefficient and electrophoretic mobility in starch gel. In these studies, the two intermediate solvent densities arbitrarily chosen, D 1.125 and 1.168, divided the HDL₄ class into the three subfractions of D 1.063–1.125 (I), D 1.125–1.168 (II), and D 1.168–1.21 (III). It is likely, however, that more fractions could be obtained with solvents of closer intermediate densities. It is interesting to note that the difference in ultracentrifugal flotation and in starch gel electrophoresis exhibited by the HDL subfractions was not accompanied by differences in either amino acid composition or biological properties of their protein moiety, suggesting, although not proving, that the whole plasma HDL of D 1.063–1.21 has single protein constituents, a conclusion which is in
agreement with the previously reported immunochemical studies (4). This observation and the finding that HDL subfractions had a different lipid complement (see Table 1) appear to support the hypothesis that a whole family of lipoproteins differing only in lipid content constitute the HDL class of lipoproteins of human plasma. A similar concept formulated on the basis of studies on density gradient ultracentrifugation has been recently presented by Oncley (17). Whether the demonstration of lipoprotein subfractions in human plasma depends on the laboratory procedures employed or reflects real existence in the living organism remains to be established. If this is the case, however, these lipoproteins may represent intermediate phases of an active lipid transfer from sites in which lipoproteins are fully saturated with lipids to sites in which lipoproteins have a smaller lipid complement. This process of lipid transfer may be favored by the labile type of association between protein and lipid in the human serum HDL (6) and by the great avidity for lipids exhibited by its protein moiety (6, 18).

This avidity for lipids of the human serum HDL protein (αP), previously shown by experiments in vitro (6), has now been corroborated by the present results in vivo, also indicating that this protein recombines preferentially with the lipids of its own lipoprotein class. Of particular interest is the observation that this recombination can occur between human αP and plasma HDL of other animal species (mice, dogs).

The absence of cysteine in the HDL protein has been previously reported from this laboratory on the basis of paper chromatographic analysis (10). This finding seems supported by the present chromatographic studies showing that acid hydrolysates of HDL protein do not contain cystine or cysteic acid, oxidative products of cysteine. Our studies, however, do not rule out the possibility that small amounts of this sulphur-containing amino acid are present in the HDL protein and remained undetected by the methodology used. A final answer to this problem may come from studies involving the technique of activation analysis or enzymatic cleavage of the HDL protein.

The chromatographic method used in our experiments is known to give a recovery for methionine of 95 per cent (18). It is also known that methionine may be partially degraded, during acid hydrolysis, to methionine sulfoxides, small amounts of which were found present in our chromatogram. Even after correction for these losses, however, the methionine content of HDL protein remained low. Failure to recover tryptophan in the HDL protein hydrolysates can be explained by its loss during acid hydrolysis (10).

SUMMARY

1. The human serum high density lipoprotein (HDL) of solvent density between D 1.063 and 1.21 g per ml was fractionated by ultracentrifugation in solvents of intermediate density into three subclasses: D 1.063–1.125, D 1.125–1.168, and D 1.168–1.21. Their lipoprotein protein had identical absorption spectra and amino acid composition. When labeled with I131 and injected into mice, they showed the same half-time of metabolic degradation (12 hours).

2. These three HDL subfractions showed differences in flotation coefficient when analyzed at D 1.21 and had different electrophoretic mobility in starch gel. These differences appeared to depend on the lipid content of these fractions.

3. Human serum HDL, labeled in the protein moiety with I131 and injected into human subjects and dogs, disappeared from circulation according to a monomolecular exponential curve. When the de-lipidated protein (10) was injected into either human subjects or dogs, it recombined with serum lipids and travelled with its own HDL class.

4. It is postulated that human serum HDL represents a single family of lipoproteins with identical protein component able to carry various amounts of lipids.

ACKNOWLEDGMENT

The authors wish to thank Miss L. Violet Forgach of the Department of Clinical Pathology for the performance of the analyses of protein hydrolysates in the automatic Spinco amino acid analyzer.

REFERENCES